TRANSPORTATION

DRAFT DESIGN REPORT / ENVIRONMENTAL IMPACT STATEMENT

Appendix F – Traffic Analysis
January 2014

Highway Project
P.I.N. 1721.51
BINs: 1033141 / 1033142
Interstate 87 (I-87) Exit 4 Access
Improvements

U.S. Department of Transportation Federal Highway Administration

Traffic Analysis

Table of Contents

1.0	DESIGN YEAR	2
2.0	GROWTH RATES	2
3.0	STUDY AREA	2
4.0	TRAFFIC DATA	3
4.1	Traffic Speeds	3
4.2	Travel Time & Delays	3
4.3	Traffic Volume Source	4
4.4	Traffic Flow Diagrams	5
5.0	TRAFFIC CHANGES DUE TO BUILD ALTERNATIVES	7
5.1	Diamond Alternative	7
5.2	Flyover Alternative	8
6.0	TRUCK TRAFFIC	9
7.0	ANALYSIS	9
8.0	CALIBRATION	9
8.1	Field Data Collection	10
8.2	Model Calibration	10
9.0	LEVEL OF SERVICE CRITERIA	12
10.0	LEVEL OF SERVICE, TRAVEL TIME AND DELAYS	12
10.1	1 Existing and No-Build	12
10.2	2 Level of Service for Build Alternatives	27
10.3	3 Travel Time	49
10.4	Network Delay and Distance Traveled	50
10.5	5 Ramp Queues	50
11.0	Safety Considerations, Accident History and Analysis	53

ATTACHMENT A: Figures

ATTACHMENT B: Traffic Count Data

ATTACHMENT C: Microsimulation Calibration Guidelines

ATTACHMENT D: Level of Service Criteria ATTACHMENT E: Level of Service Worksheets

ATTACHMENT F: Accident Analysis

ATTACHMENT G: Pedestrian Generator Checklist

Traffic Analysis

The following discussion describes the traffic data used for this project and the methods used to analyze existing and future conditions. The exhibits that are also printed in the main body of the design report follow the design report naming convention. Exhibits unique to this appendix begin with the letter "F".

1.0 DESIGN YEAR

The following design years are used in accordance with the NYSDOT Project Development Manual Appendix 5:

- Existing (2009)
- Estimated time of completion (ETC) (2016)
- ETC + 10 years (2026)
- ETC + 20 years (2036)
- ETC + 30 years (2046) at intersections adjacent to bridge structures and freeway segment underpasses or overpasses

2.0 GROWTH RATES

Traffic volume projections for the project study area were conducted by the Capital District Transportation Committee (CDTC) using their regional travel demand model. CDTC is the designated Metropolitan Planning Organization (MPO) for the Albany-Schenectady-Troy-Saratoga metropolitan area. The model incorporates existing traffic counts, planned development and transportation projects, and growth projections to estimate future traffic volumes with and without the implementation of this project.

Since the volume projections derived from the regional demand model reflect changes associated with regional land use, demographics and travel, the resulting peak hour volumes do not represent a uniform growth rate applied throughout the project area network. In general, CDTC's volume projections show little to no growth for the No-Build scenario out to ETC+20. The growth and traffic diversions to the Exit 4 area vary for each of the Build Alternatives.

3.0 STUDY AREA

The traffic study area includes the project limits described in Section 1.2.1 of the design report. Within this study area, the following intersections and freeway facilities are included in the traffic operations evaluations:

Signalized Intersections:

- Central Avenue & Wolf Road
- Wolf Road & Sand Creek Road
- Wolf Road & Metro Park Road
- Wolf Road & I-87 Exit 4 northbound (NB) off-ramp
- Albany-Shaker Road & Wolf Road / I-87 Exit 4 NB on-ramp
- Albany-Shaker Road & Old Wolf Road / I-87 Exit 4 southbound (SB) on-ramp
- Old Wolf Road & I-87 Exit 4 SB off-ramp
- Watervliet-Shaker Road & I-87 Exit 5 SB off- and on-ramps
- Watervliet-Shaker Road & I-87 Exit 5 NB off- and on-ramps / Holly Lane

I-87 (Northway): All freeway segments, ramp junctions and weaves from Exit 2 to Exit 6.

4.0 TRAFFIC DATA

4.1 Traffic Speeds

The posted speed limit on I-87 within the project limits is 55 mph. The posted speed limit on Albany-Shaker Road, Wolf Road, Old Wolf Road, and Watervliet-Shaker Road within the project limits is 40 mph.

Actual operating speeds during the AM and PM peak hours were compiled from data provided by NYSDOT and by information published byNYSDOT Highway Data Services. The average speed and 85th percentile operating speeds (where available) within the study area are provided in Exhibit 2.3.1.5 b.

Exhibit 2.3.1.5 b Existing Peak Hour Traffic Speeds (mph)							
Roadway: Segment	Direction	Ave	Average		ith entile	Source ¹	
Nodunay. Cog.mon.	D 001.011	АМ	PM	AM	PM	Goules	
I-87: Exit 2 to Exit 4	NB	57	51	-	-	А	
1-07. EXIL 2 10 EXIL 4	SB	56	56	-	-	A	
I-87: Exit 4 to Exit 5	NB	57	45	-	-	Δ.	
1-67. EXIL 4 TO EXIL 5	SB	56	57	-	-	Α	
LOZ. Evit E to Evit C	NB	52	41	-	-	Δ.	
I-87: Exit 5 to Exit 6	SB	56	56	-	-	A	
Albany-Shaker Road: Airport to Old Wolf Road	WB ²	30	29	-	-	В	
Wolf Road: Metro Park Road to Exit 4 NB off-	NB	34	26	-	-	В	
ramp	SB	37	34	-	-	ь	
Old Wolf Road: Exit 4 ramp to Old Niskayuna	NB	33	27	43	42	С	
Road	SB	33	23	41	41		
Watervliet-Shaker Road: Exit 5 SB off-ramp to	EB	27	23	-	-	В	
Exit 5 NB ramps	WB	35	34	-	-	D	

Sources of speed data:

- A. Continuous count stations via NYSDOT Region 1
- B. Running speeds from travel time study
- C. NYSDOT Highway Data Services

4.2 Travel Time & Delays

Field travel time data was collected in January 2009 on the study area roadways. Data was collected using the average-car method, where a vehicle is driven along the route traveling with traffic while distance, travel time and delay are recorded. The data collected was used as the basis for microsimulation modeling calibration (see Section 8.0).

Travel time and delay runs were conducted during the AM (7am to 9am) and PM (4pm to 6pm) peak hours. The study area was broken up into segments for the data collection. The sample size was nine to 15 runs in each direction on the local system (Wolf Road, Albany-Shaker Road, Old Wolf Road) and six to eight runs in each direction on I-87. The average travel time and delay collected from this study are summarized in Exhibit 2.3.1.5 a.

² Travel times were not measured in the eastbound direction from the Airport.

Exhibit 2.3.1.5 a Travel Time and Delay Summary								
Roadway: Segment	Overall Travel Time	Delay (seconds)	Overall Travel Time	Delay (seconds)				
Northb	(seconds) (seconds) Northbound							
Wolf Road: Central to Metro Park	185	44	238	73				
Wolf Road/ASR: Metro Park to Old Wolf	159	65	335	198				
I-87: Sand Creek Overpass to Airport	414	144	403	102				
Southbound								
WSR/CD Road/Old Wolf: Exit 5 NB Ramps to ASR	209	69	201	63				
ASR/Wolf Rd: Old Wolf to Metro Park	104	18	92	5				
Wolf Road: Metro Park to Central Ave	133	72	306	127				
I-87: Exit 6 On-Ramp to Airport	206	52	303	35				

The cause of the majority of the delay time experienced along the routes was related to traffic signal delay.

4.3 Traffic Volume Source

Existing AM and PM peak hour turning movement volumes were collected at many of the study area intersections in June and July of 2006 and January 2009. Traffic data was collected in years prior for the entire study area. The data collection conducted in 2009 was focused at key intersections in order to provide an update to data collected in 2006. All data collected in 2006 and 2009 was provided to CDTC to be used as a base in their regional demand model. Exhibit F.4.3-1 provides a summary of the data collection locations.

Exhibit F.4.3-1 Traffic Data Collection Locations						
Intersections	2006	2009				
Wolf Road & Central Avenue	X					
Wolf Road & Sand Creek Road	X	X				
Wolf Road & Metro Park Road	X					
Wolf Road & NB off-ramp	X	X				
Albany-Shaker Road & Wolf Road	X	X				
Albany-Shaker Road & Old Wolf Road	X	X				
Old Wolf Road & Exit 4 SB off-ramp	X					
Watervliet-Shaker Road & Exit 5 SB Ramps		X				
Watervliet-Shaker Road & Albany-Shaker Road	X					
Albany-Shaker Road & Airport Access	X					

The raw traffic count data from 2006 and 2009 is provided in Attachment B of this Appendix.

With the data collected as a base, CDTC forecasted volumes for a seasonally adjusted Existing (2009) condition, ETC (2016) No-Build, ETC+10 (2026) No-Build, ETC+20 (2036) No-Build and ETC+30 (2046) No-Build conditions.

4.4 Traffic Flow Diagrams

Exhibit 2.3.1.6 b presents the Existing (2009) traffic volumes for the study roadways. Exhibit F.4.4-1 presents the estimated future No-Build traffic volumes on these roadways for the four design horizons of the project. As shown in the exhibits, there is very little growth projected through the design years under the No-Build condition. The I-87 growth rates vary from 0.0% to 0.3% per year through ETC+30. The growth rates on the local system range from 0.1% to 1.1% per year through ETC+30.

The AM and PM peak hour traffic flow diagrams are presented in Attachment A of this Appendix. The AM and PM peak hours represent the periods of recurring peak hourly flows on the roadway network. The Existing and No-Build turning movement volumes at study intersections are presented on Figures F-1 through F-10. The Existing and No-Build I-87 mainline and ramp volumes are presented on Figures F-11 through F-20. Note that the I-87 and ramp volumes do not balance all the way through the corridor. This was done to maintain the source data provided by CDTC for the freeway segments and ramps.

Exhibit 2.3.1.6 b Existing Traffic Volumes					
	Existin	g (2009)			
Roadway: Segment	AADT ¹	AM Peak			
	AADI	PM Peak			
I-87: Exit 2 to Exit 4 Northbound	56,700	3000 5100			
I-87: Exit 4 to Exit 2 Southbound	56,700	5150 3750			
I-87: Exit 4 to Exit 5 Northbound	64,400	2700 5800			
I-87: Exit 5 to Exit 4 Southbound	48,900	4400 2500			
I-87: Exit 5 to Exit 6 Northbound	66,700	2500 6000			
I-87: Exit 6 to Exit 5 Southbound	67,800	6100 3300			
Albany-Shaker Rd: West of Old Wolf	26,000	2300 2600			
Wolf Rd: South of Exit 4	25,000	1950 2500			

(1) AADT is the Average Annual Daily Traffic.

Exhibit F.4.4-1 Forecast No-Build Traffic Volumes								
	ETC	(2016)	ETC+	10 (2026)	ETC+2	20 (2036)	ETC+3	30 (2046)
Roadway: Segment	AADT ¹	AM Peak	AADT	AM Peak PM Peak	AADT	AM Peak PM Peak	AADT	AM Peak PM Peak
I-87: Exit 2 to Exit 4 Northbound	56,700	3000 5100	57,200	3000 5150	57,800	3000 5200	58,300	3000 5250
I-87: Exit 4 to Exit 2 Southbound	57,800	5200 3850	58,300	5250 3950	58,900	5300 4100	59,400	5350 4250
I-87: Exit 4 to Exit 5 Northbound	65,600	2750 5900	66,100	2750 5950	66,700	2800 6050	67,200	2850 6050
I-87: Exit 5 to Exit 4 Southbound	48,900	4400 2550	49,400	4450 2600	50,000	4550 2750	50,600	4550 2800
I-87: Exit 5 to Exit 6 Northbound	67,800	2500 6100	68,300	2550 6150	69,400	2600 6250	-	- -
I-87: Exit 6 to Exit 5 Southbound	67,800	6100 3450	67,200	6050 3650	67,200	6050 3800	-	-
Albany-Shaker Rd: West of Old Wolf	33,000	2450 3300	35,000	2550 3500	37,500	2600 3750	39,500	2800 3950
Wolf Rd: South of Exit 4	20,000	2050 2000	21,000	2000 2100	22,500	2000 2250	-	-

⁽¹⁾ AADT is the Average Annual Daily Traffic.

5.0 TRAFFIC CHANGES DUE TO BUILD ALTERNATIVES

Two feasible alternatives were evaluated: Diamond Alternative and Flyover Alternative. Refer to Section 3.2 for descriptions of the alternatives. As stated previously, CDTC used their regional demand model to estimate future traffic volumes for the project study area with and without the project alternatives. For the build alternatives, they incorporated the proposed connections and geometry into the roadway network to establish the traffic patterns.

5.1 Diamond Alternative

There are several elements of the Diamond Alternative that will change the existing traffic patterns:

- Existing elements removed
 - Exit 4 SB off-ramp
 - Exit 5 SB on-ramp
 - o C-D road between Exits 5 and 4
 - o Exit 4 SB on-ramp
 - Exit 4 NB off-ramp
 - o Exit 4 NB on-ramp
- New ramp facilities
 - Exit 5 SB on-ramp from Watervliet-Shaker Road (creating a "diamond" configuration with the Exit 5 SB off-ramp)
 - Exit 4 NB and SB on- and off-ramps to a new connector road (creating a new "diamond" interchange
- New roadway
 - Connector Road from Wolf Road at Metro Park Road to Albany-Shaker Road (crossing over I-87)

All of these modifications to the existing system change the traffic patterns on segments of I-87 and the local roadway system. The addition of the Connector Road and Exit 4 Diamond ramps change patterns on the Exit 2 and Exit 5 ramps, especially for those with Wolf Road origins or destinations.

The AM and PM peak hour traffic flow diagrams are presented in Attachment A of this Appendix. The turning movement volumes at study intersections are presented on Figures F-21 through F-28. The Existing and No-Build I-87 mainline and ramp volumes are presented on Figures F-29 through F-36.

Compared to the No-Build condition, the Diamond Alternative is estimated to divert approximately 400 vehicles in the AM and 1,100 vehicles in the PM to the study area roadways from other roadways. This is a result of better access to the Airport, reduced congestion and shorter duration trips.

Exhibit F.5.1-1 presents the projected ETC (2016), ETC+10 (2026), ETC+20(2036), and ETC+30 (2046) Diamond Alternative traffic volumes for the study area. The Diamond Alternative sustains slight growth on I-87 at 0.5% per year or less.

	Exhibit F.5.1-1 Forecast Build Alternative Traffic Volumes Diamond Alternative								
	ETC	(2016)	ETC+	10 (2026)	ETC+	20 (2036)	ETC+3	30 (2046)	
Roadway: Segment	AADT ¹	AM Peak PM Peak	AADT	AM Peak PM Peak	AADT	AM Peak PM Peak	AADT	AM Peak PM Peak	
I-87: Exit 2 to Exit 4 NB	60,000	3300 5400	60,600	3500 5450	61,100	3650 5500	61,100	3650 5500	
I-87: Exit 4 to Exit 2 SB	57,800	5200 3850	58,300	5250 3950	58,900	5300 4050	59,400	5350 4050	
I-87: Exit 4 to Exit 5 NB	62,800	2500 5650	63,300	2600 5700	63,900	2650 5750	64,400	2650 5800	
I-87: Exit 5 to Exit 4 SB	59,400	5350 3650	62,200	5600 3800	65,000	5850 3900	65,000	5850 3900	
I-87: Exit 5 to Exit 6 Northbound	63,900	2400 5750	65,600	2550 5900	67,200	2550 6050	-	-	
I-87: Exit 6 to Exit 5 Southbound	67,800	6100 3500	68,900	6200 3625	70,000	6300 3750	-		
Albany-Shaker Rd: West of Old Wolf	18,000	1100 1800	18,500	1250 1850	19,500	1400 1950	20,000	1600 2000	
Wolf Rd: South of Exit 4	14,000	900 1400	15,000	950 1500	16,500	1050 1650	-	-	

⁽¹⁾ AADT is the Average Annual Daily Traffic.

5.2 Flyover Alternative

There are several elements of the Flyover Alternative that will change the existing traffic patterns:

- Existing elements removed
 - Exit 4 SB off-ramp
 - o Exit 5 SB on-ramp
 - o C-D road between Exits 5 and 4
 - o Exit 4 SB on-ramp
- Existing elements modified
 - Exit 4 NB off-ramp restricted to right-turn only onto Wolf Road SB
- New ramp facilities
 - o Exit 4 NB off-ramp to new intersection on Albany-Shaker Road
 - o Exit 5 SB on-ramp relocated to north (creates "half-diamond" with SB off-ramp)
 - o Exit 4 SB off-ramp to new intersection on Albany-Shaker Road
 - o Exit 4 SB on-ramp, accessed from new intersection on Albany-Shaker Road

All of these modifications to the existing system change the traffic patterns on segments of I-87 and the local roadway system. The removal of the C-D road and the Exit 4 SB off-ramp to Old Wolf Road significantly reduces the volumes on Old Wolf Road. Providing ramps to the new intersection on Albany-Shaker Road reduces the number of intersections that vehicles destined for Albany International Airport have to drive through.

The AM and PM peak hour traffic flow diagrams for this alternative are presented in Attachment A of this Appendix. The turning movement volumes at study intersections are presented on Figures F-37 through F-44 and the I-87 mainline and ramp volumes are presented on Figures F-45 through F-52.

Compared to the No-Build condition, the alternative is estimated to divert approximately 100 vehicles in the AM and 900 vehicles in the PM to the study area roadways from other roadways. This is a result of better access to the Airport, reduced congestion and shorter duration trips.

Exhibit F.5.2-1 presents the projected traffic volumes for the Flyover Alternative for each of the project's design-year horizons. The Flyover Alternative sustains slight growth on I-87 at 0.5% per year or less.

Exhibit F.5.2-1 Forecast Build Alternative Traffic Volumes Flyover Alternative								
	ETC	(2016)	ETC+	10 (2026)	ETC+	20 (2036)	ETC+3	80 (2046)
Roadway: Segment	AADT ¹	AM Peak PM Peak	AADT	AM Peak PM Peak	AADT	AM Peak PM Peak	AADT	AM Peak PM Peak
I-87: Exit 2 to Exit 4 NB	61,100	3250 5500	62,200	3350 5600	62,800	3500 5650	63,300	3550 5700
I-87: Exit 4 to Exit 2 SB	59,400	5350 3900	60,000	5400 4000	60,600	5450 4150	61,100	5500 4100
I-87: Exit 4 to Exit 5 NB	65,600	2700 5900	66,100	2750 5950	66,100	2800 5950	66,100	2800 5950
I-87: Exit 5 to Exit 4 SB	58,900	5300 3650	62,200	5600 3800	65,000	5850 3900	65,000	5850 3900
I-87: Exit 5 to Exit 6 Northbound	68,300	2550 6150	68,600	2600 6175	68,900	2650 6200	ı	
I-87: Exit 6 to Exit 5 Southbound	66,700	6000 3500	67,800	6100 3650	68,300	6150 3800	ı	-
Albany-Shaker Rd: West of Old Wolf	19,000	1800 1900	20,500	2000 2050	22,000	2200 2200	24,500	2300 2450
Wolf Rd: South of Exit 4	18,500	1600 1850	19,000	1700 1900	19,500	1800 1950	20,500	1950 2050

⁽¹⁾ AADT is the Average Annual Daily Traffic.

6.0 TRUCK TRAFFIC

Heavy vehicle (truck) traffic for the study area roadways and intersections was compiled and used in the VISSIM and HCS analyses. Exhibit F.6.0-1 provides a summary of the truck percentages used. Daily truck percentage was not available for Wolf Road.

Exhibit F.6.0-1 Truck Data						
Route	I-87	Albany-Shaker Rd	Wolf Rd			
% Peak Hour Trucks	2% AM, 2% PM	3% AM, 2% PM	1% AM, 1% PM			
% Daily Trucks	8%	7%	-			

7.0 ANALYSIS

A VISSIM microsimulation model was used to analyze the study area roadway network. The model was used to evaluate travel times, intersection delays and overall network delay. The LOS applied to the intersections are based on the criteria set forth in the 2000 Highway Capacity Manual (HCM) published by the Transportation Research Board (TRB). Freeway and ramp junction LOS were evaluated using Highway Capacity Software (HCS). LOS criteria from the HCM are provided in Attachment D of this Appendix.

8.0 CALIBRATION

The Existing condition VISSIM model was calibrated to field conditions in order to provide a base model from which all future No-Build and Build alternative models could be developed. This calibration involved

a program of field samples of applicable observable metrics such as vehicle queuing, volumes and travel times. Model attributes and input variables were developed to replicate operations based on these field conditions.

8.1 Field Data Collection

In January 2009, turning movement traffic counts were conducted at key intersections within the study area to update data that was collected in 2006. Traffic counts were conducted during the weekday morning and evening peak periods of 7 am to 9 am and 4 pm to 6pm. While the turning movement counts were conducted, spot queue length observations were also taken to establish the average and max queue lengths at the intersections.

Travel times through the study area were also collected, as described and presented in Section 4.2. The travel time data collection was broken up between for five different segments of the study area. Times were also recorded at intersections along the route in order to provide the time between intersections and the delay experienced.

Existing roadway and intersection geometry was documented as well as traffic control devices. Traffic signal timing and phasing records were obtained from NYSDOT for the signalized intersections within the project study area.

8.2 Model Calibration

The data collected was used as a basis to calibrate the base model to replicate existing conditions. The field collected volumes, geometry and traffic control devices were input into the model. Travel times were collected from the model for the same limits and segments as was collected in the field.

In order to replicate existing conditions on congested roadways and ramps, driving behavior parameters had to be customized from the standard default values for some parts of the study area. Parameters such as look ahead/back distance, headway time, maximum deceleration, safety distance and waiting time before diffusion were adjusted to replicate the more aggressive driving behaviors in these areas. Speeds were also adjusted to match the existing speeds of vehicles entering and exiting the network. Information from the travel time field samples as well as posted speeds were used to determine appropriate speeds for the network, especially in areas where congestion is experienced outside of the modeled network but results in slowdowns within the modeled network. Speed reductions were used on roadway segments that contain multiple mid-block driveways and/or other traffic signals that were not included in the study. A model seeding interval of 550 seconds was utilized to ensure that the entire network is populated with vehicles prior to the evaluation of the peak hour.

An FHWA publication, *Traffic Analysis Toolbox Volume III: Guidelines for Applying Traffic Microsimulation Modeling Software*, provides some guidance on calibration targets. A summary of these targets is shown in Attachment C. For this model, a target of 10% variation from the field collected travel time for each overall run was used, which is a more refined calibration than the FHWA guidance (15%).

Exhibits F.8.2-1 and F.8.2-2 summarize the comparison between the field collected travel times and the times extracted from the calibrated VISSIM models. As shown, the travel times in the models are all within the 10% variation target from the field collected times.

Exhibit F.8.2-1 VISSIM Calibration Results AM Peak Travel Time Calibration

Travel Time Segment	Field Time *	Model Time *	% Difference				
Northbound							
Wolf Road: Central to Sand Creek	119	114					
Wolf Road: Sand Creek to Metro Park	66	63					
Wolf Road: Central to Metro Park	185	177	-4.6%				
Wolf Road: Metro Park to Exit 4 NB Off	63	64					
Wolf Road: Exit 4 NB Off to ASR	57	40					
ASR: Wolf to Old Wolf	39	45					
Wolf Road/ASR: Metro Park to Old Wolf	159	154	-3.4%				
I-87: Sand Creek Overpass to Exit 4 NB Off-Ramp	154	180					
Wolf Road: Exit 4 NB Off to ASR	57	40					
ASR: Wolf to Old Wolf	39	45					
ASR: Old Wolf to Airport	116	110					
I-87: Sand Creek Overpass to Airport	414	428	3.4%				
Southbou	ınd	-					
WSR: Exit 5 NB Ramps to SB Ramps	39	49					
CD Road: Exit 5 SB Ramps to Old Wolf	83	73					
Old Wolf Road: CD Road to ASR	86	80					
WSR/CD Road/Old Wolf: Exit 5 NB Ramps to ASR	209	208	-0.6%				
ASR: Old Wolf to Wolf	22	36					
Wolf Road: ASR to Exit 4 NB Off Ramp	33	17					
Wolf Road: Exit 4 NB Off to Metro Park	49	53					
ASR/Wolf Road: Old Wolf to Metro Park	104	106	1.8%				
Wolf Road: Metro Park to Sand Creek	92	95					
Wolf Road: Sand Creek to Central	121	115					
Wolf Road: Metro Park to Central	213	211	-1.0%				
I-87/CD Road: Exit 6 to Old Wolf	145	148					
Old Wolf Road: CD Road to ASR	86	80					
ASR: Old Wolf to Airport	122	110					
I-87: Exit 6 On-Ramp to Airport	326	341	4.5%				

^{*} Travel Time provided in seconds.

Exhibit F.8.2-2 VISSIM Calibration Results PM Peak Travel Time Calibration

Travel Time Segment	Field Time *	Model Time *	% Difference				
Northbound							
Wolf Road: Central to Sand Creek	148	146					
Wolf Road: Sand Creek to Metro Park	91	86					
Wolf Road: Central to Metro Park	238	232	-2.4%				
Wolf Road: Metro Park to Exit 4 NB Off	202	161					
Wolf Road: Exit 4 NB Off to ASR	111	91					
ASR: Wolf to Old Wolf	43	42					
Wolf Road/ASR: Metro Park to Old Wolf	335	311	-7.0%				
I-87: Sand Creek Overpass to Exit 4 NB Off-Ramp	154	166					
Wolf Road: Exit 4 NB Off to ASR	111	91					
ASR: Wolf to Old Wolf	43	42					
ASR: Old Wolf to Airport	132	101					
I-87: Sand Creek Overpass to Airport	403	403	-0.1%				
Southbou	ınd						
WSR: Exit 5 NB Ramps to SB Ramps	53	57					
CD Road: Exit 5 SB Ramps to Old Wolf	76	69					
Old Wolf Road: CD Road to ASR	71	96					
WSR/CD Road/Old Wolf: Exit 5 NB Ramps to ASR	201	211	5.1%				
ASR: Old Wolf to Wolf	19	33					
Wolf Road: ASR to Exit 4 NB Off Ramp	18	15					
Wolf Road: Exit 4 NB Off to Metro Park	56	52					
ASR/Wolf Road: Old Wolf to Metro Park	92	99	8.1%				
Wolf Road: Metro Park to Sand Creek	125	124					
Wolf Road: Sand Creek to Central	181	180					
Wolf Road: Metro Park to Central	306	305	-0.4%				
I-87/CD Road: Exit 6 to Old Wolf	129	144					
Old Wolf Road: CD Road to ASR	71	96					
ASR: Old Wolf to Airport	121	101					
I-87: Exit 6 On-Ramp to Airport	303	328	8.2%				

^{*} Travel Time provided in seconds.

9.0 LEVEL OF SERVICE CRITERIA

LOS is presented as a letter from A to F with A representing free flowing, unimpeded traffic with little or no delay and F representing highly congested traffic flow with long delays.

Standard design objectives for urban street systems is to achieve a LOS D on all intersection approaches during peak hours (NYSDOT Highway Design Manual, Chapter 5.9.2). However, it is recognized that there are many competing objectives and considerations, especially in urban areas, that may affect the desirability and feasibility of achieving this goal for peak hours. In these cases, peak-hour LOS E or F may be acceptable.

10.0 LEVEL OF SERVICE, TRAVEL TIME AND DELAYS

10.1 Existing and No-Build

10.1.1 Intersection Level of Service

Summaries of the LOS for the Existing and future No-Build conditions are presented in Exhibits F.10.1.1-1 through F.10.1.1-10. As shown in these analyses, the following study area intersections have one or more movement that experience LOS E or worse during the Existing studied peak hours:

- Central Avenue & Wolf Road (PM)
- Sand Creek Road & Wolf Road (PM)
- Exit 4 NB off-ramp & Wolf Road (AM & PM)
- Albany-Shaker Road & Wolf Road (AM & PM)
- Albany-Shaker Road & Old Wolf Road (AM & PM)
- Old Wolf Road & C-D Road (AM)

The intersections experience higher delay levels during the PM peak hour as volumes are higher on Wolf Road and at the intersections.

Delay is estimated to increase through the ETC+20 design horizon due to background traffic growth. For the ETC+20 No-Build condition, the following study area intersections will experience LOS E or worse for one or more movements during the studied peak hours:

- Central Avenue & Wolf Road (PM)
- Sand Creek Road & Wolf Road (PM)
- Exit 4 NB off-ramp & Wolf Road (AM & PM)
- Albany-Shaker Road & Wolf Road (PM)
- Albany-Shaker Road & Old Wolf Road (AM & PM)
- Old Wolf Road & C-D Road (AM)
- Exit 5 SB Ramps & Watervliet-Shaker Road (PM)

The LOS for some improvements improved at the intersection of Albany-Shaker Road & Wolf Road when comparing Existing to No-Build. This is related to the change in volume distribution at the intersection due to the opening of the final phase of the Wolf Road parallel connector road, which will create a connection from Albany-Shaker Road to Aviation Road.

Exhibit F.10.1.1-1 VISSIM Analysis Results Intersection Level of Service 2009 Existing AM

Intersection/Appr	oach	Delay *	LOS	Intersection/Approx	ach	Delay *	LOS
Central Avenue & Wol	f Road	<u> </u>		Albany Shaker Road & V	Volf Road	<u> </u>	
Central Avenue	EB LL	39.9	D		EB L	32.2	С
Central Avenue	EB TT	19.5	В	Albany Shaker Road	EB TT/R	32.7	С
Control Avenue	WB TTT	38.5	D		EB R	17.2	В
Central Avenue	WB R	7.4	Α		WB L	51.4	D
Exit 2 NB Off-Ramp	NB TTT	40.2	D	Albany Shaker Road	WB TT	25.9	С
	SB LL	46.6	D		WB R	5.3	Α
Wolf Road	SB RR	5.9	Α		NB L	64.4	E
OVERALL		29.2	С	Wolf Road	NB L/TT	41.4	D
Sand Creek Road & W	olf Road	•		1	NB R	19.0	В
	EB L	33.7	С	OVERALL	NO IX	32.3	C
Sand Creek Road	EB T	32.6	С	Albany Shaker Road & C	Old Wolf Roa	ad	
	EB R	4.3	A		EB L	43.2	D
	WB L	39.1	D	Albany Shaker Road	EB TT	43.6	D
Sand Creek Road	WB T	37.7	D	1	EB R	26.9	С
	WB R	6.8	А		WB L	29.2	С
	NB L	47.4	D	Albany Shaker Road	WB TT/R	40.2	D
Wolf Road	NB TT	21.9	С		SB LL/T	56.8	E
	NB R	7.8	A	Old Wolf Road	SB R	49.4	D
	SB L	46.7	D	OVERALL		44.3	D
Wolf Road SB TT		21.8	С	Old Wolf Road & CD Roa	ad		
	SB R	5.7	Α	Site Driveway	EB L/T/R	9.9	А
OVERALL		25.8	С	CD Road	WB L/T/R	34.7	С
Metro Park & Wolf Roa	ad	-		Old Wolf Road	NB L/T/R	37.5	D
Hess Station	EB L/T/R	26.6	С	Old Wolf Road	SB L/T/R	64.3	E
Metro Park Drive	WB L	36.1	D	OVERALL		39.2	D
Mello Falk Dilve	WB T/R	8.1	Α	Exit 5 SB Ramps & Water	ervliet Shake	er Road	
	NB L	3.0	Α	Watervliet Shaker Road	EB L/TT/R	15.4	В
Wolf Road	NB TT	3.2	Α	Watervliet Shaker Road	WB LT	16.6	В
	NB R	3.7	Α	Evit F CD Off Domp	SB L	24.3	С
Wolf Dood	SB L	9.9	Α	Exit 5 SB Off-Ramp	SB T/R	14.5	В
Wolf Road	SB TT/R	4.5	Α	Sherwood Drive	SB L/T/R	24.9	С
OVERALL		5.7	Α	OVERALL		17.6	В
Exit 4 NB Off-Ramp &	Wolf Road			Exit 5 NB Ramps & Wate	ervliet Shak	er Road	
First AND Off Dames	EB LL	76.6	E	Water Bat Obales Das d	EB L	19.6	В
Exit 4 NB Off-Ramp	EB R	31.4	С	Watervliet Shaker Road	EB T/R	6.3	Α
Wolf Bood	NB TTT	11.7	В	Motoruliot Chalcar Dagar	WB L	12.9	В
Wolf Road	SB TT	6.7	Α	Watervliet Shaker Road	WB TT/R	12.1	В
OVERALL		26.0	С	Holly Lane	NB L/T/R	34.6	С
				Evit END Off S	SB L	22.7	С
				EXIT 5 NB OTT-Ramp		10.4	В
				OVERALL		13.0	В

^{*} Delay provided in seconds per vehicle.

Exhibit F.10.1.1-2 VISSIM Analysis Results Intersection Level of Service 2009 Existing PM

Intersection/Appro	oach	Delay *	LOS	Intersection/Approx	ach	Delay *	LOS
Central Avenue & Wolf	Road			Albany Shaker Road & V	Volf Road		
Central Avenue	EB LL	55.5	Е		EB L	92.8	F
Central Avenue	EB TT	20.3	С	Albany Shaker Road	EB TT/R	50.4	D
Central Avenue	WB TTT	40.5	D		EB R	19.6	В
ochtrai / tveride	WB R	19.3	В		WB L	55.6	Е
Exit 2 NB Off-Ramp	NB TTT	54.3	D	Albany Shaker Road	WBTT	41.3	D
Wolf Road	SB LL	63.7	Е		WB R	27.0	С
	SB RR	27.6	С		NB L	57.6	E
OVERALL		36.6	D	Wolf Road	NB L/TT	62.4	E
Sand Creek Road & W	olf Road			NB R 36.2 D			
	EB L	110.8	F	OVERALL		48.9	D
Sand Creek Road	EB T	98.2	F	Albany Shaker Road & 0	Old Wolf Roa	d	
	EB R	49.8	D		EB L	128.9	F
	WB L	64.4	Е	Albany Shaker Road	EB TT	119.6	F
Sand Creek Road	WB T	67.9	Е		EB R	108.5	F
	WB R	16.3	В	Albany Shaker Road	WB L	84.1	F
	NB L	65.0	Е	Albany Shaker Koau	WB TT/R	27.8	С
Wolf Road	NB TT	36.7	D	Old Wolf Road	SB LL/T	76.4	Е
	NB R	13.8	В	Old Woll Road	SB R	49.9	D
	SB L	70.9	Е	OVERALL		80.3	F
Wolf Road SB	SB TT	37.9	D	Old Wolf Road & CD Ro	ad		
	SB R	19.0	В	Site Driveway	EB L/T/R	6.3	Α
OVERALL		54.1	D	CD Road	WB L/T/R	34.7	С
Metro Park Drive & Wo	olf Road			Old Wolf Road	NB L/T/R	14.4	В
Hess Station	EB L/T/R	36.0	D	Old Wolf Road	SB L/T/R	39.1	D
Metro Park Drive	WB L	43.5	D	OVERALL		31.6	С
Mello Falk Dilve	WB T/R	22.8	С	Exit 5 SB Ramps & Wate	ervliet Shake	r Road	
	NB L	10.1	В	Watervliet Shaker Road	EB L/TT/R	34.0	С
Wolf Road	NB TT	14.2	В	Watervliet Shaker Road	WB LT	21.2	С
	NB R	9.5	Α	Exit 5 SB Off-Ramp	SB L	33.6	С
Wolf Road	SB L	26.1	С	Exit 5 5b Oil-Ramp	SB T/R	6.1	Α
Woll Road	SB TT/R	6.0	Α	Sherwood Drive	SB L/T/R	38.7	D
OVERALL		14.4	В	OVERALL		28.4	С
Exit 4 NB Off-Ramp &	Wolf Road			Exit 5 NB Ramps & Wate	ervliet Shake	r Road	
Exit 4 NB Off-Ramp	EB LL	107.9	F	Matandiat Shakar Boad	EB L	30.6	С
LAR 4 NO OII-Naiiip	EB R	19.8 B Watervliet Shaker Road	vvalerviiet Stiaker Kuau	EB T/R	9.1	Α	
Wolf Road	NB TTT	100.6	F	Watervliet Shaker Road	WB L	19.1	В
TON ROUG	SB TT	4.1	Α	Tatorviiot Orianer Moau	WB TT/R	19.6	В
OVERALL		68.6	E	Holly Lane	NB L/T/R	42.2	D
		·		Exit 5 NB Off-Ramp	SB L	32.5	С
				LAIL 3 IND OIL-RAINP	SB T/R	10.5	В
				OVERALL		21.4	С

^{*} Delay provided in seconds per vehicle.

 $L \! = \! Left, \, T \! = \! Through, \, R \! = \! Right, \, L/T \! = \! shared \, Left/Through, \, T/R \! = \! shared \, Through/Right$

Exhibit F.10.1.1-3 VISSIM Analysis Results Intersection Level of Service 2016 (ETC) No-Build AM

Intersection/Appro	oach	Delay *	LOS	Intersection/Approa	ach	Delay *	LOS		
Control Avenue 8 Welf	i Dood	-		Albany Shaker Road & V	Valf Band				
Central Avenue & Wolf	EB LL	40.4		Albany Shaker Road & V	EB L	41.7			
Central Avenue	EB TT	20.5	C	Albany Shaker Road	EB TT/R	23.0	С		
	WB TTT	38.6	D	rabany chartor reduc	EB R	12.7	В		
Central Avenue	WB R	8.8	B		WB L	33.8	С		
Exit 2 NB Off-Ramp	NB TTT	40.4		Albany Shaker Road	WB TT	22.2	С		
•	SB LL	47.5	D	1	WB R	5.2	A		
Wolf Road	SB RR	7.0	A		NB L	51.4	D		
OVERALL		29.2	С	Wolf Road	NB L/TT	38.5	D		
Sand Creek Road & W	olf Road			1	NB R	7.9	A		
	EB L	31.1	С	OVERALL		25.1	С		
Sand Creek Road	EB T	28.1	С	Albany Shaker Road & C	old Wolf Roa	ad			
	EB R	2.4	A	, , , , , , , , , , , , , , , , , , , ,	EB L	47.4	D		
	WB L	35.8	D	Albany Shaker Road	EB TT	45.5	D		
Sand Creek Road	WB T	32.0	С	1	EB R	32.8	С		
	WB R	5.2	Α	Alle a con Objetion Based	WB L	67.2	Е		
	NB L	42.9	D	Albany Shaker Road	WB TT/R	24.4	С		
Wolf Road	NB TT	13.1	В	Old Wolf Road	SB LL/T	81.6	F		
	NB R	6.1	Α	Old Woll Road	SB R	66.9	Е		
	SB L	47.9	D	OVERALL		50.7	D		
Wolf Road SB TT		19.7	В	Old Wolf Road & CD Roa	ad				
	SB R	9.8	Α	Site Driveway	EB L/T/R	8.9	Α		
OVERALL		20.4	С	CD Road	WB L/T/R	70.0	Е		
Metro Park & Wolf Roa	ad			Old Wolf Road	NB L/T/R	42.9	D		
Hess Station	EB L/T/R	33.9	С	Old Wolf Road	SB L/T/R	243.3	F		
Metro Park Drive	WB L	42.9	D	OVERALL		92.1	F		
Well of alk Blive	WB T/R	9.3	Α	Exit 5 SB Ramps & Wate	SB Ramps & Watervliet Shaker Road				
	NB L	3.3	А	Watervliet Shaker Road	EB L/TT/R	16.4	В		
Wolf Road	NB TT	2.0	Α	Watervliet Shaker Road	WB LT	18.8	В		
	NB R	3.9	Α	Exit 5 SB Off-Ramp	SB L	24.5	С		
Wolf Road	SB L	4.5	Α		SB T/R	13.8	В		
	SB TT/R	2.9	Α	Sherwood Drive	SB L/T/R	25.8	С		
OVERALL		3.7	Α	OVERALL		19.3	В		
Exit 4 NB Off-Ramp &	Wolf Road			Exit 5 NB Ramps & Wate	ervliet Shake	er Road			
Exit 4 NB Off-Ramp	EB LL	56.4	E	Watervliet Shaker Road	EB L	20.2	С		
- 1	EB R	16.6	В		EB T/R	10.4	В		
Wolf Road	NB TTT	11.6	В	Watervliet Shaker Road	WB L	10.7	В		
	SB TT	9.1	Α		WB TT/R	12.2	В		
OVERALL		20.5	С	Holly Lane	NB L/T/R	30.7	С		
				Exit 5 NB Off-Ramp	SB L	23.3	С		
					SB T/R	10.7	В		
				OVERALL		13.6	В		

^{*} Delay provided in seconds per vehicle.

Exhibit F.10.1.1-4 VISSIM Analysis Results Intersection Level of Service 2016 (ETC) No-Build PM

Intersection/Appr	oach	Delay *	LOS	Intersection/Approa	ach	Delay *	LOS
Central Avenue & Wol	f Road			Albany Shaker Road & V	Volf Road		
Control Assesse	EB LL	55.0	D		EB L	132.3	F
Central Avenue	EB TT	19.5	В	Albany Shaker Road	EB TT/R	27.0	С
Control Avenue	WB TTT	43.6	D		EB R	10.1	В
Central Avenue	WB R	18.8	В		WB L	24.5	С
Exit 2 NB Off-Ramp	NB TTT	54.0	D	Albany Shaker Road	WBTT	36.8	D
Wolf Dood	SB LL	58.1	E		WB R	33.2	С
Wolf Road	SB RR	27.3	С		NB L	67.4	Е
OVERALL		37.4	D	Wolf Road	NB L/TT	72.3	Е
Sand Creek Road & W	olf Road			NB R 12.9			
	EB L	128.3	F	OVERALL		48.5	D
Sand Creek Road	EB T	101.5	F	Albany Shaker Road & C	Old Wolf Roa	d	
	EB R	55.0	D		EB L	416.1	F
	WB L	158.4	F	Albany Shaker Road	EB TT	330.6	F
Sand Creek Road	WB T	170.3	F	1	EB R	242.7	F
	WB R	90.0	F		WB L	85.6	F
	NB L	68.4	Е	Albany Shaker Road	WB TT/R	31.4	С
Wolf Road	NB TT	36.5	D		SB LL/T	70.0	E
	NB R	14.4	В	Old Wolf Road	SB R	46.1	D
	SB L	66.3	Е	OVERALL		149.7	F
Wolf Road	SB TT	36.8	D	Old Wolf Road & CD Roa	ad	<u> </u>	
	SB R	19.0	В	Site Driveway	EB L/T/R	6.3	A
OVERALL		71.0	E	CD Road	WB L/T/R	27.0	С
Metro Park Drive & Wo	olf Road			Old Wolf Road	NB L/T/R	14.2	В
Hess Station	EB L/T/R	40.6	D	Old Wolf Road	SB L/T/R	27.5	С
	WB L	48.9	D	OVERALL		24.4	С
Metro Park Drive	WB T/R	38.1	D	Exit 5 SB Ramps & Water	ryliet Shake	<u> </u>	
	NB L	25.0	С	Watervliet Shaker Road	EB L/TT/R	43.2	D
Wolf Road	NB TT	28.8	С	Watervliet Shaker Road	WB LT	22.8	С
	NB R	25.8	С	Trater met enaner read	SBL	34.2	С
	SB L	11.7	В	Exit 5 SB Off-Ramp	SB T/R	22.0	С
Wolf Road	SB TT/R	5.2	A	Sherwood Drive	SB L/T/R	43.9	D
OVERALL	02	21.0	С	OVERALL	00 2, 1,11	32.1	С
Exit 4 NB Off-Ramp &	Wolf Road			Exit 5 NB Ramps & Water	rvliet Shake		
Exit 4 NB OII-Namp a	EB LL	80.5	F	Exit 5 NB Ramps & Wate	EB L	27.0	С
Exit 4 NB Off-Ramp	EB R	7.6	A	Watervliet Shaker Road	EB T/R	10.0	В
	NB TTT	182.9	F		WB L	14.1	В
Wolf Road	SB TT	6.4	A	Watervliet Shaker Road	WB TT/R	19.2	В
OVERALL	05 11	105.6		Holly Lane	NB L/T/R	41.0	D
O V E I W LEE		103.0	•	Je lony Edillo			
				Exit 5 NB Off-Ramp	SB L	31.0	C
				OVERALL	SB T/R	10.0	A
				OVERALL		20.3	С

^{*} Delay provided in seconds per vehicle.

 $L \! = \! Left, \, T \! = \! Through, \, R \! = \! Right, \, L/T \! = \! shared \, Left/Through, \, T/R \! = \! shared \, Through/Right$

Exhibit F.10.1.1-5 VISSIM Analysis Results Intersection Level of Service 2026 (ETC+10) No-Build AM

Intersection/Appr	oach	Delay *	LOS	Intersection/Approa	nch	Delay *	LOS
Central Avenue & Wol	f Road			Albany Shaker Road & V	Volf Road		
Central Avenue	EB LL	41.8	D		EB L	32.2	С
Ceritial Avenue	EB TT	21.0	С	Albany Shaker Road	EB TT/R	22.6	С
Central Avenue	WB TTT	39.5	D		EB R	12.3	В
Central Avenue	WB R	9.0	Α		WB L	31.4	С
Exit 2 NB Off-Ramp	NB TTT	40.4	D	Albany Shaker Road	WB TT	22.2	С
Wolf Road	SB LL	46.6	D		WB R	5.2	Α
	SB RR	7.0	Α		NB L	52.0	D
OVERALL		29.6	С	Wolf Road	NB L/TT	37.4	D
Sand Creek Road & W	olf Road				NB R	8.3	Α
	EB L	31.1	С	OVERALL		24.4	С
Sand Creek Road	EB T	28.0	С	Albany Shaker Road & C	old Wolf Roa	ad	
	EB R	2.5	А		EB L	46.3	D
	WB L	37.5	D	Albany Shaker Road	EB TT	44.1	D
Sand Creek Road	WB T	32.9	С		EB R	31.4	С
	WB R	5.1	Α	Albany Shaker Road	WB L	71.9	Е
	NB L	44.9	D	Albarry Shaker Road	WB TT/R	25.8	С
Wolf Road	NB TT	14.4	В	Old Wolf Road	SB LL/T	81.5	F
	NB R	6.6	Α	Old Woll Road	SB R	70.9	Е
	SB L	52.0	D	OVERALL		51.4	D
Wolf Road SB T	SB TT	20.5	С	Old Wolf Road & CD Roa	ad		
	SB R	9.4	А	Site Driveway	EB L/T/R	8.9	Α
OVERALL		21.3	С	CD Road	WB L/T/R	73.9	Е
Metro Park & Wolf Roa	ad			Old Wolf Road	NB L/T/R	46.6	D
Hess Station	EB L/T/R	33.7	С	Old Wolf Road	SB L/T/R	262.3	F
Metro Park Drive	WB L	39.5	D	OVERALL		102.8	F
iviello Faik Diive	WB T/R	7.9	Α	Exit 5 SB Ramps & Wate	rvliet Shake	er Road	
	NB L	2.9	Α	Watervliet Shaker Road	EB L/TT/R	16.1	В
Wolf Road	NB TT	2.1	Α	Watervliet Shaker Road	WB LT	18.2	В
	NB R	4.3	Α	Exit 5 SB Off-Ramp	SB L	26.7	С
Wolf Road	SB L	5.0	Α	Exit 5 3B Oil-Rainp	SB T/R	15.7	В
Woll Road	SB TT/R	3.1	Α	Sherwood Drive	SB L/T/R	26.4	С
OVERALL		4.0	Α	OVERALL		19.5	В
Exit 4 NB Off-Ramp &	Wolf Road			Exit 5 NB Ramps & Wate	rvliet Shake	er Road	
Exit 4 NB Off-Ramp	EB LL	58.4	Е	Watervliet Shaker Road	EB L	22.4	С
EXIT 4 IND OII-Naiiip	EB R	18.1	В	Water viiet Stiaker Noau	EB T/R	10.9	В
Wolf Road	NB TTT	12.1	В	Watervliet Shaker Road	WB L	10.8	В
TTOII TOUG	SB TT	8.6	Α	Traterviiet Orianer Road	WB TT/R	14.1	В
OVERALL		21.4	С	Holly Lane	NB L/T/R	37.4	D
	_			Evit 5 NR Off-Domo	SB L	23.6	С
				Exit 5 NB Off-Ramp SB T/R			В
				OVERALL		15.0	В

^{*} Delay provided in seconds per vehicle.

Exhibit F.10.1.1-6 VISSIM Analysis Results Intersection Level of Service 2026 (ETC+10) No-Build PM

Intersection/Appro	oach	Delay *	LOS	Intersection/Approa	ach	Delay *	LOS
Central Avenue & Wolf	Road			Albany Shaker Road & V	Volf Road		
Central Avenue	EB LL	55.7	Е		EB L	132.4	F
Ochtral Avenue	EB TT	20.1	С	Albany Shaker Road	EB TT/R	30.4	С
Central Avenue	WB TTT	47.8	D		EB R	11.2	В
ochtrai / tvenae	WB R	23.1	С		WB L	27.2	С
Exit 2 NB Off-Ramp	NB TTT	55.0	D	Albany Shaker Road	WBTT	39.5	D
Wolf Road	SB LL	63.5	Е		WB R	40.2	D
	SB RR	29.8	С]	NB L	67.6	Е
OVERALL		40.1	D	Wolf Road	NB L/TT	73.4	E
Sand Creek Road & Wo	olf Road				NB R	12.7	В
	EB L	130.9	F	OVERALL		49.8	D
Sand Creek Road	EB T	111.9	F	Albany Shaker Road & 0	Old Wolf Roa	d	
	EB R	64.6	Е		EB L	510.2	F
	WB L	183.9	F	Albany Shaker Road	EB TT	420.7	F
Sand Creek Road	WB T	197.0	F	1	EB R	358.8	F
	WB R	112.8	F	Albany Shaker Road	WB L	88.3	F
	NB L	70.5	Е	Albany Shaker Road	WB TT/R	32.4	С
Wolf Road	NB TT	41.4	D	Old Wolf Road	SB LL/T	73.9	Е
	NB R	20.4	С	Old Woll Road	SB R	49.4	D
	SB L	67.9	Е	OVERALL		190.0	F
Wolf Road	SB TT	37.0	D	Old Wolf Road & CD Ro	ad		
	SB R	19.1	В	Site Driveway	EB L/T/R	6.4	Α
OVERALL		76.9	E	CD Road	WB L/T/R	30.1	С
Metro Park Drive & Wo	If Road			Old Wolf Road	NB L/T/R	16.2	В
Hess Station	EB L/T/R	41.6	D	Old Wolf Road	SB L/T/R	24.1	С
	WB L	49.4	D	OVERALL		25.5	С
Metro Park Drive	WB T/R	35.0	С	Exit 5 SB Ramps & Wate	ervliet Shake	r Road	
	NB L	41.0	D	Watervliet Shaker Road	EB L/TT/R	53.0	D
Wolf Road	NB TT	44.6	D	Watervliet Shaker Road	WB LT	24.0	С
	NB R	39.4	D	E :: 5 0D 0" D	SB L	35.2	D
M 1/ D	SB L	13.3	В	Exit 5 SB Off-Ramp	SB T/R	24.9	С
Wolf Road	SB TT/R	5.3	Α	Sherwood Drive	SB L/T/R	48.8	D
OVERALL		29.9	С	OVERALL		36.6	D
Exit 4 NB Off-Ramp & V	Wolf Road	<u> </u>		Exit 5 NB Ramps & Wate	ervliet Shake	r Road	
	EB LL	86.0	F		EB L	30.0	С
Exit 4 NB Off-Ramp	EB R	8.0	А	Watervliet Shaker Road	EB T/R	11.0	В
	NB TTT	193.7	F		WB L	14.6	В
Wolf Road	SB TT	6.0	Α		WB TT/R	20.2	С
OVERALL		111.0	F	Holly Lane	NB L/T/R	33.9	С
		<u>. </u>			SB L	32.1	С
				Exit 5 NB Off-Ramp SB T/R		10.5	В
				OVERALL	32 .//(21.7	C

^{*} Delay provided in seconds per vehicle.

 $L \! = \! Left, \, T \! = \! Through, \, R \! = \! Right, \, L/T \! = \! shared \, Left/Through, \, T/R \! = \! shared \, Through/Right$

Exhibit F.10.1.1-7 VISSIM Analysis Results Intersection Level of Service 2036 (ETC+20) No-Build AM

Intersection/Appro	oach	Delay *	LOS	Intersection/Approa	ıch	Delay *	LOS
Central Avenue & Wolf	f Road			Albany Shaker Road & V	olf Road		
Central Avenue	EB LL	43.9	D		EB L	39.8	D
Central Avenue	EB TT	21.4	С	Albany Shaker Road	EB TT/R	22.9	С
Central Avenue	WB TTT	39.1	D		EB R	12.0	В
ochtrai / tveride	WB R	9.3	Α		WB L	24.3	С
Exit 2 NB Off-Ramp	NB TTT	42.0	D	Albany Shaker Road	WB TT	21.3	С
Wolf Road	SB LL	46.9	D		WB R	3.4	Α
	SB RR	7.3	Α		NB L	49.8	D
OVERALL		30.4	С	Wolf Road	NB L/TT	38.2	D
Sand Creek Road & W	olf Road				NB R	8.6	Α
	EB L	34.4	С	OVERALL		24.4	С
Sand Creek Road	EB T	30.5	С	Albany Shaker Road & C	ld Wolf Roa	nd	
	EB R	2.7	Α	EB L		49.7	D
	WB L	35.4	D	Albany Shaker Road	EB TT	42.3	D
Sand Creek Road	WB T	32.8	С		EB R	28.2	С
	WB R	5.9	А	Albany Shaker Road	WB L	28.0	С
	NB L	46.4	D	Albany Shaker Road	WB TT/R	42.0	D
Wolf Road	NB TT	15.2	В	Old Wolf Road	SB LL/T	83.9	F
	NB R	8.0	А	Old Woll Road	SB R	72.1	Е
	SB L	45.6	D	OVERALL		53.7	D
Wolf Road	SB TT	22.0	С	Old Wolf Road & CD Roa	nd		
	SB R	10.0	В	Site Driveway	EB L/T/R	9.4	А
OVERALL		22.5	С	CD Road	WB L/T/R	69.3	Е
Metro Park & Wolf Roa	ad			Old Wolf Road	NB L/T/R	44.8	D
Hess Station	EB L/T/R	30.2	С	Old Wolf Road	SB L/T/R	328.7	F
Matra Dauls Drive	WB L	44.9	D	OVERALL		115.2	F
Metro Park Drive	WB T/R	9.1	А	Exit 5 SB Ramps & Wate	Exit 5 SB Ramps & Watervliet Shaker Road		
	NB L	3.1	Α	Watervliet Shaker Road	EB L/TT/R	17.6	В
Wolf Road	NB TT	2.1	Α	Watervliet Shaker Road	WB LT	18.3	В
	NB R	4.1	Α	Evit C CD Off Domes	SB L	26.3	С
Wolf Road	SB L	3.2	Α	Exit 5 SB Off-Ramp	SB T/R	17.1	В
Woll Road	SB TT/R	2.6	Α	Sherwood Drive	SB L/T/R	26.5	С
OVERALL		3.7	Α	OVERALL		19.6	В
Exit 4 NB Off-Ramp &	Wolf Road			Exit 5 NB Ramps & Wate	rvliet Shake	er Road	
Fuit 4 ND Off Dames	EB LL	59.9	E	Materialist Challes Dand	EB L	24.2	С
Exit 4 NB Off-Ramp	EB R	17.2	В	Watervliet Shaker Road	EB T/R	10.0	Α
Wolf Road	NB TTT	13.2	В	Water Bat City S	WB L	13.0	В
WYOII NUAU	SB TT	9.3	Α	Watervliet Shaker Road	WB TT/R	15.1	В
OVERALL		22.6	С	Holly Lane	NB L/T/R	38.7	D
				Evit 5 ND OV 5	SB L	25.4	С
				Exit 5 NB Off-Ramp		12.1	В
				OVERALL		15.8	В

^{*} Delay provided in seconds per vehicle.

Exhibit F.10.1.1-8 VISSIM Analysis Results Intersection Level of Service 2036 (ETC+20) No-Build PM

Intersection/Appro	oach	Delay *	LOS	Intersection/Approx	ach	Delay *	LOS
Central Avenue & Wolf	Road			Albany Shaker Road & \	Wolf Road		
Central Avenue	EB LL	58.0	Е		EB L	111.8	F
Central Avenue	EB TT	21.0	С	Albany Shaker Road	EB TT/R	29.2	С
Central Avenue	WB TTT	42.7	D		EB R	11.1	В
Central Avenue	WB R	25.3	С		WB L	28.2	С
Exit 2 NB Off-Ramp	NB TTT	56.5	Е	Albany Shaker Road	WBTT	38.6	D
Wolf Road	SB LL	64.8	Е		WB R	34.8	С
Woll Road	SB RR	30.5	С		NB L	55.3	E
OVERALL		39.3	D	Wolf Road	NB L/TT	70.8	Е
Sand Creek Road & Wo	olf Road				NB R	12.0	В
	EB L	142.4	F	OVERALL		44.8	D
Sand Creek Road	EB T	124.3	F	Albany Shaker Road & 0	Old Wolf Roa	d	
	EB R	74.7	Е		EB L	518.3	F
	WB L	190.3	F	Albany Shaker Road	EB TT	459.7	F
Sand Creek Road	WB T	203.3	F		EB R	447.0	F
	WB R	120.4	F	Albany Shaker Road	WB L	88.7	F
	NB L	70.9	E	Albany Shaker Road	WB TT/R	33.8	С
Wolf Road	NB TT	39.4	D	Old Wolf Road	SB LL/T	72.3	Е
	NB R	18.5	В	Old Woll Road	SB R	48.0	D
	SB L	66.7	E	OVERALL		212.1	F
Wolf Road	SB TT	37.9	D	Old Wolf Road & CD Ro	ad		
	SB R	21.1	С	Site Driveway	EB L/T/R	6.3	Α
OVERALL		78.6	E	CD Road	WB L/T/R	37.5	D
Metro Park Drive & Wo	If Road			Old Wolf Road	NB L/T/R	15.9	В
Hess Station	EB L/T/R	45.4	D	Old Wolf Road	SB L/T/R	28.7	С
Matra Dauls Drive	WB L	54.0	D	OVERALL		30.7	С
Metro Park Drive	WB T/R	39.0	D	Exit 5 SB Ramps & Wate	ervliet Shake	r Road	
	NB L	54.2	D	Watervliet Shaker Road	EB L/TT/R	63.3	E
Wolf Road	NB TT	43.8	D	Watervliet Shaker Road	WB LT	25.9	С
	NB R	32.4	С	Evit 5 SD Off Domp	SB L	36.1	D
Wolf Road	SB L	12.1	В	Exit 5 SB Off-Ramp	SB T/R	28.0	С
Woll Road	SB TT/R	4.5	А	Sherwood Drive	SB L/T/R	56.0	Е
OVERALL		29.5	С	OVERALL		41.5	D
Exit 4 NB Off-Ramp & \	Nolf Road			Exit 5 NB Ramps & Wate	ervliet Shake	r Road	
Evit 4 NP Off Pamp	EB LL	99.3	F	Wateryliet Sheker Bood	EB L	30.4	С
Exit 4 NB Off-Ramp	EB R	10.1	В	Watervliet Shaker Road	EB T/R	10.8	В
Wolf Road	NB TTT	198.5	F	F Watervliet Shaker Road	WB L	18.9	В
woii Noau	SB TT	5.7	Α	vidicivilet ollakei Nodu	WB TT/R	21.5	С
OVERALL		115.2	F	Holly Lane	NB L/T/R	39.5	D
				Evit 5 ND Off Dame	SB L	32.5	С
				Exit 5 NB Off-Ramp	SB T/R	10.9	В
				OVERALL		22.2	С

^{*} Delay provided in seconds per vehicle.

 $L \! = \! Left, \, T \! = \! Through, \, R \! = \! Right, \, L/T \! = \! shared \, Left/Through, \, T/R \! = \! shared \, Through/Right$

Exhibit F.10.1.1-9 VISSIM Analysis Results Intersection Level of Service 2046 (ETC+30) No-Build AM

Intersection/Appro	oach	Delay *	LOS	Intersection/Appro	oach	Delay *	LOS		
Exit 4 NB Off-Ramp & \	Nolf Road			Albany Shaker Road & Old Wolf Road					
Exit 4 NB Off-Ramp	EB LL	104.5	F		EB L	64.3	E		
LXII 4 NB OII-Ramp	EB R	49.6	D	Albany Shaker Road	EB TT	53.3	D		
Wolf Road	NB TTT	18.5	В		EB R	49.8	D		
Woll Road	SB TT	9.1	Α	Albany Shaker Road	WB L	26.7	С		
OVERALL		38.5	D		WB TT/R	42.1	D		
Albany Shaker Road & Wolf Road			Old Wolf Road	SB LL/T	89.3	F			
	EB L	32.8	С	Old Woll Road	SB R	76.5	Е		
Albany Shaker Road	EB TT/R	23.2	С	OVERALL		58.7	E		
	EB R	12.7	В						
	WB L	28.8	С	1					
Albany Shaker Road	WB TT	23.4	С						
	WB R	5.5	Α	1					
	NB L	51.2	D						
Wolf Road	NB L/TT	44.5	D						
	NB R	8.5	Α						
OVERALL		25.5	С						

^{*} Delay provided in seconds per vehicle.

Exhibit F.10.1.1-10 VISSIM Analysis Results Intersection Level of Service 2046 (ETC+30) No-Build PM

Intersection/Appro	oach	Delay *	LOS	Intersection/Appr	oach	Delay *	LOS
Exit 4 NB Off-Ramp &	Wolf Road			Albany Shaker Road &	Old Wolf Roa	d	
Exit 4 NB Off-Ramp	EB LL	137.7	F		EB L	469.8	F
LXII 4 NB OII-Namp	EB R	25.9	С	Albany Shaker Road	EB TT	424.4	F
Wolf Road	NB TTT	339.6	F		EB R	500.6	F
Woll Road	SB TT	5.9	Α	Albany Shaker Road	WB L	96.1	F
OVERALL		169.6	F	Albarry Shaker Road	WB TT/R	41.8	D
Albany Shaker Road & Wolf Road			Old Wolf Road	SB LL/T	95.5	F	
	EB L	95.4	F	Old Woll Road	SB R	73.8	Е
Albany Shaker Road	EB TT/R	36.3	D	OVERALL		214.6	F
	EB R	14.7	В				
	WB L	35.0	D	1			
Albany Shaker Road	WBTT	44.0	D	1			
	WB R	29.3	С	1			
	NB L	61.0	Е	1			
Wolf Road	NB L/TT	55.3	E	1			
	NB R	10.2	В]			
OVERALL		43.0	D]			

^{*} Delay provided in seconds per vehicle.

10.1.2 Freeway Level of Service

Freeway analyses for I-87 were conducted in accordance with the Highway Capacity Manual (HCM2000) using HCS+. The analyses were conducted for the freeway segments between Exits 2 and 4, Exits 4 and 5, Exits 5 and 6, and on the segments on the bridge over Albany-Shaker Road. Ramp junctions were evaluated at Exits 2, 4 and 5. Weave areas were evaluated at Exit 2. All of these analyses were conducted for Existing, ETC, ETC+10 and ETC+20. The freeway segment over Albany-Shaker Road was also evaluated for ETC+30. The level of service worksheets for all of the freeway analyses are provided in Attachment E.

The results of the AM and PM peak hour Existing and No-Build freeway analyses are summarized in Exhibits 2.3.1.7 c, 2.3.1.7 d, F.10.1.2-1 and F.10.1.2-2.

Exhibit 2.3.1.7 c Freeway Level of Service 2009 Existing AM Peak Hour										
		Existing	(2009)							
Direction	Segment/Junction	Density pc/mi/ln	LOS							
	FREEWAY SEGMENTS									
	Exit 2W on to Exit 4 off	19.6	С							
NB	Exit 4 off to Exit 4 on	14.4	В							
IND	Exit 4 on to Exit 5 off	17.6	В							
	Exit 5 on to Exit 6 off	12.3	В							
	Exit 6 on to Exit 5 off	29.9	D							
SB	Exit 4 off to Exit 5 on	28.8	D							
OD.	Exit 5 on to Exit 4 on	30.1	D							
	Exit 4 on to Exit 2W off	33.8	D							
	RAMP JUNCTIONS	}								
	Exit 2W on-ramp	16.5	В							
NB	Exit 4 off-ramp	22.2	С							
110	Exit 4 on-ramp	15.6	В							
	Exit 5 off-ramp	21.2	С							
	Exit 4 off-ramp	33.3	D							
SB	Exit 5 on-ramp	26.5	С							
35	Exit 4 on-ramp	27.9	С							
	Exit 2W off-ramp	33.0	D							
	WEAVE AREAS									
NB	Exit 2E on-ramp to Exit 2W off-ramp	22.0	С							
SB	Exit 2W on-ramp to Exit 2E off-ramp	28.5	D							

pc/mi/ln = passenger cars per mile per lane

Exhibit 2.3.1.7 d Freeway Level of Service 2009 Existing PM Peak Hour										
		Existing	(2009)							
Direction	Segment/Junction	Density pc/mi/ln ¹	LOS							
	FREEWAY SEGMENTS									
	Exit 2W on to Exit 4 off	36.3	E							
NB	Exit 4 off to Exit 4 on	31.5	D							
IND	Exit 4 on to Exit 5 off	**	F							
	Exit 5 on to Exit 6 off	31.5	D							
SB	Exit 6 on to Exit 5 off	16.2	В							
	Exit 4 off to Exit 5 on	16.3	В							
	Exit 5 on to Exit 4 on	17.6	В							
	Exit 4 on to Exit 2W off	24.5	С							
	RAMP JUNCTIONS	3								
	Exit 2W on-ramp	29.4	D							
NB	Exit 4 off-ramp	33.4	D							
NB	Exit 4 on-ramp	35.8	F							
	Exit 5 off-ramp	45.0	F							
	Exit 4 off-ramp	20.1	С							
SB	Exit 5 on-ramp	16.9	В							
05	Exit 4 on-ramp	22.1	С							
	Exit 2W off-ramp	25.5	С							
	WEAVE AREAS									
NB	Exit 2E on-ramp to Exit 2W off-ramp	39.2	Е							
SB	Exit 2W on-ramp to Exit 2E off-ramp	29.4	D							

^{1 -} pc/mi/ln = passenger cars per mile per lane

** - Density is greater than 45 pc/mi/ln and can no longer be calculated with the basic freeway analysis. Segment is oversaturated.

	Exhibit F.10.1-1 Freeway Level of Service No-Build AM Peak Hour												
	ETC (2016) ETC+10 (2026) ETC+20 (2036) ETC+30 (2046)												
Direction	Segment/Junction	Density pc/mi/ln	LOS	Density pc/mi/ln	LOS	Density pc/mi/ln	LOS	Density pc/mi/ln	LOS				
FREEWAY SEGMENTS													
	Exit 2W on to Exit 4 off	19.6	С	19.6	С	19.6	С	-	-				
NB	Exit 4 off to Exit 4 on	14.7	В	14.7	В	14.4	В	13.7	В				
IND	Exit 4 on to Exit 5 off	18.0	В	18.0	В	18.3	С	-	-				
	Exit 5 on to Exit 6 off	12.3	В	12.5	В	12.8	В	-	-				
	Exit 6 on to Exit 5 off	29.9	D	29.6	D	29.6	D	-	-				
SB	Exit 4 off to Exit 5 on	28.8	D	29.1	D	29.7	D	-	-				
OB	Exit 5 on to Exit 4 on	30.4	D	31.0	D	31.4	D	31.4	D				
	Exit 4 on to Exit 2W off	34.2	D	34.6	D	35.0	D	-	-				
			RAMP JU	JNCTIONS									
	Exit 2W on-ramp	16.6	В	16.7	В	16.6	В	-	-				
NB	Exit 4 off-ramp	22.0	С	22.0	С	22.1	С	-	-				
IND	Exit 4 on-ramp	16.8	В	16.7	В	16.3	В	-	-				
	Exit 5 off-ramp	22.0	С	21.9	С	22.2	С	-	-				
	Exit 4 off-ramp	32.8	D	32.8	D	32.8	D	-	-				
SB	Exit 5 on-ramp	25.5	С	25.8	С	26.5	С	-	-				
OB	Exit 4 on-ramp	28.1	D	28.5	D	28.6	D	-	-				
	Exit 2W off-ramp	33.0	D	33.2	D	33.4	D	-	-				
			WEAVE	AREAS									
NB	Exit 2E on-ramp to Exit 2W off-ramp	21.4	С	21.6	С	21.6	С	-	-				
SB	Exit 2W on-ramp to Exit 2E off-ramp	31.1	D	32.0	D	32.8	D	-	-				

pc/mi/ln = passenger cars per mile per lane

			way Lev No-I	F.10.1-2 /el of Ser Build ak Hour	vice								
	ETC (2016) ETC+10 (2026) ETC+20 (2036) ETC+30 (2046)												
Direction	Segment/Junction	Density pc/mi/ln ¹	LOS	Density pc/mi/ln	LOS	Density pc/mi/ln	LOS	Density pc/mi/ln	LOS				
FREEWAY SEGMENTS													
	Exit 2W on to Exit 4 off	36.3	E	36.8	E	37.3	Е	-	-				
NB	Exit 4 off to Exit 4 on	31.5	D	31.5	D	32.2	D	31.8	D				
IND	Exit 4 on to Exit 5 off	**	F	**	F	**	F	-	-				
	Exit 5 on to Exit 6 off	32.0	D	32.3	D	32.8	D	-	-				
	Exit 6 on to Exit 5 off	16.9	В	17.9	В	18.6	С	-	-				
SB	Exit 4 off to Exit 5 on	16.7	В	17.0	В	18.0	В	-	-				
OD O	Exit 5 on to Exit 4 on	18.3	С	18.6	С	19.3	С	19.9	С				
	Exit 4 on to Exit 2W off	25.2	С	25.8	С	26.8	D	-	-				
			RAMP JU	INCTIONS									
	Exit 2W on-ramp	29.6	D	29.6	D	29.9	D	-	-				
NB	Exit 4 off-ramp	33.5	D	33.7	D	33.9	D	-	-				
ND	Exit 4 on-ramp	36.7	F	37.0	F	37.8	F	-	-				
	Exit 5 off-ramp	46.6	F	47.3	F	48.1	F	-	-				
	Exit 4 off-ramp	19.3	В	20.4	С	20.9	С	-	-				
SB	Exit 5 on-ramp	16.7	В	17.1	В	18.0	В	-	-				
OD OD	Exit 4 on-ramp	22.7	С	23.5	С	24.5	С	-	-				
	Exit 2W off-ramp	26.2	С	26.8	С	27.7	С	-	-				
			WEAVE	AREAS									
NB	Exit 2E on-ramp to Exit 2W off-ramp	39.1	Е	38.8	Е	38.9	Е	-	-				
SB	Exit 2W on-ramp to Exit 2E off-ramp	26.8	С	27.6	С	28.6	D	-	-				

^{1 -} pc/mi/ln = passenger cars per mile per lane

During the AM peak hour, all of the freeway segments, ramp junctions and weave areas are estimated to operate at LOS D or better through ETC+20. There are some locations where the analysis of future No-Build conditions shows a decrease in vehicle density from the Existing conditions. This is related to the projected regional changes in travel patterns and mode choice of CDTC's regional travel demand model, which indicate either no growth of mainline traffic combined with slight growth on the ramp or slight decreases in ramp volumes.

During the PM peak hour, the following locations operate at LOS E or worse under the Existing condition in the northbound direction:

- Freeway Segments
 - o Exit 2W on to Exit 4 off
 - Exit 4 on to Exit 5 off
- Ramp Junctions
 - Exit 4 on-ramp
 - Exit 5 off-ramp
- Weave Areas
 - o Exit 2E on to Exit 2W off

Through the ETC+20 design year, the same freeway facilities are estimated to continue to operate at LOS E or F. There is no substantial degradation in these operations beyond the Existing condition because there is little growth estimated in peak hour traffic on I-87. Similar to the AM peak hour, there are a few

^{** -} Density is greater than 45 pc/mi/ln and can no longer be calculated with the basic freeway analysis. Segment is oversaturated.

instances where the density reported decreases in a future year; these instances are related to slight decreases in ramp volumes from the regional demand model.

10.2 Level of Service for Build Alternatives

Two build alternatives were evaluated for the purpose of this study: the Diamond Alternative and Flyover Alternative.

Summaries of the LOS for each build alternative for the ETC, ETC+10, ETC+20, and ETC+30 future year conditions are presented in the subsequent sections. Note that the ETC+30 condition was only evaluated for the intersections adjacent to the bridges.

10.2.1 Diamond Alternative

10.2.1.1 Intersection Level of Service

Summaries of the LOS for the future design years, for the Diamond Alternative, are presented in Exhibits F.10.2.1.1-1 through F.10.2.1.1-8. As shown in these analyses, there are intersections within the study area, but outside the project area, that continue to have movements that experience LOS E or worse at ETC+20 during the studied peak hours. These intersections are:

- Central Avenue & Wolf Road (PM)
- Sand Creek Road & Wolf Road (PM)
- Exit 5 SB Ramps & Watervliet-Shaker Road (PM)

At the project area intersections, all intersection approaches are estimated to operate at LOS D or better through ETC+20. There is one movement, the westbound left-turn at the Albany-Shaker Road & Connector Road intersection that operates at LOS E during both peak hours. This is relatively low volume movement and the LOS E is a result of signal timing priority given to the major through movements on Albany-Shaker Road and the Exit 4 ramps. Observation of other factors such as vehicle queue and volume-to-capacity ratio show that there is reserve capacity for the movement and the delay level is related to the cycle length used to serve the other major movements at the intersection.

The ETC+30 design year was also evaluated for the intersections adjacent to bridge structures that will be replaced as part of the project (I-87 over Albany-Shaker Road). All intersection approaches, at the intersections adjacent to the bridge structures, are estimated to operate at LOS D or better. The westbound left-turn at the Albany-Shaker Road & Connector Road intersection will continue to operate at LOS E during both beak hours.

VISSIM Analysis Results

Intersection Level of Service

2016 (ETC) Diamond Alternative AM

Intersection/Appro	oach	Delay *	LOS	Intersection/Approach		Delay *	LOS
Central Avenue & Wolf	Road			Albany Shaker Road & (Old Wolf Roa	ad	
Central Avenue	EB LL	40.4	D	Albany Shaker Road	EB L	22.1	С
Ceritial Avenue	EB TT	19.9	В	Albany Shaker Road	EB TT	10.3	В
Central Avenue	WB TTT	37.9	D	Albany Shaker Road	WB TT/R	15.6	В
Ceriliai Averide	WB R	7.6	Α	Old Wolf Road	SB LL	28.4	С
Exit 2 NB Off-Ramp	NB TTT	40.2	D	Old Woll Road	SB R	21.1	С
Wolf Road	SB LL	43.7	D	OVERALL		18.3	В
vvoii rtoad	SB RR	6.1	Α	Exit 5 SB Ramps & Water	ervliet Shake	er Road	
OVERALL		28.3	С	Watervliet Shaker Road	EB L/TT/R	25.8	С
Sand Creek Road & W	olf Road			Watervliet Shaker Road	WB LT	20.8	С
	EB L	30.0	С	F 5 OD O# D	SB L	27.7	С
Sand Creek Road	EB T	26.2	С	Exit 5 SB Off-Ramp	SB T/R	22.4	С
	EB R	2.6	А	Sherwood Drive	SB L/T/R	31.7	С
	WB L	31.6	С	OVERALL		23.7	С
Sand Creek Road	WB T	28.6	С	Exit 5 NB Ramps & Wat	ervliet Shake	er Road	
	WB R	4.9	Α	Water Bat Ohalian Daad	EB L	27.0	С
Wolf Road	NB L	42.1	D	Watervliet Shaker Road	EB T/R	13.7	В
	NB TT	14.6	В	Watervliet Shaker Road	WB L	13.4	В
	NB R	8.3	Α		WB TT/R	16.5	В
	SB L	42.7	D	Holly Lane	NB L/T/R	38.3	D
Wolf Road	SB TT	15.7	В	Exit 5 NB Off-Ramp	SB L	26.6	С
	SB R	9.0	Α	LXII 5 NB OII-Rainp	SB T/R	11.2	В
OVERALL		19.0	В	OVERALL		17.6	В
Metro Park Drive/Airpo	ort Connector	& Wolf Road		Airport Connector & Alb	oany Shaker	Road	
	EB L	23.7	С	Albany Shaker Road	EB TT	8.2	Α
Airport Connector	EB T	17.0	В	Albany Ghaker Road	EB RR	3.7	Α
	EB R	6.9	Α	Albany Shaker Road	WB L	42.8	D
Metro Park Drive	WB L	26.3	С	randariy Grandi reda	WB TT	5.2	Α
	WB T/R	29.4	С	Airport Connector	NB LL	34.9	С
	NB L	31.6	С		NB R	5.4	Α
Wolf Road	NB TT	13.9	В	OVERALL		13.9	В
	NB R	6.8	Α	Diamond NB Ramps & A	Airport Conn	ector	
	SB L	16.3	В	Diamond NB Off-Ramp	NB L	19.6	В
Wolf Road	SB TT	19.8	В	Jamena 112 on 11amp	NB R	11.0	В
	SB R	6.9	Α	Airport Connector	WB T	16.8	В
OVERALL		17.7	В	Airport Connector	EB L	15.4	В
Albany Shaker Road &	Wolf Road			Turport Commoder	EB T	4.7	Α
Albany Shaker Road	EB TT/R	2.8	Α	OVERALL		13.0	В
ribariy Griaker Road	EB R	4.1	Α	Diamond SB Ramps & A	Airport Conn	ector	
Albany Shaker Road	WB L	10.1	В	Diamond SB Off-Ramp	SB L	23.2	С
many onaner road	WBTT	4.9	Α	Sidillolid OB Oll-Italilp	SB R	4.9	Α
Wolf Road	NB L	31.3	С	Airport Connector	WB L	12.0	В
IVOII NOAU	NB R	8.7	Α	The office of the order	WB T	6.8	Α
OVERALL		6.7	Α	Airport Connector	EB T	14.7	В
				Airport Connector	EB R	1.4	А
				OVERALL	1	10.1	В

^{*} Delay provided in seconds per vehicle.

 $L \! = \! Left, \ T \! = \! Through, \ R \! = \! Right, \ L/T \! = \! shared \ Left/Through, \ T/R \! = \! shared \ Through/Right$

VISSIM Analysis Results

Intersection Level of Service 2016 (ETC) Diamond Alternative PM

Intersection/Approach		Delay *	LOS	Intersection/Approa	ach	Delay *	LOS
Central Avenue & Wolf	Road			Albany Shaker Road & 0	Old Wolf Roa	ıd	
Central Avenue	EB LL	54.2	D	Albany Shakar Bood	EB L	30.9	С
Ceritiai Averiue	EB TT	19.2	В	Albany Shaker Road	EB TT	11.6	В
Central Avenue	WB TTT	37.2	D	Albany Shaker Road	WB TT/R	15.4	В
Ceriliai Averiue	WB R	19.7	В	Old Wolf Road	SB LL	29.5	С
Exit 2 NB Off-Ramp	NB TTT	52.6	D	Old Woll Road	SB R	24.4	С
Wolf Road	SB LL	62.0	Е	OVERALL		19.4	В
Woll Road	SB RR	26.0	С	Exit 5 SB Ramps & Water	rvliet Shake	r Road	
OVERALL		35.5	D	Watervliet Shaker Road	EB L/TT/R	51.8	D
Sand Creek Road & W	olf Road			Watervliet Shaker Road	WB LT	27.0	С
	EB L	108.3	F	5 % 5 OD O% D	SB L	37.6	D
Sand Creek Road	EB T	92.0	F	Exit 5 SB Off-Ramp	SB T/R	8.6	Α
	EB R	48.8	D	Sherwood Drive	SB L/T/R	48.5	D
	WB L	161.0	F	OVERALL		38.2	D
Sand Creek Road	WB T	171.4	F	Exit 5 NB Ramps & Wate	ervliet Shake	r Road	
	WB R	92.5	F		EB L	26.7	С
	NB L	63.2	Е	Watervliet Shaker Road	EB T/R	13.1	В
Wolf Road	NB TT	33.3	С	Motor diet Chaker Bood	WB L	18.5	В
	NB R	12.3	В	- Watervliet Shaker Road	WB TT/R	20.5	С
	SB L	62.3	E	Holly Lane	NB L/T/R	35.3	D
Wolf Road	SB TT	35.8	D	Fuit 5 ND Off Dama	SB L	28.9	С
	SB R	18.4	В	Exit 5 NB Off-Ramp	SB T/R	11.7	В
OVERALL		70.0	E	OVERALL		20.6	С
Metro Park Drive/Airpo	rt Connector	& Wolf Road		Airport Connector & Alb	any Shaker	Road	
	EB L	30.0	С	Albany Chalcar Dood	EB TT	23.5	С
Airport Connector	ЕВ Т	30.5	С	Albany Shaker Road	EB RR	7.5	Α
	EB R	18.2	В	Albany Shaker Road	WB L	40.9	D
Metro Park Drive	WB L	20.7	С	Albany Snaker Road	WB TT	8.5	Α
wello Falk Dilve	WB T/R	35.8	D	Airport Connector	NB LL	31.4	С
	NB L	40.8	D	Airport Connector	NB R	8.0	Α
Wolf Road	NB TT	20.8	С	OVERALL		19.1	В
	NB R	7.8	А	Diamond NB Ramps & A	irport Conn	ector	
	SB L	24.0	С	Diamond NP Off Pama	NB L	18.9	В
Wolf Road	SB TT	27.6	С	Diamond NB Off-Ramp	NB R	6.8	Α
	SB R	12.0	В	Airport Connector	WB T	41.3	D
OVERALL		24.8	С	Airport Consector	EB L	14.9	В
Albany Shaker Road &	Wolf Road			Airport Connector	EB T	15.1	В
Albania Chalini Dini	EB TT/R	17.0	В	OVERALL		20.1	С
Albany Shaker Road	EB R	5.9	Α	Diamond SB Ramps & A	irport Conn	ector	
Albania Obal D	WB L	18.6	В		SB L	20.5	С
Albany Shaker Road	WBTT	7.7	А	Diamond SB Off-Ramp	SB R	11.6	В
W-14 D 1	NB L	28.1	С	Airm and C	WB L	10.4	В
Wolf Road	NB R	8.7	А	Airport Connector	WB T	25.7	С
OVERALL		13.1	В		EB T	33.2	С
	<u> </u>			Airport Connector	EB R	7.1	А
				ii .			-

^{*} Delay provided in seconds per vehicle.

 $L \! = \! Left, \ T \! = \! Through, \ R \! = \! Right, \ L/T \! = \! shared \ Left/Through, \ T/R \! = \! shared \ Through/Right$

VISSIM Analysis Results

Intersection Level of Service

2026 (ETC+10) Diamond Alternative AM

Intersection/Appro	oach	Delay *	LOS	Intersection/Approach		Delay *	LOS
Central Avenue & Wol	f Road			Albany Shaker Road & 0	Old Wolf Roa	ad	
Central Avenue	EB LL	39.3	D	Albany Shaker Road	EB L	23.5	С
Ceritiai Avenue	EB TT	20.0	В	Albany Shaker Road	EB TT	11.0	В
Control Avenue	WB TTT	37.2	D	Albany Shaker Road	WB TT/R	15.9	В
Central Avenue	WB R	8.2	Α	Old Wolf Dood	SB LL	28.9	С
Exit 2 NB Off-Ramp	NB TTT	39.6	D	Old Wolf Road	SB R	21.1	С
Wolf Road	SB LL	45.1	D	OVERALL		18.9	В
Woll Road	SB RR	6.8	А	Exit 5 SB Ramps & Wate	ervliet Shake	er Road	
OVERALL		28.2	С	Watervliet Shaker Road	EB L/TT/R	34.8	С
Sand Creek Road & W	olf Road			Watervliet Shaker Road	WB LT	23.9	С
	EB L	32.3	С	- '' - OD O'' D	SB L	30.8	С
Sand Creek Road	EB T	28.1	С	Exit 5 SB Off-Ramp	SB T/R	26.9	С
	EB R	2.5	Α	Sherwood Drive	SB L/T/R	35.1	D
	WB L	33.5	С	OVERALL		27.8	С
Sand Creek Road	WB T	29.9	С	Exit 5 NB Ramps & Wate	ervliet Shake	er Road	
	WB R	5.0	Α		EB L	30.4	С
	NB L	42.5	D	-Watervliet Shaker Road	EB T/R	14.3	В
Wolf Road	NB TT	15.1	В	Watervliet Shaker Road	WB L	16.1	В
	NB R	9.0	Α	Watervilet Shaker Road	WB TT/R	16.2	В
	SB L	45.7	D	Holly Lane	NB L/T/R	39.3	D
Wolf Road	SB TT	17.0	В	Exit 5 NB Off-Ramp	SB L	27.2	С
	SB R	9.3	Α	Exit 9 14B On Itamp	SB T/R	12.2	В
OVERALL		20.2	С	OVERALL		18.2	В
Metro Park Drive/Airpo	ort Connector	& Wolf Road		Airport Connector & Alb	any Shaker	Road	
	EB L	25.6	С	Albany Shaker Road	EB TT	9.2	Α
Airport Connector	EB T	18.2	В	Albany Ghaker Road	EB RR	3.7	Α
	EB R	6.8	Α	Albany Shaker Road	WB L	42.4	D
Metro Park Drive	WB L	21.4	С	rabarry charter reduc	WB TT	5.5	Α
Wolfo'r alk Blivo	WB T/R	28.5	С	Airport Connector	NB LL	32.9	С
	NB L	32.0	С	ranport connector	NB R	5.7	Α
Wolf Road	NB TT	15.0	В	OVERALL		14.4	В
	NB R	7.0	Α	Diamond NB Ramps & A	Airport Conn	ector	
	SB L	16.1	В	Diamond NB Off-Ramp	NB L	19.3	В
Wolf Road	SB TT	21.8	С	Sidmond NB Oil Rump	NB R	10.8	В
	SB R	6.8	Α	Airport Connector	WB T	22.9	С
OVERALL		18.7	В	Airport Connector	EB L	15.9	В
Albany Shaker Road 8	Wolf Road			Amport Connector	EB T	12.0	В
Albany Shaker Road	EB TT/R	3.2	Α	OVERALL		15.5	В
Albarry Shaker Road	EB R	4.3	Α	Diamond SB Ramps & A	irport Conn	ector	
Albany Shaker Road	WB L	11.4	В	Diamond SB Off-Ramp	SB L	19.2	В
Tabally Gliaker Noad	WBTT	4.9	Α	Diamond 35 On-Namp	SB R	5.2	Α
Wolf Road	NB L	29.8	С	Airport Connector	WB L	12.0	В
	NB R	8.7	Α	aport connector	WB T	14.7	В
OVERALL		6.9	Α	Airport Connector	EB T	19.4	В
				Taport Connector	EB R	1.5	Α
				OVERALL		12.2	В

^{*} Delay provided in seconds per vehicle.

VISSIM Analysis Results

Intersection Level of Service

2026 (ETC+10) Diamond Alternative PM

Intersection/Appro	oach	Delay *	LOS	Intersection/Approach		Delay *	LOS
Central Avenue & Wolf	Road			Albany Shaker Road & (Old Wolf Roa	nd	
Central Avenue	EB LL	56.4	E	Albany Shaker Road	EB L	34.0	С
Ceritral Avertue	EB TT	20.0	С	Albany Shaker Road	EB TT	15.3	В
Central Avenue	WB TTT	39.6	D	Albany Shaker Road	WB TT/R	17.2	В
Ceriliai Averiue	WB R	21.2	С	Old Wolf Road	SB LL	29.3	С
Exit 2 NB Off-Ramp	NB TTT	53.5	D	Old Woll Road	SB R	23.8	С
Wolf Road	SB LL	62.4	Е	OVERALL		21.0	С
Woll Road	SB RR	27.7	С	Exit 5 SB Ramps & Wat	ervliet Shake	r Road	
OVERALL		37.0	D	Watervliet Shaker Road	EB L/TT/R	63.2	E
Sand Creek Road & W	olf Road			Watervliet Shaker Road	WB LT	26.2	С
	EB L	116.6	F	- : - 00 0 0 0	SB L	39.1	D
Sand Creek Road	EB T	108.4	F	Exit 5 SB Off-Ramp	SB T/R	9.1	Α
	EB R	61.5	Е	Sherwood Drive	SB L/T/R	46.0	D
	WB L	169.2	F	OVERALL		43.1	D
Sand Creek Road	WB T	180.5	F	Exit 5 NB Ramps & Wat	ervliet Shake	er Road	
	WB R	99.9	F		EB L	32.1	С
	NB L	66.9	Е	Watervliet Shaker Road	EB T/R	10.1	В
Wolf Road	NB TT	35.2	D	Watervliet Shaker Road	WB L	19.3	В
	NB R	14.4	В		WB TT/R	21.0	С
	SB L	64.4	Е	Holly Lane	NB L/T/R	40.7	D
Wolf Road	SB TT	38.3	D	Exit 5 NB Off-Ramp	SB L	31.6	С
	SB R	20.6	С		SB T/R	9.1	Α
OVERALL		74.9	E	OVERALL		21.5	С
Metro Park Drive/Airpo	ort Connector	& Wolf Road		Airport Connector & Alk	any Shaker	Road	
	EB L	32.1	С		EB TT	23.2	С
Airport Connector	EB T	31.4	С	Albany Shaker Road	EB RR	7.4	Α
	EB R	19.3	В	Albany Shakar Bood	WB L	47.2	D
Metro Park Drive	WB L	22.0	С	Albany Shaker Road	WB TT	6.6	Α
wello Park Drive	WB T/R	36.5	D	Airport Connector	NB LL	29.3	С
	NB L	43.7	D	All port Confidence	NB R	6.0	Α
Wolf Road	NB TT	23.8	С	OVERALL		18.2	В
	NB R	8.7	Α	Diamond NB Ramps & A	Airport Conn	ector	
	SB L	16.5	В	Diamond NB Off-Ramp	NB L	19.0	В
Wolf Road	SB TT	30.0	С	Diamond NB On-Namp	NB R	7.1	Α
	SB R	13.9	В	Airport Connector	WB T	51.7	D
OVERALL		27.0	С	Airport Connector	EB L	17.2	В
Albany Shaker Road &	Wolf Road			All port Confidence	EB T	15.9	В
Albany Shakar Bood	EB TT/R	18.1	В	OVERALL		22.8	С
Albany Shaker Road	EB R	6.5	Α	Diamond SB Ramps & A	Airport Conn	ector	
Albany Chaker Deed	WB L	26.2	С	Diamond CD Off Days	SB L	21.4	С
Albany Shaker Road	WBTT	7.8	Α	Diamond SB Off-Ramp	SB R	13.5	В
Not Dood	NB L	26.4	С	Airmort Company	WB L	11.0	В
Wolf Road	NB R	9.1	Α	Airport Connector	WB T	26.8	С
OVERALL		14.4	В	Airmont Course	EB T	33.0	С
	-	<u> </u>		Airport Connector	EB R	7.4	А
				I 	4		

^{*} Delay provided in seconds per vehicle.

 $L \! = \! Left, \ T \! = \! Through, \ R \! = \! Right, \ L/T \! = \! shared \ Left/Through, \ T/R \! = \! shared \ Through/Right$

VISSIM Analysis Results

Intersection Level of Service

2036 (ETC+20) Diamond Alternative AM

Intersection/Appro	oach	Delay *	LOS	Intersection/Approach		Delay *	LOS
Central Avenue & Wol	f Road			Albany Shaker Road & 0	Old Wolf Roa	nd	
Central Avenue	EB LL	42.8	D	Albany Shaker Road	EB L	23.8	С
Central Avenue	EB TT	20.6	С	Albany Ghaker Road	EB TT	11.1	В
Central Avenue	WB TTT	36.5	D	Albany Shaker Road	WB TT/R	16.9	В
Ceritial Averide	WB R	8.8	Α	Old Wolf Road	SB LL	28.6	С
Exit 2 NB Off-Ramp	NB TTT	41.5	D	Old Woll Road	SB R	21.2	С
Wolf Road	SB LL	46.7	D	OVERALL		19.2	В
Woll Road	SB RR	7.0	Α	Exit 5 SB Ramps & Wate	ervliet Shake	er Road	
OVERALL		29.0	С	Watervliet Shaker Road	EB L/TT/R	43.2	D
Sand Creek Road & W	olf Road			Watervliet Shaker Road	WB LT	26.1	С
	EB L	32.1	С	F 5 OD O# D	SB L	34.6	С
Sand Creek Road	EB T	26.9	С	Exit 5 SB Off-Ramp	SB T/R	32.8	С
	EB R	2.5	Α	Sherwood Drive	SB L/T/R	35.6	D
	WB L	33.2	С	OVERALL		31.8	С
Sand Creek Road	WB T	30.3	С	Exit 5 NB Ramps & Water	ervliet Shake	er Road	
	WB R	5.2	А		EB L	30.9	С
	NB L	44.0	D	Watervliet Shaker Road	EB T/R	15.2	В
Wolf Road	NB TT	16.5	В	Materiliet Chaker Dood	WB L	15.6	В
	NB R	7.4	А	Watervliet Shaker Road	WB TT/R	17.1	В
	SB L	44.5	D	Holly Lane	NB L/T/R	36.3	D
Wolf Road	SB TT	18.2	В	5 '4 5 ND O'4 D	SB L	28.3	С
	SB R	9.6	Α	Exit 5 NB Off-Ramp	SB T/R	12.3	В
OVERALL		21.1	С	OVERALL		18.9	В
Metro Park Drive/Airpo	ort Connector	& Wolf Road		Airport Connector & Alb	any Shaker	Road	
	EB L	25.5	С		EB TT	10.6	В
Airport Connector	EB T	24.3	С	Albany Shaker Road	EB RR	3.7	Α
	EB R	6.9	Α	Albania Obalian Daad	WB L	61.0	Е
M . D . D .	WB L	21.9	С	Albany Shaker Road	WB TT	6.5	Α
Metro Park Drive	WB T/R	26.6	С	A :	NB LL	31.4	С
	NB L	33.8	С	Airport Connector	NB R	6.4	Α
Wolf Road	NB TT	15.4	В	OVERALL		15.3	В
	NB R	7.7	Α	Diamond NB Ramps & A	Airport Conn	ector	
	SB L	13.1	В		NB L	21.0	С
Wolf Road	SB TT	21.6	С	Diamond NB Off-Ramp	NB R	10.6	В
	SB R	6.9	Α	Airport Connector	WB T	25.4	С
OVERALL		18.9	В		EB L	22.6	С
Albany Shaker Road &	Wolf Road	<u> </u>		Airport Connector	EB T	18.2	В
<u> </u>	EB TT/R	3.6	А	OVERALL		18.9	В
Albany Shaker Road	EB R	4.4	A	Diamond SB Ramps & A	irport Conn		
	WBL	12.9	В		SB L	20.7	С
Albany Shaker Road	WBTT	5.4	A	Diamond SB Off-Ramp	SB R	5.9	A
	NB L	29.8	C	1	WB L	11.8	В
Wolf Road	NB R	8.7	A	Airport Connector	WB T	21.7	С
OVERALL	1.51	7.3	A	1	EB T	25.1	С
				Airport Connector	EB R	1.4	A
				I 	LD IV	1.4	

^{*} Delay provided in seconds per vehicle.

Exhibit F.10.2.1.1-6 VISSIM Analysis Results

Intersection Level of Service

2036 (ETC+20) Diamond Alternative PM

Intersection/Appro	oach	Delay *	LOS	Intersection/Approach		Delay *	LOS
Central Avenue & Wolf	f Road			Albany Shaker Road & 0	Old Wolf Roa	ad	
Central Avenue	EB LL	56.9	Е	Albany Shaker Road	EB L	46.3	D
Ceriliai Avenue	EB TT	20.3	С	Albany Shaker Road	EB TT	2.0	Α
Central Avenue	WB TTT	41.4	D	Albany Shaker Road	WB TT/R	10.2	В
Central Avenue	WB R	25.7	С	Old Wolf Road	SB LL	38.9	D
Exit 2 NB Off-Ramp	NB TTT	54.9	D	Old Woll Road	SB R	31.0	С
Wolf Road	SB LL	60.3	Е	OVERALL		18.2	В
Woll Road	SB RR	27.4	С	Exit 5 SB Ramps & Wate	ervliet Shake	er Road	
OVERALL		38.0	D	Watervliet Shaker Road	EB L/TT/R	69.4	Е
Sand Creek Road & W	olf Road			Watervliet Shaker Road	WB LT	31.4	С
	EB L	133.6	F	E :: 5 OD O" D	SB L	41.4	D
Sand Creek Road	EB T	122.6	F	Exit 5 SB Off-Ramp	SB T/R	11.0	В
	EB R	73.2	Е	Sherwood Drive	SB L/T/R	52.0	D
	WB L	177.5	F	OVERALL		47.7	D
Sand Creek Road	WB T	190.7	F	Exit 5 NB Ramps & Wate	ervliet Shake	er Road	
	WB R	109.0	F	Watervliet Shaker Road	EB L	31.6	С
	NB L	68.2	Е	Watervilet Shaker Road	EB T/R	12.1	В
Wolf Road	NB TT	36.1	D	Watervliet Shaker Road	WB L	21.3	С
	NB R	15.8	В	Watervilet Shaker Road	WB TT/R	20.8	С
	SB L	66.3	Е	Holly Lane	NB L/T/R	39.3	D
Wolf Road	SB TT	37.5	D	Exit 5 NB Off-Ramp	SB L	33.3	С
	SB R	21.0	С	Exit 5 NB Oil-Railip	SB T/R	11.0	В
OVERALL		79.1	E	OVERALL		22.0	С
Metro Park Drive/Airpo	ort Connector	& Wolf Road		Airport Connector & Alb	any Shaker	Road	
	EB L	36.2	D	Albany Chalcar Dags	EB TT	28.6	С
Airport Connector	EB T	30.8	С	Albany Shaker Road	EB RR	7.8	Α
	EB R	19.9	В	Albany Shaker Road	WB L	59.0	E
Metro Park Drive	WB L	26.5	С	Albany Shaker Road	WB TT	25.0	С
Wello'l alk Blive	WB T/R	41.5	D	Airport Connector	NB LL	34.8	С
	NB L	47.9	D	raiport connector	NB R	9.7	Α
Wolf Road	NB TT	23.6	С	OVERALL		24.6	С
	NB R	9.2	Α	Diamond NB Ramps & A	Airport Conn	ector	
	SB L	20.7	С	Diamond NB Off-Ramp	NB L	22.5	С
Wolf Road	SB TT	31.9	С	Biamona NB On Ramp	NB R	7.1	Α
	SB R	14.9	В	Airport Connector	WB T	39.0	D
OVERALL		29.4	С	Airport Connector	EB L	20.4	С
Albany Shaker Road &	Wolf Road			port connector	ЕВ Т	14.5	В
Albany Shaker Road	EB TT/R	19.6	В	OVERALL		22.1	С
Albany Shaker Road	EB R	8.2	Α	Diamond SB Ramps & A	irport Conn	ector	
Albany Shaker Road	WB L	23.9	С	Diamond SB Off-Ramp	SB L	26.0	С
Thousand Charles Road	WBTT	7.0	Α	Siamona OB On-Itamp	SB R	17.0	В
Wolf Road	NB L	36.5	D	Airport Connector	WB L	10.5	В
TTOII ITOUU	NB R	11.9	В	, in port Connector	WB T	24.6	С
OVERALL		16.3	В	Airport Connector	EB T	32.6	С
		·		wiiport Comilector	EB R	8.0	А
				OVERALL		18.9	В

^{*} Delay provided in seconds per vehicle.

VISSIM Analysis Results

Intersection Level of Service

2046 (ETC+30) Diamond Alternative AM

Intersection/Appro	pach	Delay *	LOS	Intersection/Appro	Delay *	LOS	
Metro Park Drive/Airport Connector & Wolf Road			Albany Shaker Road &	Old Wolf Roa	ıd		
	EB L	24.9	С	Albany Shaker Road	EB L	25.0	С
Airport Connector	EB T	23.8	С	Albany Shaker Road	EB TT	13.0	В
	EB R	6.8	Α	Albany Shaker Road	WB TT/R	17.4	В
Metro Park Drive	WB L	24.5	С	Old Wolf Road	SB LL	29.3	С
Wello I alk Dilve	WB T/R	25.9	С	Old Woll Road	SB R	21.0	С
	NB L	33.4	С	OVERALL		20.1	С
Wolf Road	NB TT	14.2	В	Airport Connector & All	oany Shaker	Road	
	NB R	6.7	Α	Albany Shaker Road	EB TT	10.9	В
	SB L	16.3	В	Albany Shaker Road	EB RR	3.9	Α
Wolf Road	SB TT	22.0	С	Albany Shaker Road	WB L	38.5	D
	SB R	6.8	Α	Albaily Shaker Road	WB TT	6.8	Α
OVERALL		18.7	В	Airport Connector	NB LL	32.5	С
Albany Shaker Road &	Wolf Road			All port Confidence	NB R	6.5	Α
Albanii Chalian Daad	EB TT/R	3.7	Α	OVERALL		15.6	В
Albany Shaker Road	EB R	4.8	А	Diamond NB Ramps & Airport Connector			
Albany Chalcar Dood	WB L	13.1	В	Diamond ND Off Domn	NB L	20.7	С
Albany Shaker Road	WBTT	5.3	А	Diamond NB Off-Ramp	NB R	11.2	В
Wolf Road	NB L	31.0	С	Airport Connector	WB T	26.3	С
Woll Road	NB R	9.5	Α	Airport Connector	EB L	19.3	В
OVERALL		7.8	Α	All port Connector	ЕВ Т	17.6	В
				OVERALL		18.4	В
				Diamond SB Ramps &	Airport Conn	ector	
				Diamond SD Off Borns	SB L	20.6	С
				Diamond SB Off-Ramp	SB R	6.0	Α
				Airport Connector	WB L	10.6	В
				Airport Connector	WB T	21.7	С
				Airport Connector	ЕВ Т	25.6	С
				Airport Connector	EB R	1.5	Α
				OVERALL		15.7	В

^{*} Delay provided in seconds per vehicle.

VISSIM Analysis Results

Intersection Level of Service

2046 (ETC+30) Diamond Alternative PM

Intersection/Appro	ach	Delay *	LOS	Intersection/Appro	ach	Delay *	LOS			
Metro Park Drive/Airpor	rt Connector	& Wolf Road		Albany Shaker Road & Old Wolf Road						
	EB L	36.5	D	Albany Shaker Road	EB L	48.1	D			
Airport Connector	EB T	30.9	С	Albany Shaker Road	EB TT	1.9	А			
	EB R	20.0	С	Albany Shaker Road	WB TT/R	10.7	В			
Metro Park Drive	WB L	26.6	С	Old Wolf Road	SB LL	38.8	D			
ivietio i aik blive	WB T/R	42.5	D	Old Woll Road	SB R	29.6	С			
	NB L	46.3	D	OVERALL		18.4	В			
Wolf Road	NB TT	24.6	С	Airport Connector & Alt	any Shaker	Road				
	NB R	9.5	Α	Albany Shaker Road	EB TT	29.7	С			
	SB L	22.7	С	Albany Shaker Road	EB RR	8.6	А			
Wolf Road	SB TT	32.0	С	Albany Shaker Road	WB L	59.4	E			
SB R 15.9 B				Albany Shaker Road	WB TT	24.6	С			
OVERALL 29.6 C				Airport Connector	NB LL	34.8	С			
Albany Shaker Road &	Wolf Road			All port Connector	NB R	7.0	Α			
Albany Chakar Bood	EB TT/R	19.4	В	OVERALL		24.8	С			
Albany Shaker Road	EB R	8.6	А	Diamond NB Ramps & A	Airport Conn	ector				
Albany Chakar Dood	WB L	23.3	С	Diamond ND Off Domn	NB L	22.8	С			
Albany Shaker Road	WBTT	7.4	Α	Diamond NB Off-Ramp	NB R	7.5	А			
Wolf Road	NB L	35.0	D	Airport Connector	WBT	42.4	D			
Woll Road	NB R	12.2	В	Airport Connector	EB L	23.5	С			
OVERALL		16.2	В	All port Connector	EB T	14.7	В			
				OVERALL		23.1	С			
				Diamond SB Ramps & A	Airport Conn	ector				
				Diamond CD Off Darra	SB L	28.3	С			
				Diamond SB Off-Ramp	SB R	18.3	В			
				Airport Connector	WB L	11.5	В			
				Airport Connector	WB T	25.2	С			
				Airport Consector	ЕВ Т	33.1	С			
				Airport Connector	EB R	9.6	Α			
				OVERALL		20.1	С			

^{*} Delay provided in seconds per vehicle.

L=Left, T=Through, R=Right, L/T=shared Left/Through, T/R=shared Through/Right

10.2.1.2 Freeway Level of Service

Freeway analyses for I-87 were conducted in accordance with the Highway Capacity Manual (HCM2000) using HCS+. The analyses were conducted for the freeway segments between Exits 2 and 4, Exits 4 and 5, Exits 5 and 6, and on the segment under the proposed Connector Road and Diamond interchange. Ramp junctions were evaluated at Exits 2, 4 and 5. Weave areas were evaluated at Exit 2. All of these analyses were conducted for Existing, ETC, ETC+10 and ETC+20. The freeway segment under the proposed Connector Road and Diamond interchange was also evaluated for ETC+30.

The results of the AM and PM peak hour Flyover Alternative freeway analyses are summarized in Exhibits F.10.2.1.2-1 and F.10.2.1.2-2.

	Exhibit F.10.2.1.2-1 Freeway Level of Service Diamond Alternative AM Peak Hour												
ETC (2016) ETC+10 (2026) ETC+20 (2036) ETC+30 (2046)													
Direction	Segment/Junction	Density pc/mi/ln	LOS	Density pc/mi/ln	LOS	Density pc/mi/ln	LOS	Density pc/mi/ln	LOS				
		F	REEWAY	SEGMENT	S								
Exit 2W on to Exit 4 off 21.6 C 22.9 C 23.9 C													
NB	Exit 4 off to Exit 4 on	16.0	В	16.7	В	16.7	В	17.0	В				
IND	Exit 4 on to Exit 5 off	16.3	В	17.0	В	17.3	В	17.3	В				
	Exit 5 on to Exit 6 off	11.8	В	12.5	В	12.5	В	-	-				
	Exit 6 on to Exit 5 off 29.9 D 30.4 D 30.9 D												
SB	Exit 5 on to Exit 4 off	35.4	Е	37.7	Е	40.4	Е	40.4	Е				
00	Exit 4 off to Exit 4 on	30.7	D	32.0	D	33.4	D	33.1	D				
	Exit 4 on to Exit 2W off	34.2	D	34.6	D	35.0	D	-	-				
			RAMP J	UNCTIONS									
	Exit 2W on-ramp	18.1	В	19.2	В	20.1	С	-	-				
NB	Exit 4 off-ramp	20.9	С	22.2	С	23.3	С	-	-				
IND	Exit 4 on-ramp	14.7	В	15.3	В	15.5	В	-	-				
	Exit 5 off-ramp	19.2	В	19.8	В	20.1	С	-	-				
	Exit 5 on-ramp	26.1	С	27.6	С	29.2	D	-	-				
SB	Exit 4 off-ramp	29.8	D	31.0	D	32.1	D	-	-				
35	Exit 4 on-ramp	26.1	С	27.2	С	28.2	D	-	-				
	Exit 2W off-ramp	33.3	D	33.6	D	33.8	D	-	-				
WEAVE AREAS													
NB	Exit 2E on-ramp to Exit 2W off-ramp	22.2	С	23.6	С	24.8	С	-	-				
SB	Exit 2W on-ramp to Exit 2E off-ramp	29.8	D	30.3	D	31.0	D	-	-				

	Exhibit F.10.2.1.2-2 Freeway Level of Service Diamond Alternative PM Peak Hour												
ETC (2016) ETC+10 (2026) ETC+20 (2036) ETC+30 (2046)													
Direction	Segment/Junction	Density pc/mi/ln	LOS	Density pc/mi/ln	LOS	Density pc/mi/ln	LOS	Density pc/mi/ln	LOS				
		F	REEWAY	SEGMENT	S								
Exit 2W on to Exit 4 off 39.5 E 40.2 E 40.8 E													
NB	Exit 4 off to Exit 4 on	31.1	D	31.1	D	31.5	D	31.5	D				
IND	Exit 4 on to Exit 5 off	43.0	Е	43.7	Е	44.6	Е	**	F				
	Exit 5 on to Exit 6 off	30.1	D	30.9	D	31.7	D	-	-				
	Exit 6 on to Exit 5 off 17.2 B 17.8 B 18.4 C												
SB	Exit 5 on to Exit 4 off	23.9	С	24.8	С	25.5	С	25.5	С				
00	Exit 4 off to Exit 4 on	17.6	В	18.0	В	18.3	С	18.0	В				
	Exit 4 on to Exit 2W off	25.2	С	25.8	С	26.5	D	-	-				
			RAMP J	UNCTIONS									
	Exit 2W on-ramp	31.1	D	31.2	D	31.4	D	-	-				
NB	Exit 4 off-ramp	32.4	D	32.7	D	32.9	D	-	-				
IND	Exit 4 on-ramp	29.7	D	30.1	D	30.8	D	-	-				
	Exit 5 off-ramp	36.4	Е	36.6	Е	36.9	Е	-	-				
	Exit 5 on-ramp	18.4	В	19.6	В	20.1	С	-	-				
SB	Exit 4 off-ramp	22.6	С	23.5	С	24.2	С	-	-				
35	Exit 4 on-ramp	21.8	С	22.3	С	22.8	С	-	-				
	Exit 2W off-ramp 26.3 C 26.8 C 27.3 C												
WEAVE AREAS													
NB	Exit 2E on-ramp to Exit 2W off-ramp	39.4	Е	40.1	E	41.2	Е	-	-				
SB	Exit 2W on-ramp to Exit 2E off-ramp	23.9	С	24.9	С	25.8	С	-	-				

During the AM peak hour, the following locations operate at LOS E under the ETC+20 condition in the southbound direction:

- Freeway Segments
 - o Exit 5 on to Exit 4 off

During the PM peak hour, the following locations operate at LOS E under the ETC+20 condition in the northbound direction:

- Freeway Segments
 - o Exit 2W on TO Exit 4 off
 - o Exit 4 on to Exit 5 off
- Ramp Junctions
 - Exit 5 off
- Weave Areas
 - o Exit 2E on to Exit 2W off

The southbound freeway segment between Exit 5 on and Exit 4 off is estimated to degrade from LOS D to LOS E during the AM peak hour when compared to No-Build ETC+20. The operations were approaching the LOS E threshold under the No-Build conditions and higher volume for the Diamond Alternative pushed it over the LOS E threshold (>35 pc/m/l). The new ramp configuration and removal of the C-D Road is the primary reason for the increase in traffic volume between Exits 5 and 4.

10.2.2 Flyover Alternative

10.2.2.1 Intersection Level of Service

Summaries of the LOS for the future design years for the Flyover Alternative are presented in Exhibits F.10.2.2.1-1 through F.10.2.2.1-8. As shown in these analyses, there are intersections within the study area, but outside the project area, that continue to have movements that experience LOS E or worse at ETC+20 during the studied peak hours:

- Central Avenue & Wolf Road (PM)
- Sand Creek Road & Wolf Road (PM)
- Exit 5 SB Ramps & Watervliet-Shaker Road (PM)

At the project area intersections, all intersection approaches are estimated to operate at LOS D or better through ETC+20. There is one movement, the westbound left-turn at the Albany-Shaker Road & New Exit 4 Ramps intersection, which operates at LOS E during both peak hours. This is a relatively low volume movement and the LOS E is a result of signal timing priority given to the major through movements on Albany-Shaker Road and the Exit 4 ramps. Observation of other factors such as vehicle queue and volume-to-capacity ratio show that there is reserve capacity for the movement and the delay level is related to the cycle length used to serve the other major movements at the intersection.

The ETC+30 design year was also evaluated for the intersections adjacent to bridge structures that will be replaced as part of the project (I-87 over Albany-Shaker Road). This evaluation was completed to confirm that additional geometry resulting in wider bridge width is not needed to support the ETC+30 design year.

Exhibit F.10.2.2.1-1 **VISSIM Analysis Results** Intersection Level of Service

2016 (ETC) Flyover Alternative AM

Signa	alized Inter		,	Signalized Intersections						
Intersection/Appro	oach	Delay *	LOS	Intersection/Approx	ach	Delay *	LOS			
Central Avenue & Wolf	Road			Albany Shaker Road & 0	Old Wolf Roa	d				
Central Avenue	EB LL	42.1	D	Albany Shaker Road	EB L	18.2	В			
	EB TT	19.7	В	r iibarry Crianor r toda	EB TT	15.6	В			
Central Avenue	WB TTT	38.4	D	Albany Shaker Road	WB TT/R	13.5	В			
	WB R	8.5	Α	Old Wolf Road	SB LL	29.4	С			
Exit 2 NB Off-Ramp	NB TTT	42.5	D		SB R	21.7	С			
Wolf Road	SB LL	47.8	D	OVERALL		18.0	В			
77011 77044	SB RR	5.4	Α	Exit 5 SB Ramps & Wate	ervliet Shake	r Road				
OVERALL		29.2	С	Watervliet Shaker Road	EB L/TT/R	17.1	В			
Sand Creek Road & We	olf Road			Watervliet Shaker Road	WB LT	24.5	С			
	EB L	29.9	С	Evit 5 CB Off Bomp	SB L	22.7	С			
Sand Creek Road	EB T	25.6	С	Exit 5 SB Off-Ramp	SB T/R	24.3	С			
	EB R	2.3	Α	Sherwood Drive	SB L/T/R	26.4	С			
	WB L	35.2	D	OVERALL	OVERALL		С			
Sand Creek Road	WB T	31.8	С	Exit 5 NB Ramps & Water	ervliet Shake	r Road				
	WB R	5.2	А	•	FBI		С			
	NB L	39.5	D	Watervliet Shaker Road	EB T/R	10.0	Α			
Wolf Road	NB TT	14.2	В		WB L	9.9	Α			
	NB R	5.7	A	Watervliet Shaker Road	WB TT/R	10.6	В			
	SB L	43.1	D	Holly Lane	NB L/T/R	28.2	С			
Wolf Road	SB TT	16.4		В	SB L	21.4	С			
	SB R	6.3	A	Exit 5 NB Off-Ramp	SB T/R	9.3	A			
OVERALL		19.0	В	OVERALL		12.3	В			
Metro Park Drive & Wo	olf Road	<u> </u>		New Exit 4 Ramps & Alb	any Shaker	Road				
Hess Station	EB L/T/R	36.7	D	·	EB TT	18.6	В			
	WB L	45.6	D	Albany Shaker Road	EB R	6.0	Α			
Metro Park Drive	WB T/R	8.7	A		WBL	41.4	D			
	NB L	4.4	A	Albany Shaker Road	WB TT	6.6	A			
Wolf Road	NB TT	2.5	A		NB LL	22.7	С			
-	NB R	4.1	A	New Exit 4 Ramps	NB R	11.0	В			
	SB L	3.3	A	OVERALL	, vo i	15.2	В			
Wolf Road	SB TT/R	1.5	A		alized Inte		<u></u>			
0)/50411	36 I I/K	-		Ulisigii	anzeu mie	13ections				
OVERALL		3.5	Α	Intersection/Appro	ach	Delay *	LOS			
Albany Shaker Road &		I	_							
	EB LL	51.1	D	Exit 4 NB Off-Ramp & W	1	<u> </u>				
Albany Shaker Road	EB TT/R	7.0	А	Exit 4 NB Off-Ramp	EB R	14.8	В			
	EB R	5.9	Α	4						
	WB L	20.0	В	4						
Albany Shaker Road	WBTT	10.8	В	_						
	WB R	5.0	Α	1						
	NB L	28.0	С	1						
Wolf Road	NB L/TT	26.7	С	_						
	NB R	2.1	А	_						
OVERALL		12.9	В							

^{*} Delay provided in seconds per vehicle.

Exhibit F.10.2.2.1-2 VISSIM Analysis Results Intersection Level of Service

2016 (ETC) Flyover Alternative PM

Sign	alized Inter			Signa	lized Inters	sections		
Intersection/Appro	oach	Delay *	LOS	Intersection/Approa	ach	Delay *	LOS	
Central Avenue & Wol	f Road			Albany Shaker Road & C	Old Wolf Roa	d		
Central Avenue	EB LL	58.0	Е	Albany Shaker Road	EB L	20.8	С	
Certifal Averlue	EB TT	19.8	В	Albany Shaker Road	EB TT	17.7	В	
Central Avenue	WB TTT	54.4	D	Albany Shaker Road	WB TT/R	9.2	Α	
Ceritial Avenue	WB R	29.2	С	Old Wolf Road	SB LL	31.7	С	
Exit 2 NB Off-Ramp	NB TTT	54.8	D	Old Woll Road	SB R	17.8	В	
W-K DI	SB LL	62.8	Е	OVERALL		18.9	В	
Wolf Road	SB RR	30.1	С	Exit 5 SB Ramps & Wate	ervliet Shake	r Road		
OVERALL		43.4	D	Watervliet Shaker Road	EB L/TT/R	42.6	D	
Sand Creek Road & W	olf Road	<u> </u>		Watervliet Shaker Road	WB LT	23.9	С	
oana orook koaa a ri	EB L	128.3	F	Watervillet Charlet Read	SB L	36.2	D	
Sand Creek Road	EB T	107.7	' 	Exit 5 SB Off-Ramp	SB T/R	6.2	A	
	EB R	61.3	E	Sherwood Drive	SB L/T/R	45.6	D A	
	WB L	154.1	F	OVERALL	3D L/1/K	33.0	C	
Cand Crook Bood		-			1			
Sand Creek Road	WB T	169.3	F	Exit 5 NB Ramps & Watervliet Shake		r Road 31.4		
	WB R	86.0	F	Watervliet Shaker Road			С	
	NB L	67.3	E		EB T/R	12.5	В	
Wolf Road	NB TT	Watervliet Shaker Road		WB L	18.9	В		
	NB R	14.3	В		WB TT/R	21.0	С	
	SB L	66.2	Е	Holly Lane	NB L/T/R	32.2	С	
Wolf Road	SB TT	38.0	D	Exit 5 NB Off-Ramp	SB L	34.1	С	
	SB R	22.2	С	Exit o NB on Ramp	SB T/R	10.2	В	
OVERALL		71.1	E	OVERALL		23.2	С	
Metro Park Drive & Wo	olf Road			New Exit 4 Ramps & Albany Shaker Road				
Hess Station	EB L/T/R	36.3	D	Albany Chakar Daad	EB TT	26.8	С	
Mater David Daire	WB L	45.1	D	- Albany Shaker Road	EB R	9.5	А	
Metro Park Drive	WB T/R	22.0	С	A.II. O. I. D. I.	WB L	64.3	E	
	NB L	7.3	Α	Albany Shaker Road	WB TT	10.9	В	
Wolf Road	NB TT	6.4	А		NB LL	22.8	С	
	NB R	5.5	А	New Exit 4 Ramps	NB R	8.9	А	
	SB L	8.1	Α	OVERALL	1	18.5	В	
Wolf Road	SB TT/R	4.0	A		alized Inte			
OVERALL	OD 11/10	8.4	A	Chaigh				
Albany Shaker Road &	Wolf Poad	0.4		Intersection/Approa	ach	Delay *	LOS	
Tabany Onaker Road 6	I	E4 0		Evit 4 NB Off Bown 9 144	olf Bood			
Albany Shaker Road	EB LL	51.3	D	Exit 4 NB Off-Ramp & W			^	
nibally Shakel Road	EB TT/R	10.0	В .	Exit 4 NB Off-Ramp	EB R	5.7	A	
	EB R	5.5	A	4				
	WB L	25.0	С	4				
Albany Shaker Road	WBTT	19.5	В	4				
	WB R	15.4	В	-				
	NB L	23.4	С	4				
Wolf Road	NB L/TT	26.5	С	_				
	NB R	3.6	Α	_				
OVERALL		19.5	В					

^{*} Delay provided in seconds per vehicle.

VISSIM Analysis Results

Intersection Level of Service

2026 (ETC+10) Flyover Alternative AM

Signa	Signalized Intersections				Signalized Intersections					
Intersection/Appro	oach	Delay *	LOS	Intersection/Approa	nch	Delay *	LOS			
Central Avenue & Wolf	Road			Albany Shaker Road & C	Old Wolf Roa	d				
Central Avenue	EB LL	44.6	D	Albany Shaker Road	EB L	18.3	В			
	EB TT	21.1	С	,	EB TT	15.5	В			
Central Avenue	WB TTT	40.2	D	Albany Shaker Road	WB TT/R	13.7	В			
	WB R	9.2	Α	Old Wolf Road	SB LL	28.6	С			
Exit 2 NB Off-Ramp	NB TTT	43.7	D		SB R	21.9	С			
Wolf Road	SB LL	50.0	D	OVERALL		17.8	В			
	SB RR	6.5	Α	Exit 5 SB Ramps & Water	ervliet Shake	r Road				
OVERALL		31.2	С	Watervliet Shaker Road	EB L/TT/R	17.7	В			
Sand Creek Road & W	olf Road			Watervliet Shaker Road	WB LT	21.6	С			
	EB L	33.7	С	Evit E CD Off Down	SB L	24.6	С			
Sand Creek Road	EB T	27.9	С	Exit 5 SB Off-Ramp	SB T/R	18.3	В			
	EB R	2.5	А	Sherwood Drive	SB L/T/R	28.2	С			
	WB L	35.6	D	OVERALL	VERALL		С			
Sand Creek Road	WB T	32.5	С	Exit 5 NB Ramps & Wate	xit 5 NB Ramps & Watervliet Shake					
	WB R	5.5	Α		FRI		С			
	NB L	43.4	D	Watervliet Shaker Road EB T/R		10.4	В			
Wolf Road	NB TT	14.5	В		WB L	11.7	В			
	NB R	7.0	A	- Watervliet Shaker Road	WB TT/R	12.8	В			
	SB L	44.8	D	Holly Lane	NB L/T/R	32.1	С			
Wolf Road	SB TT	18.3	В		SB L	24.1	С			
	SB R	7.0	A	Exit 5 NB Off-Ramp	SB T/R	10.1	В			
OVERALL		20.3	С	OVERALL		14.2	В			
Metro Park Drive & Wo	If Road	<u> </u>		New Exit 4 Ramps & Albany Shaker R		Road				
Hess Station	EB L/T/R	37.8	D		EB TT	23.1	С			
11000 01411011	WB L	51.4	D	Albany Shaker Road	EB R	11.8	В			
Metro Park Drive	WB T/R	8.6	A		WB L	50.0	D			
	NB L	3.0	A	Albany Shaker Road	WB TT	7.4	A			
Wolf Road	NB TT	2.3	A	1	NB LL	20.6	C			
	NB R	4.2	A	New Exit 4 Ramps	NB R	11.8	В			
	SB L	3.1	A	OVERALL	, vo i	17.0	В			
Wolf Road	SB TT/R				alized Inte					
OVEDALL	OD II/K	1.6	A .	Unsign	anzeu mile	1360110113				
OVERALL		3.5	Α	Intersection/Approa	ach	Delay *	LOS			
Albany Shaker Road &			_							
	EB LL	48.4	D	Exit 4 NB Off-Ramp & W	T	Г				
Albany Shaker Road	EB TT/R	6.9	А	Exit 4 NB Off-Ramp	EB R	20.3	С			
	EB R	7.0	Α	_						
	WB L	22.6	С	4						
Albany Shaker Road	WBTT	12.2	В	_						
	WB R	5.2	Α	1						
	NB L	27.9	С	1						
Wolf Road	NB L/TT	27.2	7.2 C							
	NB R	2.3	Α	_						
OVERALL		13.2	В							

^{*} Delay provided in seconds per vehicle.

VISSIM Analysis Results

Intersection Level of Service

2026 (ETC+10) Flyover Alternative PM

Signa	Signalized Intersections				Signalized Intersections					
Intersection/Appro	ach	Delay *	LOS	Intersection/Approa	ach	Delay *	LOS			
Central Avenue & Wolf	Road			Albany Shaker Road & C	Old Wolf Roa	d				
Central Avenue	EB LL	57.7	Е	Albany Shaker Road	EB L	22.4	С			
Ochtrai / (Vehae	EB TT	19.8	В	Vilbarry Griaker Road	EB TT	17.6	В			
Central Avenue	WB TTT	56.4	Е	Albany Shaker Road	WB TT/R	10.8	В			
oomiai 7 (vondo	WB R	31.5	С	Old Wolf Road	SB LL	35.5	D			
Exit 2 NB Off-Ramp	NB TTT	55.3	Е	0.4 770 71044	SB R	19.9	В			
Wolf Road	SB LL	65.1	Е	OVERALL		20.1	С			
TYON TROUG	SB RR	33.1	С	Exit 5 SB Ramps & Water	ervliet Shake	r Road				
OVERALL		44.7	D	Watervliet Shaker Road	EB L/TT/R	50.5	D			
Sand Creek Road & Wo	olf Road			Watervliet Shaker Road	WB LT	27.3	С			
	EB L	137.4	F	Evit F CR Off Romp	SB L	38.1	D			
Sand Creek Road	EB T	121.1	F	Exit 5 SB Off-Ramp SB T/R		7.2	Α			
	EB R	72.0	Е	Sherwood Drive	vood Drive SB L/T/R		D			
	WB L	170.5	F	OVERALL		37.8	D			
Sand Creek Road	WB T	186.6	F	Exit 5 NB Ramps & Wate	ervliet Shake	r Road				
	WB R	102.9	F	Water diet Obales Daard	FRI		С			
	NB L	66.7	E	- Waterviiet Shaker Road	tervliet Shaker Road EB T/R		В			
Wolf Road	NB TT	36.3	D	Materialist Chalcar Dood	WB L	18.2	В			
	NB R	14.6	В	Watervliet Shaker Road	WB TT/R	23.1	С			
	SB L	73.9	E	Holly Lane	NB L/T/R	50.8	D			
Wolf Road	SB TT	42.4	D	,	SB L	35.7	D			
	SB R	28.6	С	Exit 5 NB Off-Ramp	SB T/R	12.4	В			
OVERALL		77.1	Е	OVERALL		25.0	С			
Metro Park Drive & Wo	If Road			New Exit 4 Ramps & Alb	any Shaker I	Road				
Hess Station	EB L/T/R	38.7	D	Alle and Objective Desert	EB TT	30.8	С			
Matera Davida Deixa	WB L	46.0	D	Albany Shaker Road	EB R	10.1	В			
Metro Park Drive	WB T/R	23.4	С	Alle and Objective Desert	WB L	68.3	Е			
	NB L	10.8	В	Albany Shaker Road	WB TT	9.9	Α			
Wolf Road	NB TT	7.5	Α	Navy Foit 4 Bassas	NB LL	23.8	С			
	NB R	5.7	Α	New Exit 4 Ramps	NB R	9.7	Α			
W 16 D	SB L	8.3	Α	OVERALL		19.7	В			
Wolf Road	SB TT/R	4.1	А	Unsign	alized Inte	rsections				
OVERALL		9.2	Α							
Albany Shaker Road &	Wolf Road			Intersection/Approa	nch	Delay *	LOS			
,	EB LL	61.8	E	Exit 4 NB Off-Ramp & W	olf Road					
Albany Shaker Road	EB TT/R	10.1	В	Exit 4 NB Off-Ramp	EB R	6.0	A			
Chance House				Exit 4 ND Oll-Italiip	LUN	0.0				
	EB R	5.5	A C	-						
Albany Shaker Road	WB L WB T T	27.1 21.8	С	1						
and the troad	WB R	20.0	В	-						
			С	-						
Wolf Road	NB L NB L/TT	24.4 29.8	C	-						
	NB R	3.6		1						

^{*} Delay provided in seconds per vehicle.

VISSIM Analysis Results

Intersection Level of Service

2036 (ETC+20) Flyover Alternative AM

Sign	alized Inter		C+20) 1 1y	Signalized Intersections					
Intersection/Appro	oach	Delay *	LOS	Intersection/Approa	ach	Delay *	LOS		
Central Avenue & Wol	f Road			Albany Shaker Road & 0	Old Wolf Roa	d			
Central Avenue	EB LL	46.4	D	Albany Shaker Road	EB L	16.8	В		
oomiai 7 wondo	EB TT	23.1	С	Tibally Charlet Road	EB TT	7.4	Α		
Central Avenue	WB TTT	41.7	D	Albany Shaker Road	WB TT/R	12.8	В		
Commun 7 (Vondo	WB R	9.2	Α	Old Wolf Road	SB LL	31.6	С		
Exit 2 NB Off-Ramp	NB TTT	46.2	D	0.0	SB R	24.5	С		
Wolf Road	SB LL	53.3	D	OVERALL		14.1	В		
	SB RR	7.5	Α	Exit 5 SB Ramps & Water	ervliet Shake	r Road			
OVERALL		33.6	С	Watervliet Shaker Road	EB L/TT/R	22.6	С		
Sand Creek Road & W	olf Road			Watervliet Shaker Road	WB LT	21.7	С		
	EB L	34.9	С	Evit 5 CD Off Bomp	SB L	28.3	С		
Sand Creek Road	ЕВ Т	29.6	С	Exit 5 SB Off-Ramp	SB T/R	17.2	В		
	EB R	2.8	А	Sherwood Drive	SB L/T/R	26.5	С		
	WB L	35.2	D	D OVERALL		22.5	С		
Sand Creek Road	WB T	34.0 C Exit 5 NB Ramps & Watervliet Shake		r Road					
	WB R	5.5	Α		FRI		С		
	NB L	45.2	D	Watervliet Shaker Road	EB T/R	10.4	В		
Wolf Road	NB TT	16.6	В		WB L	10.9	В		
	NB R	6.6	A	Watervliet Shaker Road	WB TT/R	15.8	В		
	SB L	47.0	D	Holly Lane	NB L/T/R	32.8	С		
Wolf Road	SB TT	19.7 B	SB L	27.8	С				
	SB R	7.4	A	Exit 5 NB Off-Ramp	SB T/R	11.5	В		
OVERALL		21.8	С	OVERALL		16.7	В		
Metro Park Drive & Wo	olf Road			New Exit 4 Ramps & Alb	any Shaker I	Road			
Hess Station	EB L/T/R	40.9	D		EB TT	27.3	С		
. 1000 C.a.io.i	WB L	48.7	D	Albany Shaker Road	EB R	11.9	В		
Metro Park Drive	WB T/R	9.0	A		WB L	61.9	E		
	NB L	4.7	Α	Albany Shaker Road	WB TT	11.3	В		
Wolf Road	NB TT	2.7	A		NB LL	21.7	С		
	NB R	4.5	A	New Exit 4 Ramps	NB R	15.8	В		
	SB L	4.0	A	OVERALL		20.0	С		
Wolf Road	SB TT/R	1.7	A		alized Inte				
OVERALL	OD 11/K			Onsign	anzea mile	1			
	Walf Dags	3.7	A	Intersection/Approa	ach	Delay *	LOS		
Albany Shaker Road &	1	I		5 % 4 ND 6% 5					
Albany Chalini Din	EB LL	33.7	C	Exit 4 NB Off-Ramp & W		22.5			
Albany Shaker Road	EB TT/R	9.0	Α	Exit 4 NB Off-Ramp	EB R	28.2	D		
	EB R	7.1	A	4					
	WB L	23.8	С	4					
Albany Shaker Road	WBTT	11.4	В	4					
	WB R	5.2	Α	4					
	NB L	32.3	С	1					
Wolf Road	NB L/TT	30.7	С	1					
	NB R	2.4	Α	_					
OVERALL		13.5	В						

^{*} Delay provided in seconds per vehicle.

Exhibit F.10.2.2.1-6 VISSIM Analysis Results

Intersection Level of Service

2036 (ETC+20) Flyover Alternative PM

Signa	Signalized Intersections				Signalized Intersections					
Intersection/Appro	ach	Delay *	LOS	Intersection/Approa	ach	Delay *	LOS			
Central Avenue & Wolf	Road			Albany Shaker Road & C	Old Wolf Roa	d				
Central Avenue	EB LL	59.0	E	Albany Shaker Road	EB L	23.6	С			
	EB TT	21.3	С	iliani, chaner rieda	EB TT	9.1	Α			
Central Avenue	WB TTT	58.9	E	Albany Shaker Road	WB TT/R	8.4	Α			
	WB R	33.3	С	Old Wolf Road	SB LL	52.6	D			
Exit 2 NB Off-Ramp	NB TTT	58.3	E		SB R	26.6	С			
Wolf Road	SB LL	67.5	E	OVERALL		19.1	В			
	SB RR	36.3	D	Exit 5 SB Ramps & Wate	ervliet Shake	r Road				
OVERALL		46.9	D	Watervliet Shaker Road	EB L/TT/R	64.2	Е			
Sand Creek Road & Wo	If Road			Watervliet Shaker Road	WB LT	29.3	С			
	EB L	142.2	F	Exit 5 SB Off-Ramp	SB L	40.2	D			
Sand Creek Road	ЕВ Т	130.9	F	LXII 3 3B OII-Namp	SB T/R	8.7	А			
	EB R	81.3	F	Sherwood Drive	SB L/T/R	49.1	D			
	WB L	189.1	F	OVERALL		43.6	D			
Sand Creek Road	reek Road WB T 206.9 F Exit 5 NB Ramps & Watervliet Shake		r Road							
	WB R 118.5 F FB I		EB L	34.7	С					
	NB L	70.0	E	Watervliet Shaker Road	EB T/R	12.2	В			
Wolf Road	NB TT	37.8	D	Materialist Chalcar Dood	WB L	18.3	В			
	NB R	15.9	В	Watervliet Shaker Road	WB TT/R	23.6	С			
	SB L			NB L/T/R	45.4	D				
Wolf Road	SB TT	50.5	D	Evit 5 ND O# Dawn	SB L	36.0	D			
	SB R	37.1	D	Exit 5 NB Off-Ramp	SB T/R	14.2	В			
OVERALL		83.1	F	OVERALL		25.0	С			
Metro Park Drive & Wol	f Road			New Exit 4 Ramps & Alb	any Shaker I	Road				
Hess Station	EB L/T/R	37.1	D	Alle and Ohadaan Daad	EB TT	36.4	D			
	WB L	45.1	D	Albany Shaker Road	EB R	10.6	В			
Metro Park Drive	WB T/R	19.8	В		WB L	73.1	Е			
	NB L	9.2	Α	Albany Shaker Road	WB TT	13.5	В			
Wolf Road	NB TT	7.5	Α		NB LL	27.0	С			
	NB R	5.8	Α	New Exit 4 Ramps	NB R	14.0	В			
	SB L	10.0	Α	OVERALL		22.7	С			
Wolf Road	SB TT/R	4.0	Α	Unsign	alized Inte	rsections				
OVERALL		9.1	Α							
Albany Shaker Road &	Wolf Road			Intersection/Approa	nch	Delay *	LOS			
,	EB LL	52.0	D	Exit 4 NB Off-Ramp & W	olf Road					
Albany Shaker Road	EB TT/R	12.1	В	Exit 4 NB Off-Ramp	EB R	6.0	A			
				Exit 4 ND On-Italiip	LUN	0.0	/1			
	EB R WB L	6.1	A C	1						
Albany Shaker Road		25.6	C	1						
wally chart invau	WBTT	20.7		1						
	WB R	17.6	В	1						
Wolf Road	NB L	33.9	C	1						
vvon Noau	NB L/TT	46.0	D	1						
OVERALI	NB R	3.7	A C	1						
OVERALL	ı	24.2	С							

^{*} Delay provided in seconds per vehicle.

VISSIM Analysis Results

Intersection Level of Service

2046 (ETC+30) Flyover Alternative AM

Sign	alized Inter	sections		Sign	alized Inter	sections				
Intersection/Appro	oach	Delay *	LOS	Intersection/Appro	oach	ch Delay *				
Albany Shaker Road &	Wolf Road			New Exit 4 Ramps & Albany Shaker Road						
	EB LL	49.2	D	Albany Shaker Road	28.0	С				
Albany Shaker Road	EB TT/R	9.2	Α	EB R		7.4	А			
	EB R	8.3	Α	Albany Shaker Road WB L		78.4	E			
	WB L	24.9	С	Albany Shaker Road WB TT		9.7	Α			
Albany Shaker Road	WBTT	11.8	В	New Exit 4 Ramps		21.3	С			
	WB R	5.5	А	New Exit 4 Ramps	NB R		В			
	NB L	31.4	С	OVERALL		20.2	С			
Wolf Road	NB L/TT	30.0	С	Unsig	nalized Inte	tersections				
	NB R	2.6	Α	Intersection/Appro	nach	Delay *	LOS			
OVERALL		14.5	В	intersection/Appro	Dacii	Delay	LUS			
Albany Shaker Road &	Old Wolf Roa	d		Exit 4 NB Off-Ramp &	Wolf Road					
Albanii Chalian Daad	EB L	20.2	С	Exit 4 NB Off-Ramp	EB R	81.9	F			
Albany Shaker Road	EB TT	14.9	В							
Albany Shaker Road	WB TT/R	14.1	В]						
Old Wolf Road	SB LL	32.1	С	1						
Old Woll Road	SB R	24.1	С							
OVERALL		18.3	В]						

^{*} Delay provided in seconds per vehicle.

L=Left, T=Through, R=Right, L/T=shared Left/Through, T/R=shared Through/Right

VISSIM Analysis Results

Intersection Level of Service

2046 (ETC+30) Flyover Alternative PM

Signa	alized Inter	sections		Sign	alized Inter	sections				
Intersection/Appro	ach	Delay *	LOS	Intersection/Appro	oach	Delay *	LOS			
Albany Shaker Road &	Wolf Road			New Exit 4 Ramps & Albany Shaker Road						
	EB LL	82.5	F	Albany Shaker Road	39.5	D				
Albany Shaker Road	EB TT/R	12.6	В	EB R		11.3	В			
	EB R	6.8	Α	Albany Shaker Road WB L		78.2	E			
	WB L	31.8	С	WB TT		12.5	В			
Albany Shaker Road	WBTT	26.0	С	New Exit 4 Ramps		32.0	С			
	WB R	32.6	С	New Exit 4 Namps	NB R		С			
	NB L	30.4	С	OVERALL		26.5	С			
Wolf Road	NB L/TT	53.1	D	Unsig	nalized Inte	tersections				
	NB R	3.3	Α	Intersection/Appro	ach.	Delay *	LOS			
OVERALL		31.0	С	Intersection/Appro	acii	Delay	LU3			
Albany Shaker Road &	Old Wolf Roa	ıd		Exit 4 NB Off-Ramp & \	Nolf Road					
Albany Shaker Road	EB L	24.8	С	Exit 4 NB Off-Ramp	EB R	7.4	Α			
Albany Snaker Road	EB TT	12.0	В							
Albany Shaker Road	WB TT/R	7.4	Α							
Old Wolf Road	SB LL	48.5	D							
Olu Woli Kodu	SB R	26.5	С							
OVERALL		19.2	В]						

^{*} Delay provided in seconds per vehicle.

L=Left, T=Through, R=Right, L/T=shared Left/Through, T/R=shared Through/Right

10.2.2.2 Freeway Level of Service

Freeway analyses for I-87 were conducted in accordance with the Highway Capacity Manual (HCM2000) using HCS+. The analyses were conducted for the freeway segments between Exits 2 and 4, Exits 4 and 5, Exits 5 and 6, on the segments on the bridge over Albany-Shaker Road and on the segments under the proposed Flyover ramps. Ramp junctions were evaluated at Exits 2, 4 and 5. Weave areas were evaluated at Exit 2. All of these analyses were conducted for Existing, ETC, ETC+10 and ETC+20. The freeway segments over Albany-Shaker Road under the Flyover ramp were also evaluated for ETC+30.

The results of the AM and PM peak hour Flyover Alternative freeway analyses are summarized in Exhibits F.10.2.2.2-1 and F.10.2.2.2-2.

	Exhibit F.10.2.2.2-1 Freeway Level of Service Flyover Alternative AM Peak Hour												
ETC (2016) ETC+10 (2026) ETC+20 (2036) ETC+30 (2046)													
Direction	Segment/Junction	Density pc/mi/ln	LOS	Density pc/mi/ln	LOS	Density pc/mi/ln	LOS	Density pc/mi/ln	LOS				
		F	REEWAY	SEGMENT	S								
Exit 2W on to Exit 4 off 21.2 C 21.9 C 22.9 C													
	Exit 4 off to Exit 4 off	16.0	В	15.7	В	16.0	В	16.0	В				
NB	Exit 4 off to Exit 4 on	14.4	В	14.4	В	14.7	В	14.4	В				
	Exit 4 on to Exit 5 off	13.2	В	13.5	В	13.7	В	-	-				
	Exit 5 on to Exit 6 off	12.5	В	12.8	В	13.0	В	-	-				
	Exit 6 on to Exit 5 off	29.4	D	29.9	D	30.1	D	-	-				
SB	Exit 5 on to Exit 4 off	35.0	D	37.7	Е	40.4	Е	40.4	Е				
OB	Exit 4 off to Exit 4 on	31.0	D	32.4	D	33.4	D	33.4	D				
	Exit 4 on to Exit 2W off	35.4	Е	35.8	Е	36.2	Е	-	-				
			RAMP J	UNCTIONS									
	Exit 2W on-ramp	18.0	В	18.6	В	19.5	В	-	-				
NB	Exit 4 off-ramp to ASR	20.3	С	21.1	С	22.3	С	-	-				
	Exit 4 off-ramp to Wolf	17.5	В	17.2	В	17.5	В	-	-				
	Exit 5 on-ramp	26.1	С	27.8	С	29.5	D	-	-				
SB	Exit 4 off-ramp	26.3	С	27.7	С	28.9	D	-	-				
05	Exit 4 on-ramp	27.1	С	28.5	D	29.6	D	-	-				
	Exit 2W off-ramp	33.6	D	33.8	D	34.1	D	-	-				
WEAVE AREAS													
NB	Exit 2E on-ramp to Exit 2W off-ramp	21.8	С	22.7	С	23.9	С	-	-				
SB	Exit 2W on-ramp to Exit 2E off-ramp	32.4	D	33.1	D	33.8	D	-	-				

Exhibit F.10.2.2.2-2 Freeway Level of Service Flyover Alternative PM Peak Hour									
		ETC (2	2016)	ETC+10	(2026)	ETC+20	(2036)	ETC+30	(2046)
Direction	Segment/Junction	Density pc/mi/ln	LOS	Density pc/mi/ln	LOS	Density pc/mi/ln	LOS	Density pc/mi/ln	LOS
		F	REEWAY	SEGMENT	S				
	Exit 2W on to Exit 4 off	40.8	Е	42.2	Е	43.0	Е	-	-
	Exit 4 off to Exit 4 off	30.8	D	31.1	D	30.8	D	29.7	D
NB	Exit 4 off to Exit 4 on	30.1	D	30.4	D	30.1	D	29.0	D
	Exit 4 on to Exit 5 off	30.9	D	31.2	D	31.2	D	-	-
	Exit 5 on to Exit 6 off	32.3	D	32.4	D	32.5	D	-	-
	Exit 6 on to Exit 5 off	17.2	В	17.9	В	18.6	С	-	-
SB	Exit 5 on to Exit 4 off	23.9	С	24.8	С	25.5	С	25.5	С
OB	Exit 4 off to Exit 4 on	19.3	С	19.9	С	19.9	С	19.6	С
	Exit 4 on to Exit 2W off	25.5	С	26.1	D	27.1	D	-	-
			RAMP J	UNCTIONS					
	Exit 2W on-ramp	31.9	D	32.3	D	32.4	D	-	-
NB	Exit 4 off-ramp to ASR	33.0	D	33.6	D	34.0	D	-	-
	Exit 4 off-ramp to Wolf	29.3	D	29.6	D	29.3	D	-	-
	Exit 5 on-ramp	18.5	В	19.3	В	20.1	С	-	-
SB	Exit 4 off-ramp	18.8	В	19.7	В	20.4	С	-	-
05	Exit 4 on-ramp	20.7	С	21.4	С	21.6	С	-	-
	Exit 2W off-ramp	26.3	С	26.8	С	27.6	С	-	-
		,	WEAV	E AREAS		,		,	
NB	Exit 2E on-ramp to Exit 2W off-ramp	39.6	Е	41.1	Е	41.8	Е	-	-
SB	Exit 2W on-ramp to Exit 2E off-ramp	26.7	С	26.5	С	29.2	D	-	-

During the AM peak hour, the following locations operate at LOS E under the ETC+20 condition in the southbound direction:

- Freeway Segments
 - o Exit 5 on to Exit 4 off
 - o Exit 4 on to Exit 2W off

During the PM peak hour, the following locations operate at LOS E under the ETC+20 condition in the northbound direction:

- Freeway Segments
 - Exit 2W on to Exit 4 off
- Weave Areas
 - o Exit 2E on to Exit 2W off

The operations for some of these locations are a change from a LOS D in the No-Build condition. The southbound freeway segments from Exit 5 to Exit 4 and Exit 4 to Exit 2W were approaching the LOS E threshold under the No-Build conditions and slightly higher volume for the Flyover Alternative pushed them over the LOS E threshold (>35 pc/m/l). The new ramp configuration and removal of the C-D Road is the primary reason for the increase in traffic volume between Exits 5 and 4. The segment from Exit 4 to Exit 2W was exactly at the threshold for No-Build ETC+20 AM and adds only 150 additional vehicles for the Flyover Alternative.

10.3 Travel Time

Travel time on the network roadways was evaluated from the VISSIM models for the future No-Build and Build alternative conditions. The 2036 (ETC+20) travel time comparisons are presented in Exhibits 3.3.1.5 a and 3.3.1.5 b. These routes represent the major routes that measure whether the alternatives meets one of the key needs of the project: access improvements between I-87, Wolf Road and the Albany International Airport.

Exhibit 3.3.1.5 a Travel Time Estimates 2036 (ETC+20) Build Alternatives AM Peak Hour							
Roadway: Segment	No-Build (m:ss)	Diamond (m:ss)	Flyover (m:ss)				
Northbound							
I-87: Sand Creek Overpass to Airport	6:05	4:23	3:41				
I-87: Sand Creek Overpass to Exit 6 Off-Ramp	3:55	3:55	3:56				
Southbound							
I-87: Exit 6 On-Ramp to Airport 7:03 6:10 4:59							
I-87: Exit 6 On-Ramp to Wolf Road (Metro Park) 6:53 4:33 5:19							
I-87: Exit 6 On-Ramp to Sand Creek Overpass	3:37	3:40	3:35				

m:ss = minutes:seconds

Exhibit 3.3.1.5 b Travel Time Estimates 2036 (ETC+20) Build Alternatives PM Peak Hour							
Roadway: Segment	No-Build (m:ss)	Diamond (m:ss)	Flyover (m:ss)				
Northbound							
I-87: Sand Creek Overpass to Airport	7:37	4:40	3:52				
I-87: Sand Creek Overpass to Exit 6 Off-Ramp	4:36	4:38	4:33				
Southbound							
I-87: Exit 6 On-Ramp to Airport	5:57	6:37	5:09				
I-87: Exit 6 On-Ramp to Wolf Road (Metro Park) 6:05 4:49 5:23							
I-87: Exit 6 On-Ramp to Sand Creek Overpass	3:46	3:43	3:41				

m:ss = minutes:seconds

The Diamond Alternative reduces the expected travel time for major routes by 20% when compared to the No-Build Alternative. In the southbound direction during the AM peak hour, the travel time to the airport is reduced from 7:03 to 6:10 (0:53 reduction) and the travel time to Metro Park Road is reduced from 6:53 to 4:33 (2:20 reduction). In the northbound direction during the PM peak hour, the travel time to airport is reduced from 7:37 to 4:40 (2:57 reduction). However, the travel time to the airport in the southbound direction during the PM peak hour is estimated to be greater than the No-Build Alternative. This is a result of the longer distance a vehicle must travel to reach the Exit 4 southbound off-ramp and then to Albany-Shaker Road.

The Flyover Alternative reduces the expected travel time for major routes by 25% when compared to the No-Build Alternative. In the southbound direction during the AM peak hour, the travel time to the airport is reduced from 7:03 to 4:59 (2:07 reduction) and the travel time to Metro Park Road is reduced from 6:53 to 5:19 (1:34 reduction). In the northbound direction during the PM peak hour, the travel time to the airport is reduced from 7:37 to 3:52 (3:45 reduction).

For both alternatives, the northbound and southbound through travel times (between Sand Creek Road Overpass and Exit 6 ramps) on I-87 are approximately the same as No-Build. As a result, it is not anticipated that the Build Alternatives will increase delay for through vehicles on I-87.

Overall, the Flyover Alternative provides the most reductions in travel time when compared to the No-Build condition.

10.4 Network Delay and Distance Traveled

Network-wide measures of effectiveness (MOE's) were gathered from the VISSIM models to compare the Build alternatives. Vehicle hours of delay (VHD) and vehicle miles traveled (VMT) are both presented in Exhibit 3.3.1.7 y.

Exhibit 3.3.1.7 y Network Measures of Effectiveness 2036 (ETC+20) Design Year						
No-Build Diamond Flyover						
AM Peak Hour						
Vehicle Hours of Delay	274	219	195			
Vehicle Miles Traveled	55,940	56,530	57,480			
PM Peak Hour						
Vehicle Hours of Delay 785 402 372						
Vehicle Miles Traveled	63,480	70,450	66,140			

As shown, the Build alternatives dramatically reduce the VHD during the PM peak hour, with the Flyover Alternative providing slightly better VHD improvements than the Diamond Alternative. For the Diamond Alternative, the VHD decreases by 20% for the AM Peak Hour and 49% for the PM Peak Hour. For the Flyover Alternative, the VHD decreases by 29% for the AM Peak Hour, and 53% for the PM Peak Hour. The VMT increases for both of the Build alternatives compared to the No-Build condition because they both have greater volume demand than the No-Build condition (i.e. more volume is diverted to the improved interchange). So although the distance that some vehicles travel within the network is reduced due to the Build alternative geometry, the increased number of vehicles in turn causes increased VMT.

10.5 Ramp Queues

The ETC+20 design year 95th percentile queues for the I-87 off-ramps at Exits 4, 5, and 6 were determined using Synchro 7. Exhibit 3.3.1.7 z below provides a summary of the ETC+20 design year queues; the No-Build queues are provided for comparison purposes.

Exhibit 3.3.1.7 z 95 th Percentile Queues - ETC+20 Design Year No-Build & Diamond Alternative							
Approach mvmt No-Build Diamond No-Build Diamond PM PM							
Exit 4 Ramps							
Evit 4 NR Off Pamp	L	310*	159	380	266		
Exit 4 NB Off-Ramp	R	137	103	123	41		
	LR	878	-	551	-		
Exit 4 SB Off-Ramp	L	-	257	-	482		
	R	-	154	-	471		
Exit 5 Ramps							
Exit 5 NB Off-Ramp	L	157	161	418	408		
Exit 5 NB Oil-Railip	TR	59	22	0	0		
Evit 5 SP Off Domo	L	395	767	410	740		
Exit 5 SB Off-Ramp	TR	223	494	336	249		
Exit 6 Ramps							
Exit 6 NB Off-Ramp	Ĺ	350	336	237	190		
Exit o NB OII-Namp	R	50	36	50	21		
Evit 6 SR Off Pamp	L	174	147	216	219		
Exit 6 SB Off-Ramp	R	494	540	661	593		

^{*} All 95th Percentile Queues shown in feet.

As shown, all of the Diamond Alternative queues are estimated to be approximately the same or less than the No-Build queues with the exception of the Exit 5 southbound off-ramp. The Exit 5 southbound left-turn movement for both peak periods and the through/right turn movement during the AM peak hour are estimated to have longer queues than the No-Build Alternative. The longer queues at this off-ramp are a result of the elimination of the C-D Road to Old Wolf Road, and the resulting redistribution of volumes in the area. However, it is estimated that the queues for these movements will not extend back to the I-87 mainline.

It is also noted that existing queue observations show that the Exit 4 SB off-ramp often backs to the I-87 mainline during the AM peak hour. The extent of that queue is not captured in the No-Build Synchro results shown since it is a cumulative result of the southbound queue on Old Wolf Road at Albany-Shaker Road backing to the intersection with the Exit 4 SB off-ramp. Since the C-D Road is eliminated with the Diamond Alternative, this queuing condition is also eliminated.

The ETC+20 design year 95th percentile queues for the I-87 off-ramps at Exits 4, 5, and 6 were determined using Synchro 7. Exhibit 3.3.1.7 aa below provides a summary of the ETC+20 design year queues; the No-Build queues are provided for comparison purposes.

Exhibit 3.3.1.7 aa 95 th Percentile Queues - ETC+20 Design Year No-Build & Flyover Alternative								
Approach	mvmt	No-Build AM	Flyover AM	No-Build PM	Flyover PM			
Exit 4 Ramps								
Exit 4 NB Off-Ramp to Wolf Rd	L	310*	ı	380	1			
Exit 4 NB OII-Ramp to Woll Ru	R	137	57	123	21			
Exit 4 SB Off-Ramp to Old Wolf Rd	LR	878	-	551	-			
Evit 4 Off Romp to ASP	L	-	367	-	728			
Exit 4 Off-Ramp to ASR	R	-	534	-	518			
Exit 5 Ramps								
Evit 5 ND Off Domp	L	157	156	418	493			
Exit 5 NB Off-Ramp	TR	59	21	0	0			
Evit 5 CD Off Domp	L	395	385	410	610			
Exit 5 SB Off-Ramp	TR	223	276	336	231			
Exit 6 Ramps	•							
Exit 6 NB Off-Ramp	Ĺ	350	380	237	189			
EXILO NO OII-NAITIP	R	50	53	50	14			
Exit 6 SB Off-Ramp	Ĺ	174	201	216	229			
Exit 0 3B Oil-Railip	R	494	554	661	615			

^{*} All 95th Percentile Queues shown in feet.

For the Flyover Alternative, all of the Build Alternative queues are estimated to be approximately the same or less than the No-Build queues with the exception of the Exit 4 off-ramp to Albany-Shaker Road and the Exit 5 southbound left-turn movement during the PM peak hour. It is estimated that the Exit 4 off-ramp to Albany-Shaker Road queue will be longer than No-Build due to the combination of the northbound off-ramp left-turn volume and the southbound off-ramp volume at the new intersection. However, the queue is not estimated to extend back to the I-87 mainline. As with the Diamond Alternative, the Exit 5 SB off-ramp queue is estimated to be longer than the No-Build Alternative due to the elimination of the C-D road, and the resulting redistribution of volume. It is not estimated that the southbound queue will extend back to the I-87 mainline in this alternative.

Like the Diamond Alternative, since the C-D Road is eliminated with the Flyover Alternative, the existing queuing condition of the Exit 4 SB off-ramp to the I-87 mainline is eliminated.

11.0 Safety Considerations, Accident History and Analysis

NYSDOT Region 1 conducted an accident history investigation for the project study area. The accident data covered a three year period from January 1, 2007 to December 31, 2009 and covered the project study area on I-87, Wolf Road, Watervliet-Shaker Road, Albany-Shaker Road and Old Wolf Road. They provided an updated set of data that included an additional three months of data and included a signal study that was conducted at the intersection of Albany-Shaker Road & Old Wolf Road/I-87 SB on-ramp. The memos, accident records and collision diagrams are included in Attachment F.

The current High Accident Location (HAL) period is from November 1, 2007 to October 31, 2009. There were no HALs on the section of I-87 studied from RM 2016 (Colonie Town Line) to RM 2042 (just north of the Exit 5 northbound on ramp). Wolf Road (NY 910B) was a Priority Investigation Location (PIL) from RM 1010 (Computer Drive) to RM 1015 (just south of Marcus Boulevard) and from RM 1016 (Marcus Boulevard) to 1019 (Albany-Shaker Road). Watervliet-Shaker Road (NY 155) was a Safety Deficient Location (SDL) from RM 3058 (Sherwood Drive) to RM 3060 (Old Niskayuna Road).

I-87 is a six lane divided Urban Principal Arterial Interstate highway with full control of access. There were 303 total accidents on this segment of I-87 during the study period. The accident rate was 0.87 accidents per million vehicle miles (acc/mvm) which is less than the expected accident rate of 1.10 acc/mvm for similar highways statewide. There was one fatality and no accidents involving pedestrians or bicyclists.

Wolf Road is a four lane divided Urban Principal Arterial highway with free access. There were 52 accidents in the first section studied (RM 1010 to 1015) during the January 1, 2007 to March 31, 2010 study period. The accident rate was 2.41 acc/mvm which is less than the expected accident rate of 3.59 acc/mvm for similar highways statewide. There was one accident involving a pedestrian and no accidents involving bicyclists.

There were 132 accidents in the second section of Wolf Road studied (RM 1016 to 1019) and the accident rate was 9.46 acc/mvm which is greater than the expected accident rate of 3.59 acc/mvm for similar highways statewide. There were no accidents involving pedestrians or bicyclists.

Watervliet-Shaker Road is a four lane undivided Urban Minor Arterials highway with free access. There were 46 accidents on the SDL section (RM 3058 to 3061 (Feiden Lane)) evaluated during the period January 1, 2007 to September 30, 2010. The accident rate of 8.79 acc/mvm is greater than the expected accident rate of 4.27 acc/mvm for similar highways statewide. There were no accidents involving pedestrians or bicyclists.

Albany-Shaker Road (CR 151) carries NY Touring Route 155. There were 55 accidents on the section studied, and the accident rate was 1.98 acc/mvm. This rate cannot be compared to the statewide average as it is not a state route. There were no accidents involving pedestrians or bicyclists.

Old Wolf Road (CR 153) also carries NY Touring Route 155. There were 55 accidents on the section studied, and the accident rate was 5.11 acc/mvm. This rate cannot be compared to the statewide average as it is not a state route. There were no accidents involving pedestrians and one involving a bicyclist.

The majority of accidents on all the roadways reviewed in the study occurred during the peak hours and are congestion related.

A summary crash severity for the project area is provided in Exhibit 2.3.1.8 a and a summary of accident type for the project area intersections is provided in Exhibit 2.3.1.8 b.

Exhibit 2.3.1.8 a Crash Severity Jan 1, 2007 to Dec 31, 2009						
Facility Type	Non- Reportable	Property Damage Only	Personal Injury	Fatality		
Non-freeway	0%	62%	38%	0%		
Freeway	22%	53%	25%	0%*		

^{*} There was one fatality reported during the studied period.

Exhibit 2.3.1.8 b Crash Types: Intersections Jan 1, 2007 to Dec 31, 2009										
Link	Head On	Right Angle	Rear End	Left Turn	Fixed Object	Over take	Side swipe	Ped/ Bike	Backing	Total
Wolf Road & Metro Park Road	1	3	3	2	0	2	0	0	0	11
Wolf Road & I-87 Exit 4 NB off-ramp	0	0	9	0	0	3	0	0	0	12
Wolf Road & Albany- Shaker Road	0	10	42	27	0	6	0	0	0	85
Albany-Shaker Road & Old Wolf Road/I-87 Exit 4 SB on-ramp	0	1	11	5	1	1	2	0	0	21
Old Wolf Road & I-87 Exit 4 SB off-ramp	0	0	33	0	1	0	0	0	0	34
Watervliet-Shaker Road & I-87 Exit 5 NB ramps	0	1	2	4	2	0	0	0	0	9
Watervliet-Shaker Road & I-87 Exit 5 SB ramps	0	2	6	4	0	1	0	1	1	15
Total	1	17	106	42	4	13	2	1	1	187

The accident rates for intersections are expressed as accidents per million entering vehicles (ACC/MEV) and accident rates for roadway links are expressed as accidents per million vehicle miles (ACC/MVM). For intersections on or including State facilities, the statewide average accident rate for similar facilities is provided for comparison purposes. Accident rates for the project area intersections are summarized in Exhibit 2.3.1.8 c.

Exhibit 2.3.1.8 c Intersection Accident Rates						
Intersection	Accident Rate ACC/MEV	Statewide Average ACC/MEV				
Wolf Road & Metro Park Road	0.27	0.15				
Wolf Road & I-87 Exit 4 NB off-ramp	0.33	0.11				
Wolf Road & Albany-Shaker Road	1.54	0.11				
Albany-Shaker Road & Old Wolf Road/I-87 Exit 4 SB on-ramp	0.46	0.11				
Old Wolf Road & I-87 Exit 4 SB off-ramp	1.77	0.19				
Watervliet-Shaker Road & I-87 Exit 5 NB ramps	0.35	0.15				
Watervliet-Shaker Road & I-87 Exit 5 SB ramps	0.66	0.15				

As summarized in Exhibit 2.3.1.8 c, all of the studied intersections exceed statewide averages for similar facilities. Locations that particularly stand out as greatly exceeding the statewide average are Wolf Road & Albany-Shaker Road and Old Wolf Road & I-87 Exit 4 SB off-ramp. The predominant accident types at Wolf Road & Albany-Shaker Road were rear end and left-turn. At Old Wolf Road & I-87 Exit 4 SB off-ramp, all but one of the reported accidents were rear ends. A high occurrence of rear end accidents typically correlates to traffic congestion where vehicles are in stop-and-go traffic and/or reaching the end of forming queues.

The dismissed Upgrade Alternative did not address many of the crash patterns in the study area since the alternative only included adding additional capacity at the existing intersections and is not estimated to divert traffic to other routes. The existing C-D road between Watervliet-Shaker Road and Old Wolf Road, which also serves the Exit 4 southbound off-ramp and Exit 5 southbound on-ramp, is maintained with the Upgrade Alternative. In addition to the 34 accidents at the intersection with Old Wolf Road & I-87 SB off-ramp, another 14 accidents occurred on the C-D road during the studied period. Traffic routinely backs up on the C-D road to the Exit 4 southbound off-ramp. While it would be anticipated that the number of accidents would be reduced due to less congestion under the alternative, the geometric conditions in this area would remain the same.

The Flyover and Diamond Alternatives both remove the C-D road and the existing Exit 4 and 5 ramp configuration, therefore eliminating those accidents and resulting in an accident cost savings of \$584,000 per year (\$11,680,000 over 20 years). The traffic volumes at the Wolf Road & Albany-Shaker Road intersection are also reduced under these alternatives which will improve operations and safety. The Diamond Alternative removes the Exit 4 northbound on-ramp and reduces the peak hour volumes at this intersection by 42 percent. The Flyover Alternative reduces the peak hour volumes at this intersection by 35 percent.

The Flyover and Diamond Alternatives will also improve safety at the intersections with Albany-Shaker Road & Old Wolf Road/I-87 Exit 4 southbound on-ramp and Wolf Road & I-87 Exit 4 northbound off-ramp. The Flyover Alternative eliminates the I-87 Exit 4 southbound on-ramp at the existing intersection and modifies the I-87 Exit 4 northbound off-ramp to be unsignalized with right-turns onto Wolf Road southbound only. The Diamond Alternative eliminates the I-87 Exit 4 southbound on-ramp and the I-87 Exit 4 northbound off-ramp at their existing intersections. These modifications reduce volume and congestion.

ATTACHMENT A FIGURES

2009 EXISTING HIGHWAY AM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4
ACCESS IMPROVEMENTS

F-11

2009 EXISTING HIGHWAY PM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4
ACCESS IMPROVEMENTS

F - 12

2016 NO-BUILD HIGHWAY AM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4ACCESS IMPROVÉMENTS

GRID NORTH Watervliet
Shaker Rd Exit 5 NOTE: NOT TO SCALE **FIGURE**

DATE: 8/13

87

2026 NO-BUILD HIGHWAY AM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4ACCESS IMPROVÉMENTS

FIGURE

2026 NO-BUILD HIGHWAY PM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4ACCESS IMPROVÉMENTS

2036 NO-BUILD HIGHWAY AM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4
ACCESS IMPROVEMENTS

F - 17

2036 NO-BUILD HIGHWAY PM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4ACCESS IMPROVÉMENTS

2046 NO-BUILD HIGHWAY AM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4 ACCESS IMPROVEMENTS

F - 19

DATE: 1/12

2046 NO-BUILD HIGHWAY PM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4
ACCESS IMPROVEMENTS

F - 20

DATE: 1/12

2016 DIAMOND ALTERNATIVE HIGHWAY AM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4
ACCESS IMPROVEMENTS

--29

2016 DIAMOND ALTERNATIVE HIGHWAY PM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4
ACCESS IMPROVEMENTS

-30

2026 DIAMOND ALTERNATIVE HIGHWAY AM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4ACCESS IMPROVÉMENTS

2026 DIAMOND ALTERNATIVE HIGHWAY PM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4ACCESS IMPROVÉMENTS

2036 DIAMOND ALTERNATIVE HIGHWAY AM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4ACCESS IMPROVÉMENTS

2036 DIAMOND ALTERNATIVE HIGHWAY PM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4
ACCESS IMPROVEMENTS

-34

2046 DIAMOND ALTERNATIVE HIGHWAY AM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4
ACCESS IMPROVEMENTS

F - 35

DATE: 12/12

III Winners Circle, PO Box 5269 · Albany, NY 12205-0269

Main: (518) 453-4500 · www.chacompanies.com

2046 DIAMOND ALTERNATIVE HIGHWAY PM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4 ACCESS IMPROVEMENTS

F - 36

DATE: 12/12

2016 FLYOVER ALTERNATIVE HIGHWAY AM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4
ACCESS IMPROVEMENTS

-45

2016 FLYOVER ALTERNATIVE HIGHWAY PM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4
ACCESS IMPROVEMENTS

-46

2026 FLYOVER ALTERNATIVE HIGHWAY AM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4
ACCESS IMPROVEMENTS

-47

2026 FLYOVER ALTERNATIVE HIGHWAY PM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4
ACCESS IMPROVEMENTS

-48

2036 FLYOVER ALTERNATIVE HIGHWAY AM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4
ACCESS IMPROVEMENTS

--49

2036 FLYOVER ALTERNATIVE HIGHWAY PM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4
ACCESS IMPROVEMENTS

-50

2046 FLYOVER ALTERNATIVE HIGHWAY AM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4 ACCESS IMPROVEMENTS

DATE: 12/12

2046 FLYOVER ALTERNATIVE HIGHWAY PM PEAK HOUR TRAFFIC VOLUMES

INTERSTATE 87 (I-87) EXIT 3 / 4
ACCESS IMPROVEMENTS

F - 52

DATE: 12/12

ATTACHMENT B
TRAFFIC COUNT DATA

III Winners Circle, P.O. Box 5269 Albany, NY 12205-0269 www.chacompanies.com 518-453-4500

> Old Wolf Road/Albany-Shaker Road Exit 3/Exit 4

AM 7 to 9

File Name: Albany Shaker Road & Old Wolf Road AM

Site Code : 01270901

: 1/27/2009 Start Date : Page No :

III Winners Circle, P.O. Box 5269 Albany, NY 12205-0269 518-453-4500 www.chacompanies.com

AM 7 to 9

Exit 3/Exit 4 Old Wolf Road/Albany-Shaker Road

File Name: Albany Shaker Road & Old Wolf Road AM Site Code: 01270901 Start Date: 1/27/2009 Page No: 1

	Groups Printed- Passenger Cars - SU Trucks & Buses - MU Trucks Old Wolf Road Albany-Shaker Road On-Ramp Albany-Shaker Road	pu	Peds App Total Int Total	0 158	200	707		0 769 2929	243	197	235		0 851 3195	1620		36.6		96.2	F.23	, c	900 0)
	Eastbound	Thru	-				486 86				97	536 70			16.7	de de cando primero de canon	7 89 7		27 103) (
	THE POST OF THE PARTY OF THE PA		Right	gς	8 8	2 6	2 5	197	κχ	3 6	. <u>(</u>	. על	245	442	27.3	5 C		96.6	10	23	5	, ,
Ś			App. Total		o C	· ·	o c	0	c	0 0	0 0	o C	0	C	,	C		0	C	0	0	
U Truck	Cars - SU Trucks & Buses - MU Trucks On-Ramp	nuq	Peds		0 0	o C	o C	0	c	· C	· C	· C	0	0	· C	o C		0	C	0	0	
uses - M		Northbound	Left		· C	· C	0 0	0	С	C	· C	· C	0	0	· C	o C		0	0	0	0	
cks & Bi		_	Thru		- C				C	· C				0	· C		-	0		0		
SU True			Right	<u> </u>					-	_		0			_	· C		0		0		
er Cars -	assenger Cars - SU Tru er Road		App. Total	156	226	296	316	994	278	303	249	225	1055	2049		33.5		95.9	65	3.2	20	•
asseng		pun	Peds				0	The second secon	0			0			0.1			100	0	0	0	•
inted-P	ny-Shak	Westbound	Left	33	51	64	56	204	56	70	09	20	236	440	21.5	7.2		95.2	17	3.9	4	•
oups Pr	Albaı		Thru				236					150	703	1385		22.6		96.7	37	2.7	6	•
້ໍວັ			Right	21	24	37	24	106	23	33	35	25	116		10.8	3.6		91.9	7	2	7	
			Peds App. Total	232	273	309	352	1166	289	337	300	363	1289	2455		40.1		97.6	49	2	1	•
	oad	nd	Peds	0	0	0	0	0	0	0	~	0	-	-	0	0		100	0	0	0	<
	I Wolf R	Southbound	Left	138	187	198	219	742	194	229	212	272	907	1649	67.2	26.9		98.2	24	1.5	9	<
	ŏ	So	Thru	11	ၑ	7	12	36	თ	7	17	10	37	73	က	1.2		83	4	5,5	4	U
		A. C.	Right	83	80	104	121	388	86	101	9/	8	344	732	29.8	12		97	21	2.9		ć
		***************************************	Start Time	07:00 AM	07:15 AM	07:30 AM	07:45 AM	Total	08:00 AM	08:15 AM	08:30 AM	08:45 AM	Total	Grand Total	Approch %	Total %	Passenger Cars	% Passenger Cars	SU Trucks & Buses	% SU Trucks & Buses	MU Trucks	0/ W/ Tresolvo

III Winners Circle, P.O. Box 5269 Albany, NY 12205-0269 www.chacompanies.com 518-453-4500

File Name: Albany Shaker Road & Old Wolf Road AM

: 1/27/2009 : 2

Start Date: Page No

Site Code : 01270901

Exit 3/Exit 4 Old Wolf Road/Albany-Shaker Road AM

7 to 9

III Winners Circle, P.O. Box 5269 Albany, NY 12205-0269 518-453-4500 www.chacompanies.com

Exit 3/Exit 4 Old Wolf Road/Albany-Shaker Road

File Name: Albany Shaker Road & Old Wolf Road AM Site Code: 01270901 Start Date: 1/27/2009 Page No: 3

7 to 9 AM

		old	Old Wolf Road	oad			Albany	ny-Shaker Road	· Road			0	On-Ramp				Albany	Albany-Shaker Road	Road		
		ŭ	Southbound	nd			≶	/estbound	ō			Š	Northbound	و			Еa	Eastbound	р		
Start Time	Right	Thru	Left	Peds	Left Peds App. Total	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds Ap	App. Total	Right	Thra	Left	Peds	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1	sis From C	7:00 AM	to 08:45	AM - Pe	ak 1 of 1							-	-		7			The state of the s			
Peak Hour for Entire Intersection Begins at 07:30 AM	tire Inters	ection Be	gins at 0	7:30 AM			4														
07:30 AM	104	7	198	0	309	37	5	T e								62	<u>r</u>	0			
07:45 AM	121	12	219	0	352	24	236	26	0	316	0	0	0	0	0	51	135	28	0	214	882
08:00 AM	98	6	194	0	289	23	199	26	0	278	0	0	0	0	0	28	161	24	0	243	810
08:15 AM	101	7	229	0	337	33	200	2	0	303	0	0	0	0	0	61	121	72	0	197	837
Total Volume	412	32	840	0	1287	117	830	246	0	1193	0	0	0	0	0	232	550	87	0	869	3349
% App. Total	32	2.7	65.3	0		9.8	9.69	20.6	0		0	0	0	0		26.7	63.3	10	0		
보	.851	.729	.917	000	.914	.791	879	.879	000.	.944	000.	000	000	000	000	.935	.854	777.	000	894	946
Passenger Cars	399	32	824	0	1255	108	808	233	0	1149	0	0	0	0	0	225	533	81	0	839	3243
% Passenger Cars	96.8	91.4	98.1	0	97.5	92.3	97.3	94.7	0	96.3	0	0	0	0	0	97.0	96.9	93.1	0	96.5	96.8
SU Trucks & Buses	12	0	13	0	25	9	16	10	0	32	0	0	0	0	0	2	16	9	0	27	84
% SU Trucks & Buses	5.9	0	ر تن	0	0.1	5.1	ر 9.	4.1	0	2.7	0	0	0	0	0	2.2	2.9	6.9	0	3.1	2.5
MU Trucks	_	က	က	0	7	က	9	က	0	12	0	0	0	0	0	7	-	0	0	m	22
% MU Trucks	0.5	8.6	0.4	0	0.5	2.6	0.7	1.2	0	0.1	0	0	0	0	0	0.9	0.2	C	С	т С	0.7

СпА III Winners Circle, P.O. Box 5269 Albany, NY 12205-0269 www.chacompanies.com 518-453-4500

Exit 3/Exit 4

7 to 9 AM

Albany Shaker Road & Wolf Road

File Name: Albany Shaker Road & Wolf Road AM Site Code: 01270916 : 1/27/2009 Start Date

Page No

Cr.A III Winners Circle, P.O. Box 5269 Albany, NY 12205-0269 www.chacompanies.com 518-453-4500

> Albany Shaker Road & Wolf Road AM Exit 3/Exit 4 7 to 9

Site Code : 01270916 Start Date : 1/27/2009 Page No : 1

File Name: Albany Shaker Road & Wolf Road AM

Southbound Mostpound Mos			J	On-Ramp	a			Albany-	-Shaker Road	Road			\$	Wolf Road	73			Albany.	Albany-Shaker Road	Road		
Right Thru Left PedS App. Total Right Thru Left App. Total Thru App. Total Thru Left App. Total App. Total Thru Left App. Total			So	uthbou	nd			We	stbount	7"			Š	rthbour	ğ			щ	stbound	73		
0 0 0 1 44 89 45 0 178 51 32 107 0 190 115 104 21 0 0 0 0 52 149 120 62 0 219 48 35 124 0 278 187 138 27 0 0 0 0 0 49 121 89 15 165 0 298 155 173 28 0 0 0 0 0 145 74 0 269 89 49 166 0 298 155 175 197 175 197 175 197 <	Start Time	Right	Thru	Left	Peds A	pp. Total	Right	Thru	Left	L	\pp. Total	Right	Thru	Left	$\overline{}$	App. Total	Right	Thru	Left	L	App. Total	Int. Total
0 0 0 37 120 62 0 219 48 35 124 0 207 187 138 27 138 27 138 27 149 148 35 175 0 208 155 173 28 175 178 189 178 178 178 189 178 178 189 178 178 189 178 189 189 189 147 0 208 161 564 189 178 189 189 147 0 278 189 147 0 289 147 0 289 147 0 289 147 0 289 147 0 289 147 0 289 147 0 289 147 188 189 147 189 189 147 189 189 149 189 147 0 289 149 189 147 0 289	07:00 AM	0	0	0	-	-	44	88	45	0	178	51	32	107	0	190	115	104	21	0	240	609
0 0 0 0 52 149 77 0 278 65 45 175 0 285 155 173 28 0 0 0 0 49 121 89 14 160 0 298 159 128 31 0 0 0 1 1 182 479 160 0 298 160 0 298 161 543 107 0 0 0 14 122 47 0 269 90 39 147 0 276 197 162 197 172 18 197 152 197 192 197 18 190 0 276 197 192 190 191 172 191 172 192 190 191 172 114 190 182 111 112 172 114 114 140 140 140 140	07:15 AM	0	0	0	0	0	37	120	62	0	219	48	35	124	0	207	187	138	27	0	352	778
0 0 0 0 49 121 89 1 260 89 49 160 0 298 159 128 31 0 0 0 1 1 182 479 273 1 935 160 0 980 616 543 107 <t< td=""><td>07:30 AM</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>25</td><td>149</td><td>77</td><td>0</td><td>278</td><td>65</td><td>45</td><td>175</td><td>0</td><td>285</td><td>155</td><td>173</td><td>28</td><td>2</td><td>358</td><td>921</td></t<>	07:30 AM	0	0	0	0	0	25	149	77	0	278	65	45	175	0	285	155	173	28	2	358	921
0 0 0 1 1 182 479 273 1 935 253 161 566 0 980 616 543 107 0 0 0 0 0 44 125 67 0 275 197 155 19 0 0 0 0 0 44 125 67 0 276 99 248 215 197 155 19 0 0 0 0 0 0 244 125 67 0 276 89 54 132 0 248 215 124 21 0 0 0 0 0 171 480 320 0 971 178 520 1 1016 815 564 85 0 0 0 0 0 1 1 44 15 89 593 108 11 1016	07:45 AM	0	0	0	0	0	49	121	83	-	260	88	49	160	0	298	159	128	31	0	318	876
0 0 0 50 145 74 0 269 90 39 147 0 275 197 152 12 0 0 0 0 39 140 96 0 275 89 54 132 0 275 197 155 19 0 0 0 0 44 125 67 0 236 66 52 130 0 248 215 124 21 0 0 0 0 0 0 171 480 320 0 971 176 815 564 85 0 0 0 0 177 480 320 0 31 176 815 17 544 0.1 196 82 9 10 9 10 9 10 10 10 10 10 10 10 10 10 10 10 10 <td>Total</td> <td>0</td> <td>0</td> <td>0</td> <td>-</td> <td>_</td> <td>182</td> <td>479</td> <td>273</td> <td>-</td> <td>935</td> <td>253</td> <td>161</td> <td>566</td> <td>0</td> <td>980</td> <td>616</td> <td>543</td> <td>107</td> <td>2</td> <td>1268</td> <td>3184</td>	Total	0	0	0	-	_	182	479	273	-	935	253	161	566	0	980	616	543	107	2	1268	3184
0 0 0 39 140 96 0 275 89 54 132 0 275 197 155 19 0 0 0 0 44 125 67 0 236 66 52 130 0 248 215 124 21 0 0 0 0 171 480 320 0 971 17 178 520 1 1016 815 564 85 0 0 0 1 1 353 959 593 1 1906 570 339 1086 1 1016 815 564 85 0 0 0 100 1 1 353 959 593 1 1906 570 31 1016 815 564 85 0 0 0 0 0 0 0 28.6 57 17 16.4	08:00 AM	0	0	0	0	0	20	145	74	0	269	06	38	147	0	276	191	152	22	0	365	910
0 0 0 0 44 125 67 0 236 66 52 130 0 248 215 124 21 23 23 111 1 217 212 133 23 13 23 111 1 217 212 133 23 23 111 1 217 1 1 217 1	08:15 AM	0	0	0	0	0	33	140	96	0	275	88	54	132	0	275	197	155	19	0	371	921
0 0 0 0 38 70 83 0 191 72 33 111 1 217 212 133 23 0 0 0 0 0 171 480 320 0 971 317 178 520 1 1016 815 564 85 0 0 0 1 171 480 320 0 971 178 520 1 1016 815 564 85 0 0 0 100 1 18.5 50.3 31.1 0.1 108 1 1906 17 40.5 17 109 17 109 17 109 100	08:30 AM	0	0	0	0	0	44	125	29	0	236	99	52	130	0	248	215	124	21	0	360	844
0 0 0 0 0 171 480 320 0 971 317 178 520 1 1016 815 564 85 0 0 0 100 1 1353 959 593 1 1906 570 339 1086 1 1996 1431 1107 192 0 0 0 100 1 18.5 50.3 31.1 0.1 28.6 57 6.1 16.4 0.1 107 192 7 0 0 0 0 0 0 0 30.1 16.4 0 30.1 16.7 2.9 7 0 0 0 0 0 0 0 0 0 0 0 0 0 98.5 98.8 97.6 97 10 98.4 98.8 10 10 0 0 0 0 0 0 0 0	08:45 AM	0	0	0	0	0	38	70	83	0	191	72	33	=======================================	_	217	212	133	23	0	368	776
0 0 0 1 1 353 959 593 1 1906 570 339 1086 1 1996 1431 1107 192 0 0 0 0 0 0 0 0 28.7 8.6 5.1 16.4 0.1 27.4 40.5 7 0 0 0 0 0 0 0 21.6 40.5 7 10 27.6 99.4 98.8 97.6 97.1 10 97.6 99.4 98.8 99 1 0 0 0 0 0 0 0 2 15 1 23 5 5 17 0 27 9 9 2 0 0 0 0 0 0 0 1.4 0.6 0 9 2 1 0 1 0 0 0 0 0 0 0 0 <td< td=""><td>Total</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>171</td><td>480</td><td>320</td><td>0</td><td>971</td><td>317</td><td>178</td><td>520</td><td>-</td><td>1016</td><td>815</td><td>564</td><td>85</td><td>0</td><td>1464</td><td>3451</td></td<>	Total	0	0	0	0	0	171	480	320	0	971	317	178	520	-	1016	815	564	85	0	1464	3451
0 0 0 18.5 50.3 31.1 0.1 28.6 17 54.4 0.1 52.4 40.5 7 0<	Grand Total	0	0	0	₩-	_	353	959	593		1906	570	339	1086	-	1996	1431	1107	192	2	2732	6635
0 0	Apprch %	0	0	0	100	~~~~	18.5	50.3	31.1	0.1		28.6	17	54.4	0.1		52.4	40.5	7	0.1		
0 0 0 100	Total %	0	0	0	0	0	5.3	14.5	8.9	0	28.7	8.6	5.1	16.4	0	30.1	21.6	16.7	2.9	0	41.2	
0 0 0 100 100 100 98.9 98.2 99.6 98.8 97.6 97 100 97.6 99.4 98.8 99 1 0 0 0 0 2 15 5 1 23 5 5 17 0 27 9 9 2 0 0 0 0 0 0 0 1.2 0 1.5 1.6 0 1.4 0.6 0.8 1 0 0 0 0 0 0 0 0 1.4 0.6 0.8 1 0	Passenger Cars									Management and the control of the co		ACCOUNTS OF THE PROPERTY OF TH					Albert and a second sec			***************************************		
0 0 0 0 0 0 0 2 15 5 1 23 5 17 0 27 9 9 2 0 0 0 0 0 0 0.6 1.6 0.8 100 1.2 0.9 1.5 1.6 0 1.4 0.6 0.8 1 0 0 0 0 0 0 0 0 0.6 0.2 0.2 0 0.3 0.4 0.9 1.5 0 1.1 0 0.4 0	% Passenger Cars	0	0	0	100	100	98.9	98.2	66	0	98.5	98.8	97.6	97	100	97.6	99.4	98.8	66	100	99.1	98.5
0 0 0 0 0 0 0 0.6 1.6 0.8 100 1.2 0.9 1.5 1.6 0 1.4 0.6 0.8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SU Trucks & Buses	0	0	0	0	0	2	15	5	-	23	5	5	17	0	27	6	6	2	0	20	70
0 0 0 0 0 0 2 2 1 0 5 2 3 16 0 21 0 4 0 0 0 0 0 0 0.6 0.2 0.2 0 0.3 0.4 0.9 1.5 0 1.1 0 0.4 0	% SU Trucks & Buses	0	0	0	0	0	9.0	1.6	0.8	100	1.2	6.0	1,5	1.6	0	4.1	0.6	0.8	τ	0	0.7	-
0 0 0 0 0 0 0.6 0.2 0.2 0 0.3 0.4 0.9 1.5 0 1.1 0 0.4 0	MU Trucks	0	0	0	0	0	2	2	-	0	5	2	က	16	0	21	0	4	0	0	4	30
	% MU Trucks	0	0	0	0	0	9.0	0.2	0.2	0	0.3	0.4	6.0	1.5	0	<u></u>	0	0.4	0	0	0.1	0.5

III Winners Circle, P.O. Box 5269 Albany, NY 12205-0269 www.chacompanies.com 518-453-4500 STA

File Name: Albany Shaker Road & Wolf Road AM

Site Code : 01270916

Albany Shaker Road & Wolf Road Exit 3/Exit 4

AM 7 to 9

CFA III Winners Circle, P.O. Box 5269 Albany, NY 12205-0269 518-453-4500 www.chacompanies.com

Exit 3/Exit 4 Albany Shaker Road & Wolf Road AM 7 to 9

File Name: Albany Shaker Road & Wolf Road AM Site Code: 01270916 Start Date: 1/27/2009 Page No: 3

		Ŭ à	On-Ramp	<u>a</u> 9			Albany	-Shaker Road	Road			≥ :	Wolf Road		1000		Albany-Shaker Road	Shaker	Road	The second secon	
	- 1	ñ	Southbounds	D E			Š	stboun				ŝ	Northbound	-			Eas	Eastbound			
Start Time	Right	Thru		Left Peds App. Total	App. Total	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds A	Ann Total Ir	Int Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of	sis From (07:00 AM	to 08:45	AM - Pea	ak 1 of 1						-			7				7		[
Peak Hour for Entire Intersection Begins at 07:30 AM	tire Inters	ection Be	gins at 0	7:30 AM																	
07:30 AM	0	0	0	0	0	25	149			278		J	175		and the			đ	·	~~~	024
07:45 AM	0	0	0	0	0	49	121	89	-	260	83	9	160	0	298	159		٦ <u>٢</u>	ı c	318	876
08:00 AM	0	0	0	0	0	20	145	74	0	269	06	39	147	0	276	191		22) C	36.5	200
08:15 AM	0	0	0	0	0	33	140	96	0	275	88	54	132	0	275	197	155	19	· C	371	921
Total Volume	0	0	0	0	0	190	555	336	1	1082	333	187	614	0	1134	702		100	2	1412	3628
% App. Total	0	0	0	0		17.6	51.3	31.1	0.1		29.4	16.5	54.1	0		49.7		2,7	0.1	}	1
Ή	000.	000.	000:	000.	000.	.913	.931	.875	.250	.973	.925	.866	.877	000	.951	891		806	250	951	985
Passenger Cars	0	0	0	0	0	188	550	334	0	1072	329	181	597	0	1107	669		98	2	1401	3580
% Passenger Cars	0	0	0	0	0	98.9	99.1	99.4	0	99.1	98.8	96.8	97.2	0	97.6	9.66		0.86	100	660	082
SU Trucks & Buses	0	0	0	0	0	~	4	7	-	8	က	က	7	0	13	<u>ښ</u>		2	2	, ,	33
% SU Trucks & Buses	0	0	0	0	0	0.5	0.7	9.0	100	0.7	6.0	1.6	1.	0	<u></u>	4.0		2.0	0	0.8	6.0
MU Irucks	0	0	0	0	0	•		0	0	7	 -	က	10	0	14	0		0	C	C	5
% MU Trucks	0	0	0	0	0	0.5	0.2	0	0	0.2	0.3	1.6	1.6	0	1.2	0		0	0	0	0.4

III Winners Circle, P.O. Box 5269 Albany, NY 12205-0269 518-453-4500 CHA

www.chacompanies.com

Exit 3/Exit 4 Exit 4 NB Off-Ramp

AM 7-9

File Name: Exit 4 NB Off-Ramp 00000000: Site Code

: 1/27/2009 Start Date

Page No

III Winners Circle, P.O. Box 5269 Albany, NY 12205-0269 www.chacompanies.com 518-453-4500

: Exit 4 NB Off-Ramp

File Name

: 00000000 : 1/27/2009

Start Date Site Code

Page No

Exit 4 NB Off-Ramp Exit 3/Exit 4 AM

6-7

8 8 0.6 Other App. Total Int. Total 122 184 260 260 206 183 181 770 122 184 260 361 206 183 181 770 1.5 8 0.6 000-0.0 Exit 4 Off-Ramp Eastbound 72.8 72.8 Left 94 150 194 509 143 124 124 533 27.1 27.1 99.2 2 0.5 63 59 56 236 236 28 34 52 52 Other | App. Total Groups Printed- Passenger Cars - SU Trucks & Buses - MU Trucks Northbound Left Total App. Other Westbound Left App. Total Other Southbound Left 07:00 AM 07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM Grand Total Apprch % Total % Start Time Passenger Cars SU Trucks & Buses % MU Trucks % Passenger Cars **MU Trucks** % SU Trucks & Buses

CHA III Winners Circle, P.O. Box 5269 Albany, NY 12205-0269 518-453-4500

www.chacompanies.com

File Name: Exit 4 NB Off-Ramp

00000000:

Site Code

: 1/27/2009 : 2

Start Date : Page No :

Out 0 0 0 0 0 Total 0 0 0 0 0 0 0 0 0 0 0 Rght 0 0 0 0 Thru 0 0 0 0 Left 0 0 0 0 Other 0 0 0 Other Total 1016 19 7 1042 385 388 Total 0000 Passenger Cars SU Trucks & Buses MU Trucks t _t 1/27/2009 07:00 AM 1/27/2009 08:45 AM North 드 0000 Thr Out 1016 19 7 1042 385 388 Out 0000 Rght Left ↑ ↑ ↑ ↑ ↑ 385 388 Rght 1016 1042 1042 Other 0 0 0 LetoT 2041 1S 8 1431 Exit 4 Off-Ramp

1431

1431

1431 tuO 0 0 0

Exit 3/Exit 4 Exit 4 NB Off-Ramp

AM 7-9

CHA
III Winners Circle, P.O. Box 5269
Albany, NY 12205-0269
518-453-4500
www.chacompanies.com

File Name: Exit 4 NB Off-Ramp Site Code: 000000000 Start Date: 1/27/2009 Page No: 3

Exit 3/Exit 4 Exit 4 NB Off-Ramp AM 7-9

	Totol	ר סומו			184	260	200	206	850)	817	833	98.0	12	4	. rc	0.6
		App. rotal III			184	260	200	206	850)))	.817	833	98.0	12	14	. K	9.0
dw	, the				C	>	C) C) C	· C	000	0	0	0	0	· C	0
dit 4 Off-Ramp	100001	CON			150	194	142	143	629	74	.811	613	97.5	12	6	7	9.0
Exit 4 (J H	2			C	>	C	o c	0	· C	000	0	0	0	0	· C	0
	Dobt	3.60			34	99	, K	3 8	221	26	.837	220	99.5	0	0	•	0.5
	Ann Total	יישליר			C	· C	· C	· C	0	,	000	0	0	0	0	C	0
7	Other				0	0	c	· C	0	0	000	0	0	0	0	C	0
Morthbound	#4				0	0	C	0	0	0	000	0	0	0	0	C	0
Ž	Thru				0	0	0	0	0	0	000	0	0	0	0	0	0
	Robt				0	0	0	0	0	0	000.	0	0	0	0	0	0
	Ann Total				0	0	0	0	0		000	0	0	0	0	0	0
7	Other	-			0	0	0	0	0	0	000	0	0	0	0	0	0
n other	left l				0	0	0	0	0	0	000	0	0	0	0	0	0
×	Thru				0	0	0	0	0	0	000.	0	0	0	0	0	0
	Raht	9			0	0	0	0	0	0	000	0	0	0	0	0	0
	Left Other App Total	1 4 OF 4	5 - 5		0	0	0	0	0		000	0	0	0	0	0	0
þ	Other		Ď Z.	7:30 AM	0	0	0	0	0	0	000.	0	0	0	0	0	0
Southbound	Left	100.45	10 00.40	gins at 0	0	0	0	0	0	0	000.	0	0	0	0	0	0
Sc	Thru	7.00 044	200.	action Be	0	0	0	0	0	0	000.	0	0	0	0	0	0
	Raht	Erom O	200	re Interse	0	0	0	0	0	0	000.	0	0	0	0	0	0
	Start Time	Doak Hour Analysis From 07:00 AMM to 00:45 AMM Book 4 of	can ilou Allaiya	Peak Hour for Entire Intersection Begins at 07:30 AM	07:30 AM	07:45 AM	08:00 AM	08:15 AM	Total Volume	% App. Total	生	Passenger Cars	% Passenger Cars	SU Trucks & Buses	% SU Trucks & Buses	MU Trucks	% MU Trucks

III Winners Circle, P.O. Box 5269 Albany, NY 12205-0269 www.chacompanies.com 518-453-4500

File Name: Sand Creek & Wolf Road TOTAL AM

: 12345678 : 1/27/2009

Site Code Start Date

Exit 3/Exit 4

Sand Creek & Wolf Road

AM 7 to 9

CHA III Winners Circle, P.O. Box 5269 Albany, NY 12205-0269 518-453-4500 www.chacompanies.com

> Sand Creek & Wolf Road Exit 3/Exit 4 AM 7 to 9

File Name: Sand Creek & Wolf Road TOTAL AM Site Code: 12345678
Start Date: 1/27/2009
Page No: 1

		> _v	Wolf Road	<u>,</u>			Sar	Sand Creek	¥			> 2	Wolf Road	7		American materials assumed a six playing a material or some	Sa	Sand Creek	* -		
		S i	3	2				dathou	2			2		2	-		Ü	Eastbound	0		
Start IIme	Right	nu	Left	Peds	Peds App. Total	Right	ם	Left	Peds 6	App. Total	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds A	App. Total	Int. Total
07:00 AM	4	99	18		66	20	23	+	_	55	4	44	21	0	69	35	53	24	0	112	335
07:15 AM	13	94	23	0	130	35	36	56	က	100	15	82	40	2	142	4	34	32	· C	107	479
07:30 AM	25	103	31	0	159	45	27	25	0	97	18	87	52	0	157	48	69	3 6	· C	149	562
07:45 AM	24	66	16	0	139	48	20	31	2	151	4	133	22	4	198	4	47	38	0	126	614
Total	9/	362	88	+-	527	148	156	93	9	403	41	349	170	9	266	165	203	126	0	494	1990
08:00 AM	22	93	27	0	142	49	45	25	0	119	4	118	44	0	176	20	49	38	С	137	574
08:15 AM	30	92	16	0	141	41	37	19		86	6	136	51	0	196	21	62	23	0	136	571
08:30 AM	26	90	14	0	130	58	39	19	0	87	7	123	42	0	176	36	09	38	0	134	527
08:45 AM	28	91	14	τ-	134	30	42	15		88	6	135	37	7	183	40	43	44	0	127	532
Total	106	369	71	-	547	149	163	78	2	392	43	512	174	2	731	147	214	173	0	534	2204
Grand Total	182	731	159	2	1074	297	319	171	80	795	84	861	344	∞	1297	312	417	299	0	1028	4194
Apprch %	16.9	68.1	14.8	0.2		37.4	40.1	21.5	_		6.5	66.4	26.5	9.0		30.4	40.6	29.1	0		
Total %	4.3	17.4	3.8	0	25.6	7.1	9.7	4.1	0.2	19	7	20.5	8.2	0.2	30.9	7.4	о О	7.1	0	24.5	
Passenger Cars						The same of the sa					THE COMMUNICATION AND ADDRESS OF THE PARTY O		A STATE OF THE PARTY OF THE PAR	And the second s		VIVI LORDON DE LA CONTRACTOR DE LA CONTR	***************************************		VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV	2	Trecommendation to the second teacher
% Passenger Cars	97.8	96.3	6.96	100	96.6	86	91.5	87.7	100	93.2	88.1	95.5	96.2	100	95.2	97.8	91.8	26	0	95.1	95.2
SU Trucks & Buses	4	27	2	0	36	က	26	21	0	20	6	35	10	0	54		33		0	47	187
% SU Trucks & Buses	2.2	3.7	3.1	0	3.4	•	8.2	12.3	0	6.3	10.7	4.1	2.9	0	4.2	2.2	7.9	2.3	0	4.6	4.5
MU Trucks	0	0	0	0	0	3	-	0	0	4	-	4	က	0	00	0	_	2	С		15
% MIJ Trucks	_	C	C	C	c	*	c	•	•	L	•	((•	1				,	,	

File Name: Sand Creek & Wolf Road TOTAL AM

Site Code : 12345678

: 1/27/2009

Start Date Page No

7

Sand Creek & Wolf Road Exit 3/Exit 4

AM 7 to 9

Sand Creek & Wolf Road Exit 3/Exit 4 AM 7 to 9

File Name: Sand Creek & Wolf Road TOTAL AM Site Code: 12345678
Start Date: 1/27/2009
Page No: 3

		≥ 3	Wolf Road	<u>ا</u> و	*************		Sa	ind Creek	- x-			≥ :	Wolf Road				Sa	Sand Creek	*		
		00	Southbound	2				estponud	8			Š	Northbound	8			Щ	Eastbound	ō		
Start Time	Right	Thru		Left Peds App. Total	. Total	Right	Thru	Left	Peds A	App. Total	Right	Thr	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1	is From 0	7:00 AM	to 08:45	AM - Peak	1 of 1									-				~	- Annual Control of the Control of t		
Dook Hours for Fat	The last and			1																	
reak hour for Entire intersection Begins at 07:30 AM	ire interse	sction Be	gins at 0	7:30 AM																	
07:30 AM	25	103	33		159					-	18						69			149	
07:45 AM	24	66	16	0	139	48	2	31	7	151	4	133	21	4	198	41	47	38	0	126	614
08:00 AM	22	93	27	0	142	49	45	25	0	119	14	118	44	0	176	20	49	38	0	137	574
08:15 AM	30	92	16	0	141	41	37	19		86	თ	136	51	0	196	21	62	53	0	136	571
Total Volume	101	330	6	0	581	183	179	100	က	465	45	474	204	4	727	160	227	161	0	548	2321
% App. Total	17.4	67.1	15.5	0		39.4	38.5	21.5	9.0		6.2	65.2	28.1	9.0		29.2	41.4	29.4	0	1	i i
井심	.842	.947	.726	000.	.914	.934	.639	.806	.375	.770	.625	.871	.895	.250	.918	.800	.822	.759	000	.919	.945
Passenger Cars	66 6	376	86	0	561	179	164	83	က	435	41	453	195	4	693	155	215	153	0	523	2212
% Passenger Cars	086	96.4	92.6	0	96.6	8.76	91.6	89.0	100	93.5	91.1	92.6	92.6	100	95.3	6.96	94.7	95.0	0	95.4	95.3
SU Trucks & Buses	7	4	4	0	20	က	15	7	0	53	4	18	9	0	28	S	7	9	0	22	66
% SU Trucks & Buses	2.0	3.6	4.4	0	3.4	1.6	8.4	11.0	0	6.2	8.9	3.8	5.9	0	3.9	3,1	8.4	3.7	0	4.0	4.3
MU Trucks	0	0	0	0	0	τ-	0	0	0	~	0	က	ო	0	9	0	-	^	C	۲.	10
% MU Trucks	0	0	0	0	0	0.5	0	0	0	0.2	0	9.0	1.5	0	0.8	O	0.4	10	· C	0.25	5.0
										-				į		,		!))	Ś

Exit 3/Exit 4

7 to 9 AM

> Exit 3/Exit 4 AM 7 to 9

Watervliet Shaker Road & Exit 5 SB Ramp

File Name: Watervliet Shaker Road & Exit 5 SB Ramp AM Site Code: 111111111 Start Date: 1/27/2009 Page No: 1

hamma		_	Off-Ramp	Q			ıΣ	Route 155	5			0	On-Ramp				Ron	Route 155	Add Many and printer property and a second		
	***************************************	ഗ്	Southbound	pur	•		3	estbound	Þ			N _O	Northbound	Ţ.			Fact	Fasthound		*********	
Start Time	Right	Thru	Left	Peds	Peds App. Total	Right	Thru	Left	Peds ,	App. Total	Right	Thru	Left	Peds Ann Total	-	Right	Thai	t da	Dade	Ann Total	Int Tatal
07:00 AM	30	9	68	c	104	C	01	9	+	151			c		-		3 1	-			111. 10td
07-15 AM	33	u	70	· c	. 4		- 0	8 6	> 0	2 (> '	>	>	>	-	ۍ	16	0	0	21	27E
24.00.10	3 1	> (D :	· C	0	>	143	108	0	251	0	0	0	0	0		31	۲	C	43	415
U7:30 AM	51	9	91	0	148	0	132	102	0	234	С	C	C	c			. 00	- c	o c	2 (7-1
07:45 AM	58	4	81	0	143	0	192	136	С	328	· C	· C	o c	o c	> <	- 14	0 0	> 0	> 0	9;	475
Total	172	22	319	0	513	0	558	406	0	964	0	0	0	> -		-	30	> T	0	47	512
											•)	>	>			77,	-	5	0	7701
08:00 AM	99	12	89	0	157	0	151	112	C	263	C	C	c	c		*	1	c	c		
08:15 AM	24	6	86	C	152	_	173	7		200		0	0	> 0		<u> </u>	7 + 1	0	>	LQ	481
08:30 AM	20	α	9 0	0 0	10.) - ,	0 0	۰ د	202	>	>	>	>		33	30	0	0	43	458
00.00	8 8	> -	9 6	> 0	144	_	109	100	0	210	0	0	0	0	0	9	43	0	0	49	403
21.00 1.00	000	t c	0		110	-	117	9/	0	194	0	0	0	0			45	C	C	4	275
oral	88	33	331	0	263	က	520	407	0	930	0	0	0	0	0	42 1	165	0	0	207	1700
Grand Total	371	55	650	0	1076	m	1078	813	c	1804	c	c	c	c			1	,	(,
Apprch %	34.5	5.1	60.4	0		0.0	56.9	429	o c	2	o c	> C	> c	> C	· ·			()	358	3328
Total %	11.1	1.7	19.5	0	32.3	0.1	32.4	24.4	o c	56.0	> <	> C	> 0			3.0	2.08	ກ ເ)		
Passenger Cars	A STATE OF THE PARTY OF THE PAR	***************************************		And the same of th		A CONTRACTOR OF THE CONTRACTOR				9	O		>		2		α.α	0	0	10.8	
% Passenger Cars	99.2	100	98	0	98.5	66.7	97.6	86	С	4 7 7	C	c	c	c	0 0 7		7 00	ć	c	3	
SU Trucks & Buses	ო	0	12	0	15	-	15	16	c	32				***************************************	-	ń	THE PERSON AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NO	200)	S. 6	47.8
% SU Trucks & Buses	0.8	С	200	C	4	33 3	. +	5 6	o c	1 1	> 0	> (> 0	- -) O (٥	>	0	22	59
MITrucks		0	-	0	*	0.0	t .	10	0	7.1	0	0	5			8.6	5.6	0	0	6.1	2.1
% MII Trucks	o c	o c	- c	> (- ,) c		>	>	_	0	0	0	0	0	4	က	0	0	7	100
SYSS CINCLES	>	>	 	>		=	•	_	<	· ·	c	((_						

III Winners Circle, P.O. Box 5269 Albany, NY 12205-0269 www.chacompanies.com 518-453-4500

Watervliet Shaker Road & Exit 5 SB Ramp

Exit 3/Exit 4

AM 7 to 9

11111 : 1/27/2009 Site Code Start Date Page No

File Name: Watervliet Shaker Road & Exit 5 SB Ramp AM

> Exit 3/Exit 4 Watervliet Shaker Road & Exit 5 SB Ramp AM 7 to 9

File Name: Watervliet Shaker Road & Exit 5 SB Ramp AM

Site Code : 111111111 Start Date : 1/27/2009 Page No : 3

70004444	A	၁၀၄	Off-Ramp Southbound	p ud			œ ≶	Route 155 Westbound	č br			0 8	On-Ramp Northbound				2 E	Route 155	9		
Start Time Right Thru Left Peds App. Total	Right	Thru	Leff	Peds /	App. Total	Right	Thr	Left	Peds	Peds App. Total	Right	Thr	Left	Left Peds App. Total	υρ. Total	Right	Thru	Left	Peds 1	Peds Ann Total Int Tota	Int Tota
Peak Hour Analy	ysis From 0,	7:00 AM	to 08:45	AM - Pea	ak 1 of 1				The second secon			A 60 market		The state of the s		J			2	744	35
Peak Hour for Entire Intersection Begins at 07:30 AM	ntire Interse	sction Beg	gins at 07	7:30 AM																	
07:30 AM	1 51	9	91				130			_						Month	(N)			-	
07:45 AM	58	4	8	0	143	О	192	136	C	328	c	C	c	c	C	⊳ L	. (((
08:00 AM	56	12	8	C	157	· C	1 1 1		0 0	200	0 0	> (> (> (>	ი	30 O	>	>	4	513
)	!)	>	2	>	2		>	203	>	_	=	_	_	77	77	_	c	70	Č

		int. Iotal				512	481	458	4070	6/01		917	1810	9 6	90.x	48	0) i	12	9	;
		App. lotal		-		41	61	43	200	5		.783	173	2 6	90.08	<u></u>	ď) (ົນ	20	ì
	2000	SDAL			Ó	>	0	0		> 0	0	000.	C	> <	> 1	0	C) (>	C)
Route 155	40 -	רפון			C	>	0	0		0 0	0	000.	C) C) (0	С		>	C	,
ĕű	1 -	0		(N)	ć	30	47	30	150	10.0	0.6	608.	139	2 5	t	10	6.6	, (n	2.0	
	ţ	and a		A.	⊮ Li	n ;	14	13	30	3 6	4.07	969.	34	07.0		מי	7.7	c	7	5.7	
	App. Total	pp. rotal			C	> (>	0	c)	000	000	C	· C		>	0	c	>	0	-
_ 0	Spec	1			c	> 0	>	0	c	· c	0 0	000.	0	· C	0 0	>	0	c	> 1	0	
On-Ramp Northbound	He I				c	> 0	> '	0	С	· C	2 6	ono.	0	C	0 0	>	0	C	۰ د	0	
o <u>ջ</u>	Thu	-			c	> C	> 0	0	С	· C	200	000.	0	C) c	>	0	C) (0	
	Right)			C	o c	> 0	Э	0	· C	2 6	ooo.	0	C	o c	>	0	C	0 (>	
	App. Total				328	263	202	703	1088		000	670.	1058	97.2	70	17	2.2	ď		0.0	
- 73	Peds A	-			C	o c	0 0	5	0	C	000	200.	0	0	· C) (0	C	, c	>	
oute 155 stbound	Left			200	136	110	1 5	20	469	43.1	862	200.	458	97.7	,	- (2.3	C		>	
ž Š	Thru	-		130	192	151	- 7	54.	618	56.8	805	200	299	6.96	13		7.	ဖ		-	
	Right				0	C	· •	-	τ-	0.1	250	201	,	100	C) (>	0	c	>	
	op. Total	1 of 1	5		143	157	150	700	009	n e se e un	955	000	288	98.0	-	. 0	0		0	4.	
g	Peds App. Total	AM - Peak	30 AM		0	С	· c	0	>	0	000		>	0	0	c) (0	c)	
Southbound	Left	0 08:45	ins at 07	91	81	83	8	100	347	57.8	.953	700	227	97.1	0	20	,	,	α Ο)	
Sol	Thru	7:00 AM 1	ction Bec	9	4	12	σ	, 40	2	5.5	.646	70	- (100	0	C	0	>	C)	
and the second	Right	s From 0	re Interse	51	28	56	57		777	37	.957	220	0.22	99.1	7	o C	9	>	С	•	
	Start Time	Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1	beak Hour for Entire Intersection Begins at 07:30 AM	07:30 AM	07:45 AM	08:00 AM	08:15 AM	Total Volumo	oral volume	% App. Total	품	Dacconder Care	assertiger Cars	% Passenger Cars	SU Trucks & Buses	% SH Toucke & During	A I Tailor	MO HUCKS	% MU Trucks		

III Winners Circle, P.O. Box 5269 Albany, NY 12205-0269 www.chacompanies.com 518-453-4500

> Old Wolf Road & Albany Shaker Road Exit 3/Exit 4

4 to 6 PM

Site Code : 12345678 Start Date : 1/27/2009 Page No : 4

File Name: Albany Shaker Road & Old Wolf Road PM

4 to 6

Exit 3/Exit 4 Old Wolf Road & Albany Shaker Road PM

File Name: Albany Shaker Road & Old Wolf Road PM Site Code: 12345678
Start Date: 1/27/2009
Page No: 1

		Same same source sources	Int. Total	826	770	846	817	3259	868	896	797	277	3337	6596				98	102	1.5	99	0.5
	***********		App. Total	282	272	330	320	1204	332	386	299	262	1279	2483		37.6		98.3	33	1.6	4	0.2
	Road	g	Peds /		***	0	0	2	0	0	0	0	0	2	0.1	0		100	0	0	0	0
	Albany-Shaker Road	Eastbound	Left	23	27	58	27	106	28	44	23	21	116	222	8.9	3.4		89.6	21	9.5	2	6.0
	Albany	Ë	Thru	143	156	171	179	649	163	197	148	150	658	1307	52.6	19.8		98.9	13		~	0.1
			Right	115	88	130	114	447	141	145	128	91	505	952	38.3	14.4		99.4	S	0.5	-	0.1
			App. Total	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	0
Trucks		ס	Peds Ap	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
N - Si	On-Ramp	Northbound	Left	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
& Buse	Ō	Š	Thru	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
J Trucks			Right	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
inted- Passenger Cars - SU Trucks & Buses - MU Trucks			App. Total	277	263	263	256	1059	259	249	288	273	1069	2128		32.3		98.1	53	4.1	12	9.0
ssenger	Road	þ	Peds	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
ited-Pag	ny-Shaker Road	Vestbound	Left	92	64	9/	20	302	96	71	71	22	295	297	28.1	9.1		98.8	ည	0.8	2	0.3
Groups Prin	Albany	≥	Thru	155	167	152	158	632	137	136	167	174	614	1246	58.6	18.9		98.4	17	1.4	က	0.2
Gro	***************************************	;	Right	30	32	35	28	125	56	42	20	42	160	285	13.4	4.3		95.1	7	2.5	7	2.5
			Peds App. Total	267	235	253	241	966	277	261	210	241	686	1985		30.1		97.6	34	1.7	14	0.7
	oad	nd	Peds	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
	Old Wolf Road	Southbound	Left	160	154	141	152	209	166	161	133	156	616	1223	61.6	18.5		98.6	-	6.0	9	0.5
	PO	So	Thru	31	16	30	23	100	4	26	∞	19	94	194	8.6	2.9		94.3	4	2.1	_	3.6
			Right	76	65	82	99	289	70	74	69	99	279	568	28.6	8.6		96.5	19	3.3	_	0.2
			Start Time	04:00 PM	04:15 PM	04:30 PM	04:45 PM	Total	05:00 PM	05:15 PM	05:30 PM	05:45 PM	Total	Grand Total	Apprch %	Total %	Passenger Cars	% Passenger Cars	SU Trucks & Buses	% SU Trucks & Buses	MU Trucks	% MU Trucks

III Winners Circle, P.O. Box 5269 Albany, NY 12205-0269 www.chacompanies.com 518-453-4500

Exit 3/Exit 4 Old Wolf Road & Albany Shaker Road

PM

4 to 6

: 1/27/2009 : 2 Site Code : 12345678 Start Date Page No

File Name: Albany Shaker Road & Old Wolf Road PM

Exit 3/Exit 4 Old Wolf Road & Albany Shaker Road

4 to 6 PM

File Name: Albany Shaker Road & Old Wolf Road PM Site Code: 12345678
Start Date: 1/27/2009
Page No: 3

		ŏŏ	Old Wolf Road Southbound	toad			Albany- We	-Shaker Road estbound	Road		AND	ō Ş	On-Ramp	7		COMPANY AND A STATE OF THE STAT	Albany	Mbany-Shaker Road	Road		
Start Time	Right	Thru	Left	Peds	Left Peds Ann Total	Right	Thru	l off	Dade	Ann Total	tq zio	5	900	1			i Li	Eastbound			
		-			man iddi.	in .	3	į		pp cdd	300	2	Lei Lei	Leds	App. Total	TOY.	2	eff	Peds	Ann Total	Int Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1	is From (04:00 PM	to 05:45	5 PM - Pe	ak 1 of 1													-		- Add	1000
Peak Hour for Entire Intersection Begins at 04:30 PM	ire Inters	ection Be	ains at C	14:30 PM																	
04:30 PM	82	4				7	150	I have		6					~	4		4			
NG 21.40	U U) } }	, T	c	7	} (9 1	,	202						~ ~		2			
12 000	2 1	62	70	>	747	28	158	9	0	256	0	0	0	0	0	114	179	27	C	320	217
MH 00:50	2	4	166	0	277	56	137	96	C	259	C	c	c	C				ic) (040	- 0
05:15 PM	74	26	161	C	261	Ş	100	7 (0 0	3 6	0 0	> (، د	>	>	4	503	78	>	332	868
Total Value		5 6	2 0		107	74	130	- /	0	748	Э	0	0	0	0	145	197	44	0	386	896
oral voiding	767	120	070	0	1032	131	583	313	0	1027	0	C	c	c	c	530	710	10g	c	4300	2010
% App. Total	28.3	11.6	60.1	0		12.8	56.8	30.5	C		· C	· C	o c	o c)	1 (2.7	0 7	> 0	0000	2471
Ή	890	732	934	000	031	780	000	140	000	010		0 00		٥	***************************************	50.7	ى ا.ك	4.	>		
	200			000	- 000	20	.326.	510.	ODO:	3/0	oon.	000.	000.	000.	000	914	.901	.727	000	886	956
rasseriger Cars	7007	7	2.0	>	1007	124	220	312	0	1006	0	C	С	c	c	507	704	4+2	C	4340	Cucc
% Passenger Cars	97.6	93.3	98.4	0	97.6	7.46	97.8	2 66	C	0 80	· C	· C) C	o c	o c	3 8	- 1	2 0	> 0	040	2538
SH Trucks & Buses	7	+	7	c	T.		, ,		0 0	;;	> 0	، د	>	>	>	4.66	98.7	7.76	0	98.4	98.0
	· •	- o	- 4	0	2 ,	က (2 !	,	>	4	0	0	0	0	0	က	တ	თ	0	21	20
% SO Indexs & Buses	4.7	0.0	-	0	J.5	2.3	1.7	0.3	0	4.	0	0	0	C	C	90	4.	7.0	C	4	. 4
MU Irucks	0	_	ო	0	10	4	ď	_	c	7	c	· C		0 (0 0	9	5 0)		
% MU Trucks	C	ις	ر بر	· C		. 4) L	0	0 0	- 1	> 0	o 1	>	>)	>	0	_	0	~	9
	>)	9	>	- - -	٠. د.	0.0	>	>	 ``	0	0	0	0	0	0	0	0.8	0	0.1	C 5.
															-				,	;	9

III Winners Circle, P.O. Box 5269 Albany, NY 12205-0269 www.chacompanies.com 518-453-4500 S

File Name: Albany Shaker Road & Wolf Road PM

Site Code : 01270982 Start Date : 1/27/2009

4

Page No

Exit 3/Exit 4

Albany Shaker Road & Wolf Road ΡM

4 to 6

Albany-Out 1171 2 2 2 1175 In 1151 5 1 1157 0 0 0 0 Peds 335 2 0 337 Left 309 2 0 311 Right 1 1 509 Thru Peak Hour Data 0000 2636 Total Total 1323 5 0 1328 Peak Hour Begins at 04:45 PM 0000 1807 5 5 1817 In Passenger Cars SU Trucks & Buses MU Trucks 0000 813 6 0 819 Out Out 1323 5 0 0 1328 Left 490 3 4 4 497 Right 0000 478 0 482 482 Aight 322 322 323 0 0 0 0 2 1 058 undT Variable 1006 | 1354 | 2360 | 1364 | 2343 | 1346 | 2343 | 1346 |

> Exit 3/Exit 4 Albany Shaker Road & Wolf Road ₽

4 to 6

File Name: Albany Shaker Road & Wolf Road PM Site Code: 01270982 Start Date: 1/27/2009 Page No: 1

		1-4-7-4-1	Int. lotal	1047	1001	1001	1042	1090	4210	:	1044	1149	1045	906	4233		8443		The state of the s		99.5	33) <	t.	13	(
Manadespersonal annual surround		}	Арр. готаг	299	VCC	1000	308	333	1265	6	339	381	301	304	1325		2590		30.7	(39.5	10		t (7	····
Road	9	op od	Laces	0	C	> <	> 0	0	0	(0	0	0	· C	0	(>	0	0	c	>	0	_	0	>	c
Albany-Shaker Road	Eastbound	#40-	רמו	86	09	1 (0)	2 3	40	289	,	5	83	64	74	332	Č	1.70	24	7.4	ć	99.Q	₩	00	3 (0	c
Albany	ш	Thai	2	115	136	5 6	5 5	200	539	7	-	156	119	117	509	0	245	40.5	12.4	(38.0	က	~	9	7	c
THE PARTY PROPERTY OF THE PARTY		tdoig	11600	98	119	0.0	2 7		437	Š	7	132	118	113	484	2	176	35.6	10.9	6	33.0	ဖ	0.7		>	c
V C V C V C V C V C V C V C V C V C V C		Ann Total		473	446	175	7 4	408	1863	700	423	468	451	404	1752	0 7	000	9	47.8	ç	4.66	<u></u>	40		D (_ C
	<u>0</u>	Peds		>	0	· C	o c	0	>	c	۰ د	0	0	0	0	c	> 0	> 0	>	c	0	0	0	c	> (_
Albany-Shaker Road Wolf Road	Northbound	He H		143	154	139	120	27.0	202	105	2 .	124	119	114	482	1047	÷ c	2 6	4.21	α	0.0	_	0.7	u	0	2
≥ :	S	Thru	7170	1/0	151	187	122	7/1	000	160	2 1	32	178	126	649	1335	3 6	0. u	0.0	9 00	5	Ω	4.0	-	- •	-
		Right	727	134	141	149	168	2 2	710	144	- 1	60	154	164	621	1233	27.7	- 4	5.	900	5 7	_	0.1	2	1 (`
		App. Total	275	6/7	261	258	288	2007	7001	276	0 0	2000	293	287	1156	223R	2	26.5	20.0	99.5	200	2	4.0	2	7 7	~ .
Road		Peds Ac	l	.	0		c	, ,	_	c	, (> 0	0	0	0	-		o c	>	100		> (0	c) C	-
-Shaker Road	estponud	Left	7.3	2 (83	63	84	303		26	0 1	9 0	8	8	343	646	28.0	7.7		99.5	2	۱ c	0.5	С	· c	-
Albany-	We	Thru	130	2 ,	-	133	117	101	2	126	107	+ 7 + 7	142	127	519	1010	45.1	- 6	1	99.3) נ	0.5	2	0	7.7
		Right	7.2	1 1	/9	61	87	287	5	53	o o	9 6	5	02	294	581	26	69		99.7	0	1 (0.3	0	C	>
		b. Total	C		<u> </u>	0	0	C	>	0	C		 	0	 >	0		C	,	0	c	0 0	O	0	C	>
_		Peds App. Total	C		>	0	0	c	,	0	C	o c	> 0	0	>	0	0	0		0	c) C	>	0	C)
On-Ramp		Left	c		>	0	0	С		0	C	· c	0 0	D)	0	0	0	- Control of the Cont	0	С) C	>	0	0	,
Ö	3	Thru	0	_	۰ د	0	0	0		0	C		0 0	> 0	>	0	0	0	-	0	0	· C	5	0	0	,
	-	Right	0	C	> (0	0	0		0	0	C	0 0	> 0	>	0	0	0	TATOLOGY STANSON STANS	0	0	C	> 0	>	0	
	+	Start Time	04:00 PM	04-15 PM	N 000	04:30 PM	04:45 PM	Total	-	05:00 PM	05:15 PM	05:30 PM	05:45 DA4	M L Ot.CO	Ora	Grand Total	Apprch %	Total %	Passenger Cars	% Passenger Cars	SU Trucks & Buses	CIT Terology 9 Danses	% SO ITUCKS & BUSES	MO I NOKS	% MU Trucks	-

III Winners Circle, P.O. Box 5269 Albany, NY 12205-0269 www.chacompanies.com 518-453-4500

File Name: Albany Shaker Road & Wolf Road PM Site Code: 01270982

: 1/27/2009 : 2

Albany Shaker Road & Wolf Road Exit 3/Exit 4

4 to 6

Exit 3/Exit 4 Albany Shaker Road & Wolf Road 4 to 6 PM

File Name: Albany Shaker Road & Wolf Road PM Site Code: 01270982 Start Date: 1/27/2009 Page No: 3

The second secon		ွင္တ	On-Ramp Southbound	pu Jud			Albany. We	-Shaker Road setbound	Road		Wild Address of the Control of the C	≥ S	Wolf Road	- T			Albany	Ibany-Shaker Road	Road		
Start Time	Right	Thru	Left	Left Peds App. Total	. Total	Right	Thru	the th	Peds A	Ann Total	thoio	1 1 1	40	0000	ŀ	i	- L	Eastbound	_		
Dook Hour Andly	, L. T.	000			-	,				ייים	1000	2	į Į	SDAL	App. lotal	E G	2	Let	Peds /	App. Total	Int. Total
reak mout Attalysis From 04:00 PM to 05:45 PM - Peak 1 of 1	IS From C	4:00 PM	to 05:45	PM - Peak	1 of 1										7		- Constitution of the Cons				
Peak Hour for Entire Intersection Begins at 04:45 PM	ire Interse	ction Be	gins at 0	4:45 PM																	
04:45 PM	0	0	0	C	<u></u>	87	117	ά	c	000	9	7	9		1						
05.00 PM	C	C		· c	· (5 6	- († I	> 0	007	00	1 6 600	671		469		158	J		****	
00:30 00:40	0 0	0	o (> <	 > ·	ဂ	071	<i>)</i> 6	>	576	144	160	125	0	429	121	117	101	C	330	1044
00.10 PIM	>	>	>	0	0	98	124	78	0	300	159	185	124	C	468	132	176	03	· c	000	1 7 7 7
05:30 PM	0	0	0	0	C	73	142	78	c	203	747	170) (2 5	1 0	2 7) ·	> •	200	
Total Volume	c	C				24.0		000		207	t 0	0/1	מ	>	451	118	119	4	0	301	1045
% Ann Total	0 0	> 0	0 0	> (>	- 1	806	33/	0	1157	625	695	497	0	1817	482	550	322	С	1354	4328
% App. Total	0	Э	0	0		26.9	44	29.1	0		34.4	38.2	27.4	c		35.6	907	0000	0 0		010
HA HA	000	000	000	000	000	793	896	869	000	061	030	020		0	000	20.00	0.00	23.0	2		STREET, STREET
Passenger Cars	C	C				000	.000	500	200	100.	000	808.	305	000.	SOS.	513.	0/8:	797	000.	888	.942
) (0 0	0	o (O (503	000	222	>	LCL	624	693	490	0	1807	478	547	321	a	1346	4304
% Passenger Cars	O	>	0	>	0	99.4	9.66	99.4	0	99.5	8.66	99.7	98.6	C	7 66	000	00	7 00	· C	¥ 00	
SU Trucks & Buses	0	0	0	0	0	7	₹	^	C	ĸ	c	C) C)	1.00)	7.00	> 0	4.1	4,88
% S11 Tenrike & Buses	C	C	C	c	C	(1 (0 () ,	۰ د	1	כ	>	n	4	V		0	/	17
AAL Talons	0 0	0 0	0 (> 0)	0.0	7.7	0.0	>	4.0	0	0.3	9.0	0	0.3	0.8	0.4	0.3	С	5	0.4
INIO LICKS	>	0	>	>	0	0	-	0	0	_		C	4	C	Ľ	C	7	, () () •	† #
% MU Trucks	0	C	C	C	C	C	0	c			- (•	F () (י כ	>	-	>	>		`
i		,)	•)	>	7.0	>	>	 - - -	0.7	0	ω.Ο	0	0.3	0	0.2	0	0	0.1	00
																			,		!

III Winners Circle, P.O. Box 5269 Albany, NY 12205-0269 518-453-4500

www.chacompanies.com

Exit 3/Exit 4 Exit 4 NB Off-Ramp PM 4-6

File Name: Exit 4 NB Off-Ramp PM

: 1/27/2009

4

Start Date : Page No :

Site Code : 00000000

> Exit 3/Exit 4 Exit 4 NB Off-Ramp PM 4-6

File Name: Exit 4 NB Off-Ramp PM Site Code: 000000000

Start Date : 1/27/2009 Page No : 1

	F	int. iotal	132	170	123	180	605		149	134	130	178	591		1196			6	98.3	10	00	5	2 0
	·		132	170	123	180	605		149	134	130	178	591		1196		100	0	98.3	10	0.8	104	_ o
Ramp	2544		0	0	0	0	0	c	>	0	0	0	0	C	Э.	0	0	(5	0	0	C	> C
Exit 4 NB Off-Ramp	40	רעוו		127	06	134	462	4	901	88	94	132	420	Ċ	288	/3.7	73.7	Š	30.1	7	0.8	10	- -
Exit 4	That	7.	0	0	0	0	0	c	>	0	0	0	0	c	> ()	0	<	0	0	0	_	o c
	200	11.6	21	43	33	46	143	ç		46	36	46	171	7	4 6	26.3	20.3	S	88	m		C	o c
	Ann Total	App. Lotal	0	0	0	0	0	C	>	0	0	0	0	c	>	•	0	c	0	0	0	c) C
pu pu	Other	-	0	0	0	0	0	c	> (0	0	0	0	c	0	> 0	O	c		>	0	C	0
Northbound	fall		>	0	0	0	0	c	> 0)	0	0	0	c	0	> 0	>	c		>	0	С	0
5	Thru	-			0		0	c	0	>	0	0	0	c	0	> C	>	C) 	0	C	0
	Raht	1			0		0	-		-			0	C		> C		_					0
Westbound	App. Total		, ,	J	0	٥	0	c	•) (> •	0	0	C)	c		C	0	O (0	0	0
pun	Other				0	0	0	C) C	0 0	0 0	٥١٠	0	C	· C	o c	>	C	0	0	О	0	0
Westbound	Left) ·			0	С			> 0	The second second	>			0 0	-	0		0 0			0
	Thru						0	0))	0				0					0
ANA DESCRIPTION OF THE PROPERTY OF THE PROPERT	Rght			~~~~	·			_	_		**********							0					0
	App. Total)		,)		>	O	_	0 0	> <		>	0		С		0	C	, ,)	>	0
pun	Other	0	o c	> 0)	0	>	0	<u></u>	o c	> <	0 0	>	0	0	0	SVS1A Wassesser and an any or the sum of the	0	С	· C	0	>	0
Southbound	Left	C		> 0	> 0	> 0	>	0	С	· C	0 0	0 0	>	0	0	0		0	О	· C	0	>	0
S	Thru	0	· C	0 0	> 0	0	>	0	О	· c	o c	0	>	0	0	0		0	0	C		>	0
	Rght	0	C	· ·	> <	00	>	0	0	C	· C)	>	0	0	0		0	0	C	0	>	0
	Start Time	04:00 PM	04-15 PM	04.30 PM	04:30 - 10	INIT C4:40	Otal	05:00 PM	05:15 PM	05:30 PM	05.45 PM	Total		Grand Total	Apprch %	Total %	Passenger Cars	% Passenger Cars	SU Trucks & Buses	% SH Tracks & Buspe	AAII Terrolo	2001 014	% MU Trucks

III Winners Circle, P.O. Box 5269 Albany, NY 12205-0269 518-453-4500 <u>ج</u> خ

www.chacompanies.com

File Name: Exit 4 NB Off-Ramp PM

: 00000000

Site Code

: 1/27/2009 : 2

Start Date : Page No

Exit 3/Exit 4 Exit 4 NB Off-Ramp

PM 4-6

> Exit 3/Exit 4 Exit 4 NB Off-Ramp PM 4-6

File Name: Exit 4 NB Off-Ramp PM Site Code: 000000000

: 1/27/2009 : 3 Start Date : Page No :

				Ξ
			1	p. lotal
	amp			Julei App
	B Off-Ra	tbound	40.	ie i
	Exit 4 NB Off-Rar	T 38	Thu.	2
			100	100
				ıaı
			Ann Total	٠ بر در
	7	2	Other	2
-			di di	
	2	2	Thru	
***************************************			Raht)
			App. Total	
			Other Apr	
	קייטק	5	Left	
***************************************	West			-
			ТŢ	
-			Rght	
		CONTROL OF STREET	Left Other App. Total	1 1 Of 1
	77		Other	DO.
	outhbound		Left	05.45
	Sou	L	2	14:00 PM to 05:45 PM - Dogs 1 of
1				Z

		Int Total				170	123	180	149	622	1		.864	613	989	9	n	0.5		٥	1.0
		Ann Total	יוטאר. ויטומו		٠	170	123	180	149	622)		.864	613	986	9	n	0.5	(٥	1.0
Ramp	7	Other				0	0		0	0	,	0	00.	0	С	0 (0	0	C	>	0
Exit 4 NB Off-Ram		40				127	8	134	106	457	101	3.3	.853	449	98.2	1 (7	0.4	Q	D	1.3
Exit 4	Ĭ	Thui	2			0	0		0	0	(> !	000.	0	0		>	0	c	>	0
		Roht				43	33	46	43	165	20.0	0.07	768.	164	99.4	7	-	9.0	c	> (0
		Ann Total			-	0	0	0	0	0	A	000	999	0	0	c	>	0	c) (0
		Other An	-		ć	> (0	0	0	0	Ċ		000	0	0	c	، د	0	_	0 0	>
Northbound		Left			c		o (i									0	C	0 0	>
No		마다			c	> 0	o 0	> (0								>	C	o c	>
	-	Rght			c	> c	> 0	> (0					>		C) (>	C		>
		App. Total			c	> 0	> 0	<u> </u>	5	0		000	000	>	0	C		O	0		>
	-	Other App			c	> 0	> 0	> 0	اد	0	0	00	2	> (0	0		> (0	c	>
estbound	L	C			c	> C	> 0		0				5		>	0	· C	> (>	C	>
Wes		=			_	o c	> <	> <	0	> (0	000	•	> 0	>	0	c	o (>	c	o
	Ľ	1100			C	· c	o c	o c	>	> (0	000		> 0	> (0	C	0 0	>	c)
	_		of 1		C	· C	· ·) C	> 0	 >		000		- c)	0	_	0 0	>	C	_
- Promon	leff Other Ass Tatal	7	Peak 1	D.W.	0			· c	> 0	> 0	>		-		> 0	5			5	0	,
puno	ft Other		:45 PM -	at 04:15	0	. 0			> <	> 0	-	000			.	_)	0	
Southbound		3	PM to 05	Begins	,	0	0		, ,	o c		000.		· c		5	0		5	0	
A CONTRACTOR A CON	Thru		m 04:00	ersection	0	0	0	0	0	o c	***************************************	000.	0		· ·	_	0	_		0	
	Roht	9	ılysis Fro	Entire Int		>	>	5	a		-	- 000.	S		,	S	SS	U		S	
THE PROPERTY OF THE PARTY OF TH	Start		Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of	Peak Hour for Entire Intersection Begins at 04:15 PM	04:15 PM	04:30 PM	04:45 PM	05:00 PM	Total Volume	% Ann Total	A App. 1 Of	出	Passenger Cars	% Passenner Care	and lagging and lagger	SO Irucks & Buses	% SU Trucks & Buses	MIITrucks		% MU Trucks	

III Winners Circle, P.O. Box 5269 Albany, NY 12205-0269 www.chacompanies.com 518-453-4500

> Watervliet Shaker Road & Exit 5 SB Exit 3/Exit 4

4 to 6

File Name: Watervliet Shaker Road & Exit 5 SB Ramp PM Site Code: 111111111 : 1/27/2009 Start Date : Page No :

Exit 3/Exit 4

Watervliet Shaker Road & Exit 5 SB PM

File Name: Watervliet Shaker Road & Exit 5 SB Ramp PM Site Code: 111111111 Start Date: 1/27/2009 Page No: 1

4 to 6

						Gro	Groups Prin	ited-Pa	ssender	nted-Passenger Cars - SU Trucks & Buses - MU Trucks	U Trucks	s & Buse	SS - MU	Trucks						
		Exit	Exit 5 SB Ramp	amp			~	toute 155	5			0	On-Ramp	AND THE RESIDENCE AND THE PARTY AND THE PART	The state of the s	market and the state of the sta	Route 155	55		
		Sc	Southbound	pu			>	estbound	Þ			Õ	Northbound	þ			Eastbound	JQ.		Vannagemenn y ling den mannagemen skelde
Start Time	Right	The	Left	Peds	Peds App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds App. Total	I Right	nt Thru	Left	Peds	App. Total	Int. Total
04:00 PM	19	2	74	0	95	-	57	85	0	143	0	0	0	0	5	and a second	-	0	168	406
04:15 PM	თ	5	70	0	84	5	69	9/	0	150	0	0	0				3	0	147	381
04:30 PM	17	-	53	0	7.1	2	22	103	0	160	0	0	0	0	0		2	0	179	410
04:45 PM	12	4	68	0	84		69	92	0	146	0	0	0) 46	6 112	0	0	158	388
Total	22	12	265	0	334	6	250	340	0	299	0	0	0	0	0 17	A STATE OF THE STA	9	0	652	1585
05:00 PM	12	+	58	0	71		55	82	0	138	0	0	0	0	7		4	0	257	466
05:15 PM	10	4	69	0	83	7	26	74	0	132	0	0	0	0	3		4		154	369
05:30 PM	7	12	84	0	103	2	29	69	0	130	0	0	0		0 2			0	116	349
05:45 PM	თ	4	64	0	77		37	29	0	105	0	0	0	0	0	18 54	*	0	73	255
Total	38	21	275	0	334	9	207	292	0	202	0	0	0	0	149		10	-	009	1439
Grand Total	95	33	540	0	899	15	457	632	0	1104	0	0	0	0	0 32		16	4	1252	3024
Apprch %	14.2	4.9	80.8	0		1.4	41.4	57.2	0		0	0	0	0	26.1	1 72.5	1.3	0.1	***************************************	
Total %	3.1	7	17.9	0	22.1	0.5	15.1	20.9	0	36.5	0	0	0	0	0 10.		0.5	0	41.4	
Passenger Cars								A HOLD RATIONAL VOICE OF THE STATE OF THE ST												
% Passenger Cars	93.7	100	98.3	0	8.76	100	97.6	99.2	0	96.5	0	0	0	0	0 99.1	1 99	100	100	66	97.8
SU Trucks & Buses	_	0	တ	0	10	0	0	5	0	24	0	0	0	0	0	7	0	0	ω	42
% SU Trucks & Buses	<u></u>	0	1.7	0	1.5	0	4.2	0.8	0	2.2	0	0	0	0	0.3	3 0.8	0	0	9.0	1.4
MU Trucks	ß	0	0	0	S	0	15	0	0	15	0	0	0	0	0 2		0	0	4	24
% MU Trucks	5,3	0	0	0	0.7	0	3.3	0	0	4.	0	0	0	0	0.	6 0.2	0	0	0.3	0.8

III Winners Circle, P.O. Box 5269 Albany, NY 12205-0269 www.chacompanies.com 518-453-4500

File Name: Watervliet Shaker Road & Exit 5 SB Ramp PM Site Code: 111111111

: 1/27/2009 : 2

Start Date Page No

Watervliet Shaker Road & Exit 5 SB Exit 3/Exit 4 PM

4 to 6

Exit 3/Exit 4

Watervliet Shaker Road & Exit 5 SB

4 to 6 ΡM

File Name: Watervliet Shaker Road & Exit 5 SB Ramp PM Site Code: 111111111
Start Date: 1/27/2009
Page No: 3

		Exit So	Exit 5 SB Ramp Southbound	amp nd			Re	oute 155 estbound				ΟŌ	On-Ramp Northbound	7		IN White terror error er	Ea.	Route 155 Eastbound	T 01		
Start Time	Right	Thru	Left	Peds App. Total	p. Total	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds Ag	App. Total	Right	Thru	Left	Peds	App Total In	Int Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of	is From 0	4:00 PM	to 05:45	PM - Peak	1 of 1				-			***************************************					The state of the s		- 5		
Peak Hour for Entire Intersection Begins at 04:15 PM	ire Interse	action Be	gins at 0	4.15 PM	· •																
04:15 PM	6	5	2		8	5	69	2							_	T	0	d			
04:30 PM	17		53	0	71	7	22	103	0	160	0	0	0	0	0	42	135	2	0	179	410
04:45 PM	12	4	68	0	84	-	69	9/	0	146	0	0	0	0	· C	46	112	ıc	· C	7 · · · · · · · · · · · · · · · · · · ·	000
05:00 PM	12	-	28	0	71	~	55	82	0	138	0	0	0	0	0	22	178	4) C	257	466
Total Volume	20	-	249	0	310	6	248	337	0	594	0	0	0	0	0	202	530	0) C	741	1645
% App. Total	16.1	3.5	80.3	0		1,5	41.8	56.7	0		0	0	0	0)	27.3	71.5	4) C	* *	5
PHF	.735	.550	.889	000	.923	.450	.899	.818	000	.928	000	000	000	000	000	.673	744	.563	000	721	883
Passenger Cars	46	-	242	0	299	6	234	333	0	929	0	0	0	0	0	199	524	6	0	732	1607
% Passenger Cars	92.0	100	97.2	0	96.5	100	94.4	98.8	0	97.0	0	0	0	0	0	98.5	98.9	100	0	98.8	7.76
SU Trucks & Buses	0	0	7	0	7	0	∞	4	0	12	0	0	0	0	0	*	4	0	0	ın	24
% SU Trucks & Buses	0	0	2.8	0	2.3	0	3.2	1.2	0	2.0	0	0	0	0	0	0.5	8.0	0	0	0.7	7 5
MU Trucks	4	0	0	0	4	0	9	0	0	9	О	С	C	C	C	~	0	· C	· C		, r
% MU Trucks	8.0	0	0	0	1.3	0	2.4	0	0	1.0	0	0	0	0	0	1.0	0.4	0	0	0.5	6.0

100

File Name: Sand Creek & Wolf Road TOTAL PM Site Code: 87654321

: 1/27/2009

Start Date

Sand Creek & Wolf Road Exit 3/ Exit 4

4 to 6

 \mathbb{D}

> Exit 3/ Exit 4 Sand Creek & Wolf Road PM 4 to 6

Groups Printed- Passenger Cars - SU Trucks & Buses - MU Trucks

File Name: Sand Creek & Wolf Road TOTAL PM Site Code: 87654321 Start Date: 1/27/2009 Page No: 1

						_	aroups	Z	G-rass	وnger ر	Groups Printed-Passenger Cars - 50	=	TICKS & DUSES - INC. I LICKS	22.00	222							
The state of the s			Wolf Road	ad			•	Sanc	i Creek				3	Wolf Road		A SAME A		Sal	Sand Creek	*		
		S	Southbound	pur				Wes	Westbound				⁸	Northbound	ğ			Шa	Eastbound	-		
Start Time	Right	Thr	Left	sps	App. Total	ļ	Right	Thru	Left	spa	App. Total	Right	ם	Left	Peds A	App. Total	Right	Thru	Left	Peds A	App. Total	Int. Total
04:00 PM	38	, market	62	5	25			29	23	0	139	19	155	52	0	226	33	90	43	-	137	795
04:15 PM	30		43	_	23			62	19	0	126	20	155	71	7	248	35	78	48	_	162	768
04:30 PM	36		4	0	27			78	13	0	145	15	197	81	5	298	48	84	25	0	184	904
04:45 PM	33	149	56	_	239		51	77	22	0	150	14	181	89	က	266	41	72	20	0	163	818
Total	137	- Andrews	205	7	104			284	77	0	260	99	688	272	10	1038	157	294	193	7	646	3285
05.00 PM	***********	241		က	34		9	85	21	0	155	15	175	65	₩	256	40	63	53	0	156	606
05:15 PM		190		· C	25		20.	84	24	0	158	23	197	22		276	4	114	49		205	929
05:30 PM		218		0	3 i 3	~~~	72	77	15	0	164	56	215	72	က	316	42	80	55	0	1771	944
05:45 PM	က်	166	40	0	25		51	65	27	0	143	21	182	99	_	270	41	94	49	0	184	833
Total		815	ľ	3	1155			311	87	0	620	85	769	258	9	1118	164	351	206		722	3615
Grand Total	282	1507		10	2196				164	C	1180	153	1457	530	16	2156	321	645	366	က	1368	0069
Approch %	12.8	68.6		0.5			35.7 5	50.4	13.9	0		7.1	9.79	24.6	0.7		23.5	47.1	29.2	0.2		
Total %	4.1	21.8	5.8	0.1	31.8				2.4	0	17.1	2.2	21.1	7.7	0.2	31.2	4.7	9.3	5.8	0	19.8	
Passenger Cars																						9
% Passenger Cars	98.2	98.7	99.7	100	98.8		6 66	98.8	6.06	0	8.76	93.5	98.8	99.2	100	98.6	99.4	99.5	99.7	100	9.66	98.7
SU Trucks & Buses	4	17	_	0	, 7	22	က	7	15	0	22	တ	12	4	0	52	7	က	-	0	ဖ	78
% SU Trucks & Buses	4.	-	0.3	0		-	0.7	1.2	9.1	0	2.1	5.9	0.8	0.8	0	1.2	9.0	0.5	0.3	0	0.4	
MU Trucks	-	3	0	0		4	.	0	0	0		-	2	0	0	9	0	0	0	0	0	
% MII Trucks	0.4	0.2	С	С	O	0.2 0	1.2	0	0	0	0.1	0.7	0.3	0	0	0.3	0	0	0	0	0	0.2

> Sand Creek & Wolf Road Exit 3/ Exit 4 ΡM

4 to 6

File Name: Sand Creek & Wolf Road TOTAL PM : 1/27/2009 Site Code : 87654321 Start Date : Page No :

7

Exit 3/ Exit 4 Sand Creek & Wolf Road PM 4 to 6

File Name: Sand Creek & Wolf Road TOTAL PM Site Code: 87654321 Start Date: 1/27/2009 Page No: 3

abilit memore demonstrate en en en entre en en en entre entre entre en entre entr	49 1 205	49 1 205 55 0 177 49 0 184	14 49 1 205 929 80 55 0 177 944 94 49 0 184 833 51 206 1 722 3615 8.6 28.5 0.1 3615
	4	4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	276 41 114 316 42 80 270 41 94 1118 164 351 22.7 48.6
		₩ 67 €	- u - 0 0
	197	197 215 182	23 197 55 26 215 72 21 182 66 25 769 258 6 68.8 23.1
-			158 23 164 26 143 21 620 85 7.6
			24 0 15 0 27 0 87 0 14 0 000
,	85 50 84 73		(A)
s at 05:00 PM	53 53 0 42	And the second s	53 0 42 0 40 0 192 3 16.6 0.3
Peak Hour for Entire Intersection Begins at 05:00 PM		-	218 166 166 815 70.6 1845
ntire inters	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩		05:30 PM 47 05:30 PM 27 05:30 PM 27 05:45 PM 30 Total Volume 145 % App. Total 12.6 PHF .771

Exit 3 Airport Connector Wolf Rd & Central Ave AM 7 to 9

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269

Albany, NY 12205 www.cloughharbour.com

File Name: Wolf - Central AM Site Code : 62906009

: 6/29/2006

Start Date: Page No:

Exit 3 Airport Connector Wolf Rd & Central Ave

AM 7 to 9

Clough, Harbour & Associates LLP III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com Manual Turning Movement Count

File Name: Wolf - Central AM Site Code: 62906009 Start Date: 6/29/2006 Page No: 3

			Wolf Boad	7			Cen	tral Avenue	ile			-87 Exit	1-87 Exit 2 EB Off Ramp	f Ramp			Cen	Central Avenue	ne		
		Ű	Southhound	ב ב			Š	estbound	-			ž	Northbound	ָ ק			ш	Eastbound	71		The second secon
Start Time	†a	Thri	Thru Bight	Peds	Peds Ann Total	Left	Thru	Right	Peds /	App. Total	Left	Thru	Right	Peds /	App. Total	Left	Thru	Right	Peds /	App. Total	Int. Total
2 2 2		3	2				-	,			-	-	-			out of the second secon					
Peak Hour Analysis From 07:00 to 08:45 - Peak 1 of	sis From 0	7:00 to	08:45 - P	eak 1 of	-																
Peak Hour for Entire Intersection Begins at 07:45	tire Interse	ection B	egins at (77:45											-		1			****	4.00
07.45	40		,				173					216	4				273			344	906
00:00	? *	c	7	C	*		. t	48	c	213	-	216	40	0	257	83	246	0	0	335	916
00.00	- 17	o c	2 8	0 0	- 7	o C	167	2 5	· C	237	c	215	32	0	247	79	229	0	0	308	927
08:12	7 4 7	> •	18	> c	105	o c	¥ 6	2	o c	2 5	o C	188	38	0	226	88	200	0	0	288	850
08:30	ડ	-	11	7	C71	>	2	3	>			2	2		000	700	070		c	1975	3647
Total Volume	182	-	304	N	489	0	929	241	0	897	_	835	200	>	200	321	940	۰ د	۰ د	0 14	
O App Total	27.0	0	600	0.4		c	73.1	698	0		0.1	84.7	15.2	0		25.6	74.4	0	0		
/o App. Total	4.10	4.00	77.70	050			048	861	000	946	250	996	938	000	926	919	898.	000:	000	.927	.956
L	.929) (2)	100.	50.0	.900		5 5	000	2	831	-	828	141	C	970	322	923	0	0	1245	3519
Passenger Vehicles	1/4	-	087	V	5,4	>	200	27	> (3 8	- 0	9 6			. 00	3 00	7 70	c	c	976	96.5
% Passenger Vehicles	92.6	9	97.4	9	2.96	0	91.8	95.0	0	9.76	3	33.5	0.4°C	>	4.00	0.0	1.70	0 (> 0	5 6	55
000000	α	C	7	С	15	0	42	12	0	54	0	4	က	0	7	4	24	0	>	87	- - -
מס וימרעים מי מסים	7	• •	0	· C	ď	C	6.4	5.0	С	0.9	0	0.5	2.0	0	0.7	1.2	2.5	0	0	2.2	2.9
% SU Trucks & Buses	r c	0 0	i	0 0	;) C	10) ;		12	c	CT.	y	С	o	-	-	0	0	01	24
MO I rucks	>	>		>	-	>	7	>	•	1	•	,		• (0	•	<	c	00	7 0
% MU Trucks	0	0	0.3	0	0.2	0	<u>.</u> 8	0	0	<u>د</u> .	0	O. 4	4.O	>			- o	>	>	4.0	3

Exit 3 Airport Connector Wolf Rd & Central Ave AM 7 to 9

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

File Name: Wolf - Central AM : 62906009 : 6/29/2006 : 2 Site Code

Start Date: Page No:

Exit 3 Airport Connector Wolf Rd & Central Ave

7 to 9

Manual Turning Movement Count
Clough, Harbour & Associates LLP
III Winners Circle, P.O. Box 5269
Albany, NY 12205
www.cloughharbour.com

File Name: Wolf - Central AM Site Code: 62906009 Start Date: 6/29/2006 Page No: 1

		*	2 7 7	7		2	Tool Tool	Central Avenue	. 9	Control Avenue 1-87 Exit 2 EB Off Ramp	-	I-87 Exit 2 EB Off Ramp	2 EB Of	Ramp			Cent	Central Avenue	ne		
		>	Wolf Road	a 7			N N	Westbound	ù 3		•	Š	Northbound	o			Ëa	Eastbound	73	A CALIFORNIA DE LA CALI	The same and the s
T Troto	40-	2	de la compa	900	Ann Total	tja -	Thri	Right	Peds	Ann. Total	Left	Thru	Right	Peds /	App. Total	Left	Thru	Right	Peds /	App. Total	Int. Total
Start Hille	<u> </u>	3 0	50 7	200	App. Lotal	5	2 0	10			10	1.0	1.0	1.0		1.0	1.0	1.0	1.0		The second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a section in the second section in the section is a section in the section in the section is a section in the section in the section is a section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section in the section is a section in the section in th
Factor	0.	0.0) 	2.	00	2.	2 8	2.0	2	107	2	141	27	C	168	29	211	0	0	270	645
00:20	27	0	25	- (g 7	> 0	1 2	ဂ္ဂ င	o c	177	o c	137	1 K	· C	163	20	200	0	0	256	999
07:15	37	0	24	0	55	-	<u> </u>	g (> c	200	> <	2 9	3 5	o c	200	74	274	0	0	348	824
02:30	27	0	29	0	8	0 (98	5 6	o 0	700	> 0	2 5	? {	0 0	256	7.	273	0	0	344	954
07:45	49	0	69	0	118		1/3	3	٥	220		212	100		786	260	929	c	0	1218	3088
Total	140	0	242	-	383	0	518	183	0	5	>	400	25	>	3	3	3	•	,		
	;	c	9	c	*	c	185	48	C	213		216	4	0	257	89	246	0	0	335	916
00:80	4 ;	> 0	2 8	> 0	- 0	o c	202	2 6	o c	23.7	· c	2.5	35	0	247	79	229	0	0	308	927
08:15	4/	>	8	> (000	> 0	<u>)</u>	2 8	> <	5 6	· c	2 2	8	· C	226	88	200	0	0	588	850
08:30	45	-	1.1	7	125	> (Ω ;	8 8	> <	- 0	> <	2 2	3 5	o c	201	8	244	0	0	330	912
08:45	22	0	8	0	149	С	154	ည်	>	717	,	0/-	2 5	0	100	240	010		c	1261	3605
Total	188	-	329	Ø	250	0	637	236	0	8/3		/6/	55	>	S S	44	0	•	•	1	
H	Ġ	•	77	Ċ	coo	c	11	410	c	1574	-	1451	285	0	1737	602	1877	0	0	2479	6693
Grand Total	070	- +	- 0	2 0	2	0 0	72.7	9 90	· c		0.1	83.5	16.4	0		24.3	75.7	0	0		
Appicit %	50.5 6.9	- o	8.5	90	13.5	0	17.3	6.3	0	23.5	0	21.7	4.3	0	56	o	28	0	0	37	
Passenger Vehicles		6	7	9	0 90	c	o C	Д	c	033	100	6	83	0	86	98.2	97.3	0	0	97.5	96.5
% Passenger Vehicles	94.2	3	4.78	3	30.7		07.0	5.5		2.5	2	12	7	C	5	10	40	0	0	20	186
SU Trucks & Buses	Σ,	> (2 0	> 0	ى د	> 0	3 4	3 "	o c	2 4	o c		ر بر	o C	-	1.7	2.1	0	0	2	2.8
% SU Trucks & Buses	ი.ზ	0	2.3	۰	4.0	>	0.0	0.0		5.5		200	i c	0	19	•	-	0	0	12	51
MU Trucks	 -	0	21	0	n	0	2	>	> (07,	> 0	7 (2 4	> <	2 0	- 0	. c	, c	· C	0.5	0.8
% MU Trucks	0.3	0	0.4	0	0.3	0	1.7	0	0	<u>ئ</u> .	O	O.Y.	d. 4	>	O.'9	7.0	o o	>	>)	;

Wolf Rd & Sand Creek Rd Exit 3 Airport Connector

AM 7 to 9

Clough, Harbour & Associates L Manual Turning Movement Count

4

III Winners Circle, P.O. Box 5269

www.cloughharbour.com Albany, NY 12205

File Name: Wolf - Sand Creek AM Site Code: 62806005 Start Date: 6/28/2006 Page No: 4

Page No

Exit 3 Airport Connector Wolf Rd & Sand Creek Rd

AM 7 to 9

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

File Name: Wolf - Sand Creek AM Site Code: 62806005 Start Date: 6/28/2006 Page No: 3

			Wolf Road	DE			Sand	Creek Road	oad			×	Wolf Road				Sand (Sand Creek Road	oad		
		(C)	Southbound	pu			-	estbound	77			Š	Northbound	77			Ëä	Eastbound		A STATE OF THE STA	the additional designation of the spine of the second section of the sec
Start Time	-	Thru	Right	Peds	Left Thru Right Peds App. Total	Left	Thru	Right	Peds A	App. Total	Left	Thru	Right	Peds Ap	App. Total	Left	Thru	Right	Peds A	App. Total	Int. Total
Peak Hour Analysis From 07:00 to 08:45 - Peak 1 of	is From	07:00 to	08:45 - P	eak 1 of	-																
Peak Hour for Entire Intersection Begins at 08:00	tire Inters	ection B	eqins at (08:00														ļ		ì	0
00.00	<u>6</u>	118)			25							1 5			45		37		151	930
08:45		9	23	C	139	4	45	37	С	100	26	156	9	0	222	43	22	34	0	132	593
06:30	3 6	7	3 5	•	2 7	2 6	5 6	2.4	· •	108	4	156	15	-	213	8	69	52	ო	131	630
08.30		2 5	20	- C	9 9	1 %	1 4	45	- c	123	28	124	ြ	0	191	4	64	17	21	124	298
Total Volume		427	100	-	635	168	8 68	163	, -	442	201	591	49	-	842	163	255	113	7	538	2457
% Ann Total	16.5	67.2	16.1	0)	20.	42.8	36.9	0.2		23.9	70.2	5.8	0.1		30.3	47.4	21	1,3	2000	
DHE DHE	L	-	823	250	892	068	844	906	.250	898	998.	.947	.817	.250	.948	906	.924	.764	.583	.891	996.
And a first death of the first	1		S o	-	614	84	188	161	-	434	194	581	46	-	822	160	251	110	7	228	2398
Passenger venicles	0	- 6	8 6	- 00	96.7	04 4	99.5	8 86	100	98.2	96.5	98.3	93.9	100	97.6	98.2	98.4	97.3	100	98.1	97.6
% Passenger Venicles	9	200	- <	2	10	. ư	,	0	· C	00	7	00	က	0	48	က	4	က	0	9	52
SU Incks & buses	> <	ַ מ כית	יס יו	o c	2 6	ינ	ر د	10	· C	0 00	, K	14	9.1	0	2.1	4.8	1.6	2.7	0	1	2.2
% SO Trucks & Buses	· ·		9 0	o c	900) ;) }	i c	· c	· C	C	^	О	0	7	0	0	0	0	0	4
MU Trucks	1.0	0.2	0	0	0.3	0	0	0	0	0	0	0.3	0	0	0.2	0	0	0	0	0	0.2
	2		•	•	-					-											

Wolf Rd & Sand Creek Rd Exit 3 Airport Connector

AM 7 to 9

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

File Name: Wolf - Sand Creek AM

Start Date : 6/28/2006 Page No : 2 Site Code : 62806005

Page No

Wolf Rd & Sand Creek Rd Exit 3 Airport Connector

7 to 9 AM

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269

Albany, NY 12205 www.cloughharbour.com

File Name: Wolf - Sand Creek AM : 62806005 Site Code

: 6/28/2006 : 1 Start Date Page No

Southbound Southbound Mestbound Northbound Int. Total Int. Tot			3	Wolf Road	777		San	Sand Creek Road Wolf Road	d Creek Road	pad			Š	Wolf Road				Sand	Sand Creek Hoad	oac,		
Thirty Right Pecks App. Total Left Thirty Right Pecks App. Total Thirty Right Thirty Right Thirty Thirt			C.	uthboun	2			We	stbounc				2	thboun	0			ű.	StDounc			
12 131	Cto Timo	#0	Thrit	Dicht	Dade	Total	#a#	Thru	Right	Peds	pp. Total	Left	Thru	Right		pp. Total	Left	Thru	Right		-	Int. Total
1	oldii IIII	בו בו	- 1	- 1	3	- Com	-	10	90		9	6	80	17	0	116	21	27	22		74	343
12 93 11 93 11 93 12 93 94 95 94 95 94<	00:20	= :	- 8	= ;	> 0	2 4	<u>.</u> č	2 5	3 5	1 C	25 4	2 8	26	9	0	123	56	15	23	0	94	357
17 112 26 0 153 7 28 26 101 48 121 9 0 178 46 41 39 3 129 21 116 21 6 12 118 13 7 360 178 21 381 69 0 511 58 114 104 3 279 121 407 38 0 566 122 118 113 7 360 139 19 118 21 6 16 12 15 0 222 43 55 34 0 132 33 113 31 1 178 24 42 41 108 41 156 15 1 21 43 6 13 34 69 13 3 13 34 69 13 44 156 15 1 44 14 156 15	07:15	12	SS :	_ 8	> 0	0 1	7 1	8 8	4 6	o c	5 6	3 2	5 0	œ	· C	149	53	32	56	က	93	461
105 21 105 21 105 21 105 21 105 115 121 105 121 105 121 105 121 105 121 105 121 105 121 105 121 105 121 105 121 105 121 105 121 105 121 105 121 105 121 105 121 105 121 105 121 105 121 105 10	02:30	1	112	8 8	> 0	2 2	٠ ي	S C	9 8	-	\$ 5	2 4	5 5	o 0.	0	178	46	41	36	က	129	522
19 118 21 0 158 25 46 40 0 111 46 155 15 15 67 37 2 151 20 96 23 0 139 18 45 37 0 100 56 156 16 0 222 43 55 34 0 132 33 113 31 1 178 24 42 41 168 45 16 6 15 1 213 34 69 25 34 0 123 58 124 9 0 191 41 69 25 34 0 123 28 124 442 201 591 49 1 442 1 442 201 442 201 442 201 442 201 49 1 444 144 442 37 6.2 0.1 444 144 144 144	07:45 Total	5 5	381	69	0	511	88	114	104	- 8	279	121	407	38	0	999	122	118	113	7	360	1716
19 118 21 0 158 25 40 40 101 65 152 43 55 34 0 132 20 96 23 0 138 14 45 0 100 56 15 1 213 34 69 25 3 40 132 33 113 31 178 22 56 45 0 123 58 124 9 0 191 41 64 17 21 34 69 25 124 17 21 201 591 49 1 84 17 21 44 144 156 15 1 1408 255 113 7 538 11 41 442 37 0.6 22.9 70.9 6.2 0.1 1408 255 11.4 898 14 1408 28 37 41.5 25.2 1.6 1408 11.4				į	,		į	•	Ç	c	*	9	1, 7,7,	<u>ب</u> بر	c	216	45	29	37	8	151	989
20 96 23 0 139 18 45 37 0 100	08:00	10	118	5	۰ د	158	g ;	ð í	3 €	> 0	- 5	2 4	2 2	2 ⊊	· C	222	43	55	34	0	132	593
33 113 31 1 178 24 41 1 106 41 120 9 191 41 64 17 2 124 33 100 27 0 160 22 45 0 123 681 19 1 49 1 842 163 55 113 7 538 1 4 123 261 49 1 842 163 255 113 7 538 1 1 148 143 7 1 1408 285 373 26 14 7 22.9 70.9 6.2 0.1 1 14 898 1 1 1408 88 37 6.8 89 5.4 0.3 1.1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1	08:15	8	96	33	0	139	20 7	ડ :	<u>بر</u>	> 1	3 5	8 5	5 4	5 12	·	213	2 6	69	52	က	131	630
33 100 27 0 160 22 56 45 0 123 30 124 3 1 140 842 153 153 1 1 140 842 1 163 1 1 144	08:30	ဗ္ဗ	13	31	-	178	24	4.	- -	- (9 9	4 r c	2 5	2 0	- c	101	41	64	17	8	124	598
105 427 102 1 635 89 189 163 1 442 201 591 49 1 642 103 221 591 49 1 1408 285 373 226 14 898 7 1 1408 285 373 226 14 898 14 14 898 7 1 1408 285 373 226 14 898 14 14 14 14 37 0.6 22.9 70.9 6.2 0.1 1408 285 373 226 14 898 14 14 18 8 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 15 14	08:45	33	100	27	0	160	55	20	45	0	123	200	+7	5	> -	0.40	163	255	113	7	538	2457
166 808 171 1 1146 147 303 267 4 721 322 998 87 1 1408 285 373 226 14 898 14.5 70.5 14.9 0.1 14.6 20.4 4 20.4 0.6 22.9 70.9 6.2 0.1 41.5 25.2 1.6 98.9 10.0 97.5 97.5 97.5 98.4 92 100 97.8 98.9 5.4 0.1 10 98.3 10 98.3 10 98.3 10 98.3 10 98.3 10 98.9 10 97.5 98.4 92 100 97.8 98.9 5.4 0.3 10 98.3 10 98.3 10 98.3 10 98.3 10 98.3 10 98.3 10 98.3 10 98.3 10 98.3 10 98.3 10 98.3 10 12 12 10 12	Total	105	427	102	-	635	88	189	163		442	201	261	9		246	3	CC3	2	-		i i
106 808 1/1 1 1 0 0 27.5 37.0 6.2 0.1 31.7 41.5 25.2 1.6 4 19.4 4.1 0 27.5 37.0 6.4 0.1 17.3 7.7 23.9 2.1 0 33.7 6.8 8.9 5.4 0.3 21.5 98.8 97.9 4.1 0 27.5 98.9 100 97.5 98.4 92 100 97.8 98.8 98.6 98.7 97.3 100 98.3 1 23 6 0 30 11 4 3 0 18 8 13 7 0 28 4 5 6 0 15 0.6 2.8 3.5 0 2.6 1.3 1.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		9	Ö	ļ	*	4	1.47	303	267	4	721	322	866	87	-	1408	285	373	226	14	868	4173
14.5 70.5 14.9 0.1 20.4 4.2 0.1 17.3 7.7 23.9 2.1 0 33.7 6.8 8.9 5.4 0.3 21.5 98.8 97.5 96.5 100 97.5 97.5 98.4 92 100 97.8 98.6 98.7 97.3 100 98.3 98.8 97 96.5 100 97.5 97.5 98.4 92 100 97.8 98.6 98.7 97.3 100 98.3 98.8 97 96.5 100 97.5 97.5 98.4 92 100 97.8 98.6 98.7 97.3 100 98.3 98.8 97 96.5 11 4 3 0 18 8 13 7 0 28 4 5 6 0 17 0.6 2.8 3.5 0 2.6 1.3 1.1 0 0 0 0 <t< td=""><td>Grand Lotal</td><td>9 .</td><td>3 G</td><td>- ;</td><td></td><td>9</td><td><u> </u></td><td>3 5</td><td>27</td><td>- 6</td><td>į</td><td>0 00</td><td>602</td><td>6.2</td><td>0.1</td><td></td><td>31.7</td><td>41.5</td><td>25.2</td><td>4.6</td><td></td><td></td></t<>	Grand Lotal	9 .	3 G	- ;		9	<u> </u>	3 5	27	- 6	į	0 00	602	6.2	0.1		31.7	41.5	25.2	4.6		
98.8 97 96.5 100 97.2 98.5 98.7 98.9 100 97.5 98.4 92 100 97.8 98.6 98.7 97.3 100 98.3 1 23 6 0 30 11 4 3 0 18 8 13 7 0 28 4 5 6 0 15 0.6 2.8 3.5 0 2.6 7.5 1.3 1.1 0 2.5 2.5 1.3 8 0 2 1.4 1.3 2.7 0 1.7 1 1 0 0 2.6 7.5 1.3 1.1 0	Appren %	6.4 7	19.4	4. 4. 9. t.	- o	27.5	3.5	7.3	6.4	0.1	17.3	7.7	23.9	2.1	0	33.7	6.8	8.9	5.4	0.3	21.5	
98.8 97 96.5 100 97.2 92.3 96.7 96.3 100 97.2 97.3 96.7 96.3 97.3 97.3 97.3 97.3 97.3 97.3 97.3 97	Passenger Vehicles			i	0	1	5	1	0	9	07.5	Q7 K	98 4	6	100	97.8	98.6	98.7	97.3	100	98.3	7.76
1 23 6 0 30 11 4 3 0 18 6 13 7 0 17 17 18 10 2.8 3.5 0 2.0 7.5 1.3 1.1 0 2.5 1.3 8 0 2 1.4 1.3 2.7 0 1.7 17 18 1 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	% Passenger Vehicles	98.8	/6	96.5	3	31.7	92.5	30.7	30.3	3	0.70	5	7	1	2	96	4	ıc	G	C	15	91
0.6 2.8 3.5 0 2.6 7.5 1.3 1.1 0 2.5 2.5 1.3 6 0 2 1.4 1.0 2.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SU Trucks & Buses	-	ಜ	9	0	30	-	4	: :	> (י פ	0 1	2 ;	- 0	> <	3 6	+		0	· c	17	2.2
1 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	% SU Trucks & Buses	9.0	2.8	3.5	0	5.6	7.5	£.	- -	0	2.5	2.5	5.	ρ	0	7	<u>+</u>	5	j	> <		i I
0.6 0.1 0 0 0.2 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0.6	MU Trucks	-	-	0	0	2	0	0	0	0	0	0	က	0	>	n (> 0	> 0	> 0	> <	> 0) *
	% MU Trucks	0.6	0.1	0	0	0.2	0	0	0	0	0	0	0.3	0	0	0.2	>	>	0	>	>	- >

Wolf Rd & Metro Park Rd Exit 3 Airport Connector

7 to 9 ΑM

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

File Name: Wolf - Metro Park AM

Site Code : 62806003 Start Date : 6/28/2006 Page No : 4 Start Date: Page No:

Wolf Rd & Metro Park Rd Exit 3 Airport Connector

7 to 9 ¥⊠

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269 www.cloughharbour.com Albany, NY 12205

File Name: Wolf - Metro Park AM Site Code

: 62806003

: 6/28/2006 : 3 Page No

Start Date

Hess Access

Left Left Thru Right Peds App. Total Southbound Start Time

.967 1750 97.3 44 2.4 0.2 445 458 **465** 798 Peds | App. Total | Int. Total 0 0 0 0 0 0 0 0 0 0 Eastbound Right 22.6 .583 4 1.000 1.000 100 0 0 0 Thr 6 5 20 20 64.5 833 19 95.0 .982 577 97.3 14 2.4 2.0 0.3 149 151 149 593 Peds App. Total Northbound Wolf Road Right 24 24 18 18 14.2 14.2 14.2 82 82 82 97.6 1.2 1.2 Thru Left .895 63 92.6 4 5.9 App. Total 0 0 1.5 1.5 100 0 0 0 Peds Metro Park Road Westbound 6 11 10 10 36 52.9 34 34 94.4 94.4 0 .950 1080 97.6 25 2.3 1 0.1 257 278 280 **291** 0 0 0 0 0 0 0 0 0 0 Peak Hour Analysis From 07:00 to 08:45 - Peak 1 of Peak Hour for Entire Intersection Begins at 07:45 Wolf Road 204 211 208 208 856 856 877.4 835 97.5 20 20 20 2.3 1 43 56 60 49 49 208 18.8 3 3 3 1.4 Total Volume % App. Total 07:45 08:00 08:15 08:30 **MU Trucks** % MU Trucks Passenger Vehicles % Passenger Vehicles SU Trucks & Buses % SU Trucks & Buses

Wolf Rd & Metro Park Rd Exit 3 Airport Connector

AM 7 to 9

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

File Name: Wolf - Metro Park AM

Site Code : 62806003

Page No

: 6/28/2006 Start Date

Wolf Rd & Metro Park Rd Exit 3 Airport Connector

AM 7 to 9

Clough, Harbour & Associates LLP III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com Manual Turning Movement Count

File Name: Wolf - Metro Park AM

Site Code : 62806003 Start Date : 6/28/2006 Page No : 1

Southbound Mestpound Mestpound Mestpound Mestpound Morthbound Morthbound<			>	Wolf Road	ק			Metro	Metro Park Road	pad			=	Wolf Road	70			Ŧ	Hess Access	SS		
Left Thru Right Peeds App. Total App.			ഗ്	outhbou	멀			š	stboun	773			ž	orthbour	פ			ŭ	Eastbound	모		
24 124 10 1 159 1 1 5 0 7 0 67 6 0 73 27 161 12 0 200 4 0 4 1 9 2 88 7 0 97 38 204 10 0 257 10 0 9 19 0 123 21 0 144 130 693 37 1 861 1 25 1 46 2 391 49 0 144 56 221 1 1 25 1 46 2 391 49 0 144 60 228 1	Start Time	Left	Thru	Right		App. Total	Left	Thru	Right		pp. Total	Left	Thru	Right		pp. Total	Left	Thru	Right	Peds	App. Total	Int. Total
27 161 12 0 245 4 0 4 1 9 2 88 7 0 97 36 204 5 0 245 4 0 7 0 113 15 0 128 43 204 10 0 245 10 0 9 0 113 15 0 144 130 693 37 1 861 1 6 0 13 18 0 442 56 211 11 0 278 6 1 6 0 13 18 0 442 49 228 1 11 0 17 0 127 24 0 141 49 23 14 29 3 38 1 7 893 134 1 149 49 24 10 1094 29 3 38 <td>07:00</td> <td>24</td> <td>124</td> <td>9</td> <td>-</td> <td>159</td> <td>-</td> <td>-</td> <td>2</td> <td>0</td> <td>7</td> <td>0</td> <td>67</td> <td>9</td> <td>0</td> <td>73</td> <td>9</td> <td>2</td> <td>2</td> <td>0</td> <td>10</td> <td>249</td>	07:00	24	124	9	-	159	-	-	2	0	7	0	67	9	0	73	9	2	2	0	10	249
36 204 5 0 245 4 0 7 0 11 0 113 15 0 128 43 204 10 0 257 10 0 9 0 19 0 123 21 0 144 56 211 11 0 278 6 1 6 0 13 2 126 21 0 144 60 208 12 0 13 2 126 21 0 149 60 208 12 0 17 0 17 0 17 49 0 144 49 233 9 0 245 10 1 19 0 120 189 0 144 149 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 <t< td=""><td>07:15</td><td>27</td><td>161</td><td>12</td><td>0</td><td>200</td><td>4</td><td>0</td><td>4</td><td>-</td><td>0</td><td>C)</td><td>88</td><td>7</td><td>0</td><td>26</td><td>-</td><td>0</td><td>က</td><td>0</td><td>4</td><td>310</td></t<>	07:15	27	161	12	0	200	4	0	4	-	0	C)	88	7	0	26	-	0	က	0	4	310
43 204 10 0 9 0 19 0 123 21 0 144 130 693 37 1 861 19 1 25 1 46 2 391 49 0 144 56 211 11 0 278 6 1 6 0 13 2 126 21 0 149 60 208 12 0 226 1 1 0 17 0 127 24 0 144 49 233 198 9 0 130 1 149 0 130 144 149 149 144 149 144 149 144 149 144 149 144 149 144 149 144 149 144 149 144 149 144 149 144 144 144 144 144 144 144 144	07:30	36	204	2	0	245	4	0	7	0	=	0	113	15	0	128	7	-	0	7	ស	389
130 693 37 1 861 19 1 25 1 46 2 391 49 0 442 56 211 11 0 13 2 126 21 0 149 60 208 12 0 13 2 126 21 0 151 49 208 12 0 13 2 12 24 0 151 49 208 10 10 1 0 17 0 127 24 0 151 203 850 41 0 1 0 1 0 13 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>07:45</td> <td>43</td> <td>204</td> <td>2</td> <td>0</td> <td>257</td> <td>5</td> <td>0</td> <td>တ</td> <td>0</td> <td>19</td> <td>0</td> <td>123</td> <td>21</td> <td>0</td> <td>44</td> <td>9</td> <td></td> <td>ო</td> <td>0</td> <td>9</td> <td>430</td>	07:45	43	204	2	0	257	5	0	တ	0	19	0	123	21	0	44	9		ო	0	9	430
56 211 11 0 278 6 1 6 0 13 2 126 21 0 149 49 238 12 280 5 1 11 0 17 0 127 24 0 151 38 198 9 0 245 10 1 1 0 127 24 0 144 203 850 41 0 245 10 1 1 9 0 130 18 1 149 203 850 41 0 1094 29 3 38 1 7 893 134 1 149 17 78.9 4 63 2 17 7 893 134 1 1035 10.5 48.7 2.5 0 61.7 1.5 0.1 2 28.2 4.2 0 1 10.5 97.	Total	130	693	37	-	861	19	-	25	-	46	2	391	49	0	442	15	4	ထ	2	29	1378
60 208 12 0 280 5 1 11 0 17 0 127 24 0 151 49 233 9 0 291 8 0 10 1 19 0 130 18 1 149 203 86 41 0 245 10 1 11 0 22 3 119 22 0 144 203 850 41 0 1094 29 3 38 1 7 893 134 1 1035 17 78.9 4 0 1 143 4 63 2 117 7 893 134 1 1035 10.5 48.7 2.5 0 61.7 3.7 0.2 28.2 4.2 0 32.7 10.5 48.7 2.5 0 61.7 3.7 0 2 9 0	08-00	56	211	=	c	278	œ	-	ç	C	13	0	126	23	0	149	က	-	-	0	5	445
49 233 9 0 291 8 0 10 1 19 0 130 18 1 149 203 198 9 0 245 10 1 11 0 22 3 119 22 0 144 203 850 41 0 1094 29 3 38 1 7 893 134 1 1035 17 78.9 4 0.1 1 34 53.8 1.7 7 893 134 1 1035 10.5 48.7 2.5 0 61.7 1.5 0.1 2 0.1 2 2.0 1 1035 10.5 48.7 2.5 0 61.7 1.5 0.1 3 1 0 3 7 98.5 97.7 96.2 100 97.7 10 96.6 97.8 10 9 1 0 29	08:15	8 8	208	2	o C	280	, ru		, -	0	1	0	127	54	0	151	မ	+	က	0	4	458
38 198 9 0 245 10 1 11 0 22 3 119 22 0 144 203 850 41 0 1094 29 3 38 1 7 893 134 1 593 333 1543 78 4 1 34 63 2 117 7 893 134 1 1035 10.5 48.7 2.5 0 61.7 1.5 0.1 2 86.3 12.9 0.1 1035 10.5 48.7 2.5 0 61.7 1.5 0.1 32.7 2 1.2 0.2 28.2 4.2 0 32.7 98.5 97.7 96.2 100 97.7 89.6 100 90.6 100 90.6 90.6 100 90.6 90.6 100 90.8 100 90.8 100 90.8 100 20 2 10<	08:30	49	233	တ	0	291	00	0	9	-	9	0	130	18		149	S		0	0	9	465
203 850 41 1094 29 3 38 1 71 5 502 85 1 593 333 1543 78 1 1955 48 4 63 2 117 7 893 134 1 1035 17 78.9 4 0.1 3.4 53.8 1.7 0.7 86.3 12.9 0.1 1035 10.5 48.7 2.5 0 61.7 1.5 0.1 3.7 0.2 28.2 4.2 0 32.7 98.5 97.7 96.2 100 90.5 100 90.6 100 96.6 97.8 100 96.8 5 33 2 0 40 0 5 0 9 0 27 2 0 28 5 33 2 0 4 0 7.7 0 3 1.5 0 2 2	08:45	38	198	თ	0	245	9	-	F	0	22	က	119	22	0	144	7	N	ည	-	10	421
333 1543 78 1 1955 48 4 63 2 117 7 893 134 1 1035 17 78.9 4 0.1 34 53.8 1.7 0.7 86.3 12.9 0.1 12.9 0.1 1 0.1 1 0.1 1 0.2 28.2 4.2 0 32.7 0 32.7 0 2 28.2 4.2 0 32.7 0 32.7 2 0 1 0 0 2 0 32.7 2 0 4 0 5 0 90.6 100 96.6 97.8 100 96.8 98.8 100 96.8 100 96.8 96.8 100 96.8 100 96.8 100 96.8 100 96.8 100 96.8 100 100 100 100 100 100 100 100 100 100 100 100 100	Total	203	850	41	0	1094	59	က	38	-	71	5	502	85	-	593	16	5	6	-	31	1789
17 78.9 4 0.1 41 3.4 53.8 1.7 0.7 86.3 12.9 0.1 10.5 48.7 2.5 0 61.7 1.5 0.1 3.7 0.2 28.2 4.2 0 32.7 98.5 97.7 96.2 100 97.7 89.6 100 90.5 100 90.6 100 96.6 97.8 100 96.8 5 33 2 0 40 4 0 5 0 90 0 27 2 0 29 1.5 2.1 2.6 0 2 0 7.7 0 3 1.5 0 2.8 0 3 1 0 4 1 0 4 0 0 3 1 0 0 4	Grand Total	333	1543	78	•	1955	48	4	83	7	117	7	893	134	-	1035	31	o	17	ო	9	3167
10.5 48.7 2.5 0 61.7 1.5 0.1 2 0.1 3.7 0.2 28.2 4.2 0 32.7 98.5 97.7 96.2 100 97.7 89.6 100 90.5 100 90.6 100 96.6 97.8 100 96.8 5 33 2 0 40 4 0 5 0 9 0 27 2 0 29 1.5 2.1 2.6 0 2 8.3 0 7.9 0 7.7 0 3 1.5 0 2.8 0 3 1 0 4 1 0 4 0 2 0 0 3 1 0 0 4	Apprch %	17	78.9	4	0.1		41	3.4	53.8	1.7		0.7	86.3	12.9	0.1		51.7	15	28.3	വ		
98.5 97.7 96.2 100 97.7 89.6 100 90.5 100 90.6 100 96.6 97.8 100 96.8 5 33 2 0 40 4 0 5 0 9 0 27 2 0 29 1.5 2.1 2.6 0 2 9 0 7.7 0 3 1.5 0 2.8 0 3 1 0 4 1 0 1 0 0 3 1 0	Total %	10.5	48.7	2.5	0	61.7	1.5	0.1	8	0.1	3.7	0.2	28.2	4.2	0	32.7	-	0.3	0.5	0.1	1.9	
98.5 97.7 96.2 100 97.7 89.6 100 90.5 100 90.6 100 96.8 100 96.8 5 33 2 0 40 4 0 5 0 9 0 27 2 0 29 1.5 2.1 2.6 0 2 0 7.7 0 3 1.5 0 2.8 0 3 1 0 4 1 0 1 0 0 3 1 0 0 4	Passenger Vehicles																				,	
5 33 2 0 40 4 0 5 0 9 0 27 2 0 29 1.5 2.1 2.6 0 2 8.3 0 7.9 0 7.7 0 3 1.5 0 2.8 0 3 1 0 4 1 0 1 0 2 0 3 1 0 4	% Passenger Vehicles	98.5	97.7	96.2	100	7.76	9.68	100	90.5	100	90.6	100	9.96	97.8	5	96.8	96.8	88.9	94.1	8	95	97.1
1.5 2.1 2.6 0 2 8.3 0 7.9 0 7.7 0 3 1.5 0 2.8 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SU Trucks & Buses	2	33	2	0	40	4	0	2	0	6	0	27	7	0	53		-	-	0	က	81
0 3 1 0 4 1 0 1 0 2 0 3 1 0	% SU Trucks & Buses	7.	2.1	2.6	0	2	8.3	0	7.9	0	7.7	0	က	<u>.</u>	0	2.8	3.2	11.1	5.9	0	വ	2.6
0 00 12 0 18 0 17 0 03 07 0	MU Trucks	0	က	-	0	4	-	0		0	2	0	က	-	0	4	0	0	0	0	0	10
0 1.0 0 1.1 0 0.1 0 1.2 2.1 0 0.3 0.1	% MU Trucks	0	0.2	د .	0	0.2	2.1	0	1.6	0	1.7	0	0.3	0.7	0	0.4	0	0	0	0	0	0.3

Exit 3 Airport Connector Wolf & I-87 NB Off-Ramp

7 to 9 ΑM

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269

Albany, NY 12205 www.cloughharbour.com

File Name: Wolf - Exit 4 NB Off-Ramp AM

Site Code : 71106001 Start Date : 7/11/2006 Page No : 4

Exit 3 Airport Connector Wolf & I-87 NB Off-Ramp AM

7 to 9

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

File Name: Wolf - Exit 4 NB Off-Ramp AM Site Code: 71106001 Start Date: 7/11/2006 Page No: 3

		3	Wolf Road	70			2	Volf Road			WALL STATE OF THE PARTY OF THE	1-87 N	-87 NB Off-Ramp Fastbound	dme							
		တိ	Southbound	2			2	unoquu	3			1				47-1	Then.	tqv;0	Dade	Ann Total	Int Total
Start Time	Left	Thr	Right	Peds	Thru Right Peds App. Total	Left	Thru	Right	Peds App. Total	p. Total	Left	Thru	Right	Peds Ap	App. Total	5	O BET	100		10mm	
Peak Hour Analysis From 07:00 to 08:45 - Peak 1 of	is From C	7:00 to 0	18:45 - Pe	ak 1 of																	
Peak Hour for Entire Intersection Begins at 07:45	ire Intersu	ection Be	gins at 0	7:45						-		9		•	173	156				219	715
07:45	0	319	3	S.	324			•	(c	89.	c	t C	144	3 4	C	62	0	206	644
08:00	0	294	0	0	594	0	0	-	> (> 0	> 0	1 0	> <	o c	153	4	0	69	0	213	651
08:15	0	282	0	0	282	0	0 (0 (> (-	>	S 2	o c	o c	148	142	8	51	0	195	620
08:30	0	275	0	Ŋ	277	0	0	0	0	5		140	0	7	617	586	2	245	0	833	2630
Total Volume	0	1173	0	7	1180	0	0	O	> (>	> 0	2 5	> <	ט ל	5	203	0	29.4	0		
% App. Total	0	99.4	0	9.0		0	0	0	0	000	0	4.65		0.00	207	030	250	888	000	.951	.920
出	000	.919	000	.350	.910	89	80.	000	000	39,	3	3 2	3	003	202 202	575	0	244	0	818	2576
Passenger Vehicles	0	1153	0	7	1160	0	0	0	o (> (>	46.0	> 0	† 5	0 9	97.6	1 0	966	0	98.2	97.9
% Passenger Vehicles	0	98.3	0	100	98.3	0	0	0 (o (> (>	90.0	> C	3 <	5.5	5.7	3	0	0	7	53
SU Trucks & Buses	0	10	0	0	10	0	0	-	> (<u> </u>	> <	ų c	> <	o c	10	. 0	0	0	0	0.8	1.1
% SU Trucks & Buses	0	6.0	0	0	0.8	0	0	0)	O	> 0	, ,	> <	o c	? ^	-	· C	-	0	80	25
MU Trucks	0	10	0	0	10	0	0	0	> (> 0	> 0	~ +	>	> <	- +	- 0	· c	0.4	0	1.0	1.0
% MU Trucks	0	6.0	0	0	0.8	0	0	0	>	5	>	=	>	>	:	!	,				

Exit 3 Airport Connector Wolf & I-87 NB Off-Ramp

AM 7 to 9

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

File Name: Wolf - Exit 4 NB Off-Ramp AM

Site Code : 71106001 Start Date : 7/11/2006 Page No : 2

Exit 3 Airport Connector Wolf & I-87 NB Off-Ramp

AM 7 to 9

Clough, Harbour & Associates LLP III Winners Circle, P.O. Box 5269 Albany, NY 12205 Manual Turning Movement Count

File Name: Wolf - Exit 4 NB Off-Ramp AM Site Code: 71106001 Start Date: 7/11/2006 Page No: 1

					Groups	Printec	1- Passe	Groups Printed- Passenger Vehicles - SU Trucks & Buses - MU Trucks	icles - 5	SU Truc	ks & Bu	Ises - MI	J Truck	S						
Wolf Road	folf R	oa	70			×	Wolf Road				N 28-1	I-87 NB Off-Ramp	dwe							
Southbound	uthbo	=	p			Š	Jorthbound	0			Ea	Eastbound	A. Control of the Con					- 1		
Thru Right	Righ	-	eds	App. Total	Left	Thru	Right	Peds App	App. Total	Left	Thru	Right	Peds /	App. Total	re#	Thru	Right			mt. rotal
	b	- -		189	0	0	0	0	0	0	82	0	0	82	114	0 (2 5	> 0	000	204 204 204
25.5		o	o	251	0	0	0	0	0	0	109	0	0	60	126	0 '	42	> 0	8 5	020
22.0		o c	o c	25.4	c	· C	C	0	0	0	105	0	0	105	146	0	46	> (78-	00.7
404		> <	> и	100	o c	o C	o C	c	0	0	168	0	4	172	156	0	ည	0	219	617
1013		0	က	1018	0	0	0	0	0	0	467	0	4	471	542	0	172	0	/14	2203
					•	(ć	¢	c	c	77	c	C	144	144	0	62	0	206	644
294		0	0	294	0	>	> (0 (> 0	> <	1 5	o c	o c	153	144	C	69	0	213	651
285		0	0	285	0	0	۰ د)	> 0	> c	2 0	o c	o c	148	142	0	5	0	195	620
275		0	7	277	0	0	0)	o (> 0	5 6	> 0	·	5 4	, t	ı C	5.5	0	202	634
271		0	0	271	0	0	0	0	0	0	20 20	0	- +	908	282	0	232	0	816	2549
1125		0	7	1127	0	0	0	0	D	>	c S	>		3	3	ı		•	-	
((ſ		c	c	c	c	C	c	1072	0	2	1077	1124	2	404	0	1530	4752
2138		>	, ,	2143	> (> 0	0	o c)	o	90	· c	5.		73.5	0.1	26.4	0		
99.7		0	0.3		>	>	>	۰ د	(0 0			; ;	7 00	7 20	C	00	C	32.2	
45		0	0,1	45.1	0	0	0	0	>	0	0.22	>	5	C.E. 1		>			A service of the service and a service of the servi	THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED AND ADDRESS
1		(5	0.70	c	c	c	c	C	C	96.5	0	100	96.6	97	100	99.5	0	97.6	97.5
97.8	-	١	3	97.9)			25	c	c	25	12	0		0	<u>t</u>	61
R		0	O	23	> (> 0	> 0	> 0	> <	o c	3 6	o C	o C	6.	-	0	0.2	0	0.8	£.
	}	0	0		0	٥	0		0	0	0.4		0	12	2	0		0	R	58
23		0	0	23	0	>	-	o •	O (> 0	<u>.</u>	> <	0 0	+	٥	· C	00	C	T.	2
- :		0	0	<u>-</u> :	0	0	0	0	<u> </u>	>	=	>	>	-	4	>	į	>	?	_

Exit 3 Airport Connector Wolf Rd & Albany Shaker AM 7 to 9

Manual Turning Movement Count Clough, Harbour & Associates LLP

III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

File Name: Albany Shaker - Wolf AM Site Code: 07116005

Start Date : 7/11/2006

Page No : 4

Exit 3 Airport Connector Wolf Rd & Albany Shaker

AM 7 to 9

Clough, Harbour & Associates LLP III Winners Circle, P.O. Box 5269 Albany, NY 12205 Manual Turning Movement Count

File Name: Albany Shaker - Wolf AM Site Code: 07116005 Start Date: 7/11/2006 Page No: 3

Albany Ob	Albany on	
The second secon	****	
	WOII HOM	
	libany Shaker Hoad	
	I-87 NB On-Ramp	

		1-87	I-87 NB On-Ramp	Jamp		THE REAL PROPERTY AND ADDRESS OF THE PERSON ADDRES	Albany	Shaker Road	Road			>	Wolf Road				Albany	Albany Shaker Road	Road		
		S	Southbound	<u> </u>			, Wε	estbound				ž	Northbound	70			Ä	Eastbound	7	A THE STREET,	Annual organization of the desired control of the second
Start Time	Left	Thru	Right	Thru Right Peds App. Total	vpp. Total	Left	Thru	Right	Peds A	App. Total	Left	Thru	Right	Peds A	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 07:00 to 08:45 - Peak 1 of	is From C	7:00 to 0	18:45 - Pe	eak 1 of 1																	
Peak Hour for Entire Intersection Begins at 07:45	ire Inters	ection Be	igins at 0	7:45																	0
07:45	0	0	,	0	0	95	176			323								213			086
08:00	· C	C	C	C	0	77	134	20	0	261	163	48	85	,	294	8	150	212	0	382	937
08:35	· C	· C) C	o C	· C	105	136	23	0	294	154	54	82	0	293	58	141	182	0	351	938
06.90	o C	o c	o C	o C	· C	62	137	37	· C	253	141	61	63	0	265	43	131	196	-	371	889
Total Volume	c	c	0	0	0	356	583	192	0	1131	609	217	314	-	1141	116	552	803	-	1472	3744
% Ann Total	o C	o C	· C	· C)	34.5	7.	17	С		53.4	19	27.5	0.1		7.9	37.5	54.6	0.1		
S App. Folding	9	000	200	9	000	848	828	906	000	875	934	.889	.924	.250	970	.674	.920	.942	.250	.963	.955
	9	200	9	0000	200	352	570	96	C	1112	597	212	310	-	1120	110	541	783	 -	1435	3667
rassenger verificies	0 0	o c	0 0	o C	0 0	0 80	8 20	0 66	C	98.3	98.0	7.76	98.7	90	98.2	94.8	98.0	97.5	100	97.5	97.9
% Passenger venicles	0 0	o c	o c	o c	0 0))	5	0	· C	7.	Ç	4	က	0	17	9	æ	48	0	35	64
SO Incks & Buses	O	o c	> <	0 0	0 0	ο α - C	<u> </u>	1 0	· c	, r	. 4	-	10	0	Ť.	5.2	4.	2.2	0	2.5	1.7
% SU Trucks & Buses	> <	> <	o c	o c	0 0	;	:	2 -	· c	2			-	C	4	0	က	Ø	0	2	13
MO HUCKS		>	>	>	>	-	י כ	۰ د	۰ د	,	1 (- L	. (, (4	c	c	C	0
% MU Trucks	0	0	0	0	0	0.3	0.5	0	0	0.4	0.3	0.5	O.3	>	4.0	>	o O	7.0	>	5.5	5

Wolf Rd & Albany Shaker Exit 3 Airport Connector AM

7 to 9

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

File Name: Albany Shaker - Wolf AM Site Code : 07116005

Start Date: 7/11/2006 Page No: 2

Page No

Exit 3 Airport Connector Wolf Rd & Albany Shaker

AM 7 to 9

Clough, Harbour & Associates LLP
III Winners Circle, P.O. Box 5269
Albany, NY 12205
www.cloughharbour.com Manual Turning Movement Count

File Name: Albany Shaker - Wolf AM Site Code: 07116005 Start Date: 7/11/2006 Page No: 1

						Grou	Ips Print	Groups Printed- Passenger Vehicles - SU Trucks & Buses - MU Trucks	enger V	ehicles -	· SU Truc	cks & Br	uses - M	U Truck	Ų.						
		1-87	I-87 NB On-Ramp	Ramp			Albar	Albany Shaker Road	r Road			3	Wolf Road	77			Albany	Albany Shaker Road	Road		
	-	ഗ്	Southbound	pur				Westbound	þ			Š	Northbound	ğ			, m	Eastbound	70		
Start Time	Left	Thro	Right		Peds App. Total	II Left	Thr	Right	Peds A	App. Total	Left	Thr	Right	spec	App. Total	Left	The	Right	Peds	Ann Total	Int Total
00:20	0	0	0	0		7 43	74	31		148	119	30	38		187	98	5 5	147		+	mr Ota
07:15	0	0	0	0	J	0 49	103	46	c	90	153	8 8	3 4	o c	202	8 8	3 ;	- -	> c	203	810
02:30	0	0	0	0		0 51	133	64	· -	240	150	5 6	2 6	> +	7000	7 8	- [900	> (333	69/
07:45	0	0	0	C			7 2	t c	- c	647	2 4	9 2	70	- (677	8 8	73.	5	0	366	844
TetoL	c	c	c		-		2 2	70	. ح	020	0	40	46	0	682	જ	130	213	0	368	086
	>	>	>	>		238	480	35		918	2/3	144	219		937	Ξ	478	767	0	1356	3211
00:00	0	0	0	0	J	77	134	20	C	261	163	48	80	•	700	ć	Ç L	Č	c	000	0
08:15	0	0	C	C		105	136	20		5 6	7	7	9 6	- (100	2 5	00 :	717	>	382	93/
08:30	C		· c	0 0	, (3 6	3 5	3 1	> (707	10.	50	င္သ	>	293	87	141	182	0	351	938
00:00	0	0	> 0	> (۰ ر	6/	13/	37	0	253	141	61	83	0	265	43	131	196	-	371	889
Ct.SO		> 0	> 0	> 0		1	120	22	0	243	179	69	84		333	36	114	214	0	364	940
1010 1010	>	>	>	0	>	329	527	195	0	1021	637	232	314	2	1185	127	536	804	-	1468	3704
Grand Total	0	0	0	0	0	William	1013	388	•	1969	1210	376	533	ď	2122	338	1017	1671	•		0
% Approch %	0	0	0	0		28.8	51.4	19.7	0.1		57	17.7	25.1	0.1	1	2 8	38.	- u	- c	4707	0.80
lotal %	0	0	0	0	0	8.2	14.6	5.6	0	28.5	17.5	5.4	7.7	0	30.7	, K	14.7	20.00	o c	40 8	
Passenger Vehicles													A STATE OF THE PERSON NAMED IN COLUMN NAMED IN			5		, in the second	>	2.5	VIVIETA CALLO CONTRACTOR OF SECURIOR SE
% Passenger Vehicles	0	0	0	0	0	98.4	98.1	97.4	100	98.1	97.6	98.4	97.2	100	97.6	98.6	4 2 4	97.4	100	a7 c	7 70
SU Trucks & Buses	0	0	0	0	O	7	15	œ	c	30	17	ĸ	15	2	2.0	200		5	3	0.70	1.16
% SU Trucks & Buses	C	C	C	C	C	4.0	+	, 4	, () ,		,	1 0	> (5 :		N V	ţ	>	ō	22
MI Tricks		0	0		ی ر	_	C	- 1		ر. د.	1.4	ا ئ	2.3	0	9.	2.9	N	2.2	0	2.2	- 8
MII Tricks	o c	o c	> <	> 0	0 (4 ,	N :	0	∞	12	-	က	0	16	-	က	7	0	-	35
SWOD LI COM OV	>	>	>	>	ر	0.4	O.4	0.5	0	0.4		0.3	9.0	0	0.8	0.4	0.3	0.4	0	0.4	0.5

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

Albany Shaker & Old Wolf Rd

7 to 9

Exit 3 Airport Connector

File Name: Albany Shaker - Old Wolf AM Site Code : 71106003

: 7/11/2006 Start Date

Page No

Albany Shaker & Old Wolf Rd Exit 3 Airport Connector

AM 7 to 9

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

File Name: Albany Shaker - Old Wolf AM Site Code: 71106003 Start Date: 7/11/2006 Page No: 3

	minimum property and an analysis of the second seco	C	Old Wolf Road	peo			Albany	Shaker Road	Road			I-87 S	-87 SB On-Ramp	amp			Albany	Ubany Shaker Road	Road		
		S	Southbound	pu				estbound				Š	Northbound	ַסַ			Ш	Eastbound	_		Boston Andrews of the Property of the Andrews of Andrews
Start Time	Left	Thru	Right	Thru Right Peds App. Total	App. Total	Left	Thru	Right	Peds /	App. Total	Left	Thru	Right	Peds Ap	App. Total	Left	Thru	Right	Peds A	App. Total	Int. Total
Peak Hour Analysis From 07:00 to 08:45 - Peak 1 of	is From 07	7:00 to C	38:45 - Pt	eak 1 of 1	-																
Peak Hour for Entire Intersection Begins at 07:45	ire Intersec	Stion Be	sains at 0	17:45																	
07.45	219	Ç	8	16		75	235			329						37	175			27	
00.80	25.2	2 5	9 9	2 0	422	: E	200	83	0	316	0	0		က	4	23	131	26	0	506	951
08.15	24.7	2 -	5 5	o C	350	8 8	25	3 8	0	311	0	0	0	0	0	23	143	84	0	250	911
08:30	2 6	30	1 5	•	351	2.50	88	54	0	293	0	0	0	-	-	52	163	26	0	244	688
Total Volume	968	61	492	17	1466	259	853	137	0	1249	0	0	-	4	2	107	612	255	0	974	3694
% Ann Total	_	4 2	33.6	1.2		20.7	68.3	-	0		0	0	50	8		-	62.8	29.5	0		
HH DHE	-	508	769	266	868	.863	.907	.634	000	.949	000	000	.250	.333	.313	.723	.874	.759	00.	839	.971
December Vehicles		52	477	17	1425	252	838	129	0	1219	0	0	-	4	5	102	598	245	0	945	3594
P. Desender Vehicles	98.5	85.2	97.0	100	97.2	97.3	98.2	94.2	0	97.6	0	0	90	100	100	95.3	97.7	96.1	0	97.0	97.3
CII Tricks & Buses	17	00	7	C	40	9	15	∞	0	56	0	0	0	0	0	S	4	თ	0	28	97
SO Harris & Duese	0	13.1	30	0	2.7	2.3	8	5.8	0	2.3	0	0	0	0	0	4.7	2.3	3.5	0	2.9	2.6
MII Trucks	· C	· •	0	0	i	·	0	0	0	-	0	0	0	0	0	0	0	-	0	-	က
% MU Trucks	0	1.6	0	0	0.1	4.0	0	0	0	0.1	0	0	0	0	0	0	0	0.4	0	0.1	0.1

Albany Shaker & Old Wolf Rd Exit 3 Airport Connector

AM 7 to 9

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269

Albany, NY 12205 www.cloughharbour.com

File Name: Albany Shaker - Old Wolf AM Site Code: 71106003

: 7/11/2006 : 2 Start Date

Page No

Exit 3 Airport Connector Albany Shaker & Old Wolf Rd AM 7 to 9

Clough, Harbour & Associates LLP III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com Manual Turning Movement Count

File Name: Albany Shaker - Old Wolf AM Site Code: 71106003 Start Date: 7/11/2006 Page No: 1

-3
"
2
:
۰
_
_
-
,
t
7
,
Q
=
ñ
ш
o
_
t
- 5
7
•
-
•
c
۲
_
-
"
v
- 1
u
- 0
-
c
1
7
-2
-
-
Ç
z
7
Ç
ú
7
×
ç
O
_
۰
τ
è
÷
ē
7
ñ
-
,
5
-
7
•
c
•

Left Th 196 256 259 850 8 228 228 208 905	Old Wolf Road Southbound			Albany	v Shaker Road	Road			1070	2	-			Alkan	Albany Shaker Road	Road		
Left Thr 196 179 256 179 219 1850 3 252 217 208 3 228 228 228 228 208 3	uthbound Bight Be						-		Ď P	I-8/ SB On-Hamp	dur					5		
Left Thru 196 6 179 5 256 12 219 10 850 33 252 10 277 11 208 30 228 21 905 72	1			×	estbound				<u>ō</u>	Northbound	ס			ш	Eastbound			Notice de semination de construction de la const
196 179 256 219 850 252 217 208 228 905		Peds App. Total	Left	Thru	Right	Peds Ap	App. Total	Left	Thru	Right	Peds Ap	App. Total	Left	Thru	Right	Peds A	App. Total	Int. Total
256 219 850 850 252 217 208 228 905	To the second		L	176	39	0	258	0	0	0	3	3	25	26	99	0	149	708
256 850 850 252 217 208 228 905				148	32	0	222	0	0	0	0	0	24	119	9	0	203	691
219 850 252 217 208 228 905		0 379		181	34	0	254	0	0	0	0	0	18	115	41	0	174	807
850 252 217 208 228 905	98		75	235	19	0	329	0	0	0	0	0	37	175	29	0	271	943
252 217 208 228 905		16 1286		740	124	0	1063	0	0	0	ო	က	104	503	190	0	797	3149
217 208 228 905	160	0 422		220	33	0	316	0	0		ო	4	22	131	56	0	508	951
208 228 905	122	0 350		210	31	0	311	0	0	0	0	0	23	143	84	0	250	911
228 905	112	1 351	51	188	54	0	293	0	0	0			52	163	26	0	244	889
902	87	1 337		194	88	0	297	0	0	0	0	0	83	148	83	0	254	888
	481	2 1460		812	156	0	1217	0	0	-	4	5	93	585	279	0	957	3639
		18 2746		1552	280	0	2280	0	0	-	7	8	197	1088	469	0	1754	6788
Apprch % 63.9 3.8	31.6 0	0.7	19.6	68.1	12.3	0		0	0	12.5	87.5		11.2	62	26.7	0		
		3 40.5		22.9	4.1	0	33.6	0	0	0	0.1	0.1	5.9	16	6.9	0	25.8	
Passenger Vehicles																		
% Passenger Vehicles 98.2 86.7	96.7 10	100 97.3	95.8	86	94.3	0	97.1	0	0	9	100	100	93.9	97.6	9.96	0	6.96	97.1
	29	0 73		34	16	0	64	0	0	0	0	0	12	26	15	0	23	190
% SU Trucks & Buses 1.8 12.4	3.3	0 2.7	3.8	ς,	2.7	0	2.8	0	0	0	0	0	6.1	2.4	3.5	0	က	2.8
MU Trucks 0 1	0	0	7	0	0	0	2	0	0	0	0	0	0	0	-	0	•	4
% MU Trucks 0 1	0	0	0.4	0	0	0	0.1	0	0	0	0	0	0	0	0.2	0	0.1	0.1

Clough, Harbour & Associates LLP

III Winners Circle, P.O. Box 5269

Albany, NY 12205 www.cloughharbour.com

Old Wolf Rd & I-87 SB Exit 4 Off-Ramp

AM 7 to 9

Exit 3 Airport Connector

File Name: Old Wolf - Exit 4 SB AM

Site Code : 62906007 Start Date : 6/29/2006 Page No : 4

Clough, Harbour & Associates LLP III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com Manual Turning Movement Count

Exit 3 Airport Connector Old Wolf Rd & I-87 SB Exit 4 Off-Ramp

AM 7 to 9

File Name: Old Wolf - Exit 4 SB AM Site Code: 62906007

Start Date : 6/29/2006 Page No : 3

		ŏ	Old Wolf Road	oad		_	I-87 SB E	Exit 4 Off-Ramp	f-Ramp			PIO	Old Wolf Road	ad			Terr	Terminal Drive	ive		
		Ø	Southbound	pu			Š	estbound	70			ž	Northbound	ō			ŭ	Eastbound	7		
Start Time	Left	Thru	Thru Right Peds App. Total	Peds	App. Total	Left	The	Right	Peds 4	App. Total	Left	Thru	Right	Peds App. Total	pp. Total	Left	Thru	Right	Peds /	Peds App. Total	Int. Total
Peak Hour Analysis From 07:00 to 08:45 - Peak 1 of	is From C	7:00 to	08:45 - Pe	eak 1 of												**************************************					
Peak Hour for Entire Intersection Begins at 07:30	ire Inters	ection B	egins at 0	7:30																	
02:30	0	47	0	0	47	249	~	9			-		-	,							
07:45	0	29	0	0	29	279		9	0	586	0	28	0	0	28	0	0	4	0	4	407
08:00	0	69		0	2	277	0	ß	0	282	0	25	0	0	25	-	0	0		8	406
08:15	0	52	0	0	52	281	0	9	0	287	0	25	0	0	25	0	0	8	0	2	393
Total Volume	0	227	-	0	228	1086	2	23	0	1111	-	212	-	0	214	-	0	0	T	-	1564
% App. Total	0	9.66	0.4	0		7.76	0.5	2.1	0		0.5	99.1	0.5	0		9.1	0	81.8	9.1		
Ħ	000.	.822	.250	000:	.814	996.	.500	.958	000	896.	.250	.914	.250	000	.922	.250	000	.563	.250	.688	.961
Passenger Vehicles	0	209	-	0	210	1078	2	ಜ	0	1103	-	202	-	0	204	-	0	က	,	Ŋ	1522
% Passenger Vehicles	0	92.1	100	0	92.1	99.3	9	100	0	99.3	9	95.3	901	0	95.3	9	0	33.3	100	45.5	97.3
SU Trucks & Buses	0	16	0	0	16	7	0	0	0	7	0	7	0	0	7	0	0	9	0	9	36
% SU Trucks & Buses	0	7.0	0	0	7.0	9.0	0	0	0	9.0	0	3.3	0	0	3.3	0	0	2.99	0	54.5	2.3
MU Trucks	0	7	0	0	7		0	0	0	*	0	က	0	0	က	0	0	0	0	0	9
% MU Trucks	0	6.0	0	0	6.0	0.1	0	0	0	0.1	0	4.	0	0	4.	0	0	0	0	0	0.4

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269

Albany, NY 12205 www.cloughharbour.com

Old Wolf Rd & I-87 SB Exit 4 Off-Ramp

7 to 9

Exit 3 Airport Connector

File Name: Old Wolf - Exit 4 SB AM Site Code : 62906007

Start Date : 6/29/2006 Page No : 2

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

Exit 3 Airport Connector Old Wolf Rd & I-87 SB Exit 4 Off-Ramp AM 7 to 9

File Name: Old Wolf - Exit 4 SB AM Site Code: 62906007

Start Date : 6/29/2006 Page No : 1

Sylvin,	
LIM	
2	
200	
ā	
ď	
Triicks	
TIS	
U.	
Ö	
2	
4	
Jer /	
Ž	
V.	
ă	
ģ	
nte	
Ē	
S	֡
roup	
5	

	***************************************	AND SECURITY OF THE PARTY OF TH			***************************************	Group	Groups Printe	d- Passe	∍nger Ve	ed- Passenger Vehicles - SU Trucks & Buses - MU Trucks	SU Truc	cks & Bu	Ises - M	U Truck	s						
		ő	Old Wolf Road	load			I-87 SB [Exit 4 Off-Ramp	f-Ramp			ᆼ	Old Wolf Road	ad			Tern	Terminal Drive	ive	Valley to a state of the state	
A STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN		Š	Southbound	pur			≥	'estbound	70			Ž	Northbound	ō			Ħ	Eastbound	70		
Start Time	Left	Thru	Right		Peds App. Total	Left	Thru	Right	Peds A	App. Total	Left	Thru	Right	Peds A	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
00:20	0	36	0	0	36		-	7	0	209	2	63	0	+	65		c	C	-4	 -	310
07:15	0	27	0	0	27		0	4	0	258	0	47	0	C	47	· c	· C	· C	· C	0 0	333
02:30	0	47	0	0	47		-	9	0	256		20	·	· c	52	o C	o c	o e	o c	יי כ	358
07:45	0	29	0	0	59	279		9	0	286	0	28	. 0	0	1 80	0 0	o C	0 4	o c) A	336
Total	0	169	0	0	169		ო	23	0	1009	က	218	-	0	222	0	0	7	0	7	1407
08:00	0	69	-	0	70	277	0	5	0	282	0	52	0	o	52	•	c	c	*	0	406
08:12	0	25	0	0	52		0	9	0	287	0	25	0	0	52		· C	۰ ۸	- c	10	30,0
08:30		26	-	0	58		0	ιΩ	0	237	C)	22	0	0	57	· C	· C	1 C	· c	1 C	352
08:45	-	54	0	0	55		0	က	0	566	0	20	0	0	20	0	0	0	· c	· C	371
Total	C)	231	8	0	235		0	19	0	1072	2	509	0	0	211	***************************************	0	2		4	1522
Grand Total	2	400	8	0	404		ო	42	0	2081	Ŋ	427		C	433	+-	C	σ	+	<u> </u>	0000
% Habbarch %	0.5	66	0.5	0		8.76	0.1	8	0		1.2	98.6	0.2	0	!	6	0	818	6	:	
Total %	0.1	13.7	0.1	0	13.8		0.1	1.4	0	71	0.2	14.6	0	0	14.8	0	0	0.3	0	0.4	
Passenger Vehicles																	-		And delical and an expensive degree of party and an expensive an expensive and an expensive and an expensive and an expensive an expensive and an expensive and an expensive and an expensive ane	-	
% Passenger Vehicles	100	91	20	0	90.8	66	2.99	90	0	98.9	40	94.8	100	0	94.2	100	С	33.3	100	45.5	6 96
SU Trucks & Buses	0	53	0	0	53	17	0	0	0	17	က	12	0	0	7.	C	0	9	2	2	67
% SU Trucks & Buses	0	7.2	0	0	7.2		0	0	0	0.8	09	2.8	0	0	(C)	· C	· C	66.7	· C	74	, c
MU Trucks	0	7	•	0	8	4	-	0	0	r.	C	10	c	c	10	0	,)	2	0.7
% MU Trucks	0	1.8	20	0	7	0.5	33.3	0	0	0.2	0	2.3	0	0	2.3	0	0) O	0	0 0	S C
										-					-	,	,	,)	>	;

Clough, Harbour & Associates LLP

III Winners Circle, P.O. Box 5269 Albany, NY 12205 File

Albany Shaker - Alb Int Terminal

AM 7 to 9

Exit 3 Airport Connector

File Name: Albany Shaker - Alb Int Term Access AM Site Code : 71106009

Start Date : 7/11/2006 Page No : 4

Albany Shaker - Alb Int Terminal

AM 7 to 9

Exit 3 Airport Connector

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269
Albany, NY 12205
File

File Name: Albany Shaker - Alb Int Term Access AM Site Code: 71106009
Start Date: 7/11/2006
Page No: 3

285 0 285 0 0 0 24 201 0 0 0 24 201 0 0 0 24 201 0 0 0 0 24 201 0	Albany International Airport Exit Drive	J.	iterr	Drive	Airport	Exit		Albany We	Shaker Road stbound	Road			Albany Ea	Albany Shaker Road Eastbound	Road					And an actual distance of the second	The state of the s	Annual de des contratos de la
285 0 0 0 24 201 0 0 243 0 0 0 0 0 14 212 0 0 243 0 0 0 0 14 212 0 0 213 0 0 0 0 0 26 226 0 0 1009 1 0 1010 0 0 0 91 859 0 0 99.9 0.1 0 0 0 0 91 859 0 0 99.9 0.1 0 0 0 0 0 96 90.4 0 0 99.9 0.1 0 0 0 0 0 90.4 0	Left Thru Right Peds App. Total	Thru Right Peds App. Tot	Right Peds App. Tot	Peds App. Tot	pp. Tot	-	Left	Thru	Right	Peds A	vpp. Total	Left	Thru	Right	Peds A	pp. Total	Left	Thru	Right		App. Total Int. Total	nt. Total
285 0 0 0 24 201 0 0 243 0 0 0 0 14 212 0 0 243 0 0 0 0 14 212 0 0 213 0 0 0 0 0 26 226 0 0 1009 1 0 <td>T. 200 02.00 to 00.45 Dool 4 of 4</td> <td>7.00 to 00:45 Book 4 of 4</td> <td>3.45 Dook 4 of 4</td> <td>1. 4.06.4</td> <td></td> <td>1</td> <td></td> <td>-</td> <td>-</td> <td>+</td> <td></td>	T. 200 02.00 to 00.45 Dool 4 of 4	7.00 to 00:45 Book 4 of 4	3.45 Dook 4 of 4	1. 4.06.4		1		-	-	+												
285 0 0 0 24 201 0 0 243 0 0 0 0 0 14 212 0 0 213 0 0 0 0 0 14 212 0 0 1009 1 0 0 0 0 0 226 226 0 0 99.9 0.1 0 0 0 0 0 91 859 0 0 99.9 0.1 0 0 0 0 91 859 0 0 98.3 10 0 <td>Peak Hour Analysis From U. UU to Uo. 45 - Peak 1 Ul 1</td> <td>7.00 to 06.45 - Fear 1 of 1</td> <td>5.45 - Fear OI </td> <td>5 :</td> <td></td>	Peak Hour Analysis From U. UU to Uo. 45 - Peak 1 Ul 1	7.00 to 06.45 - Fear 1 of 1	5.45 - Fear OI	5 :																		
285 0 0 0 0 24 201 0 0 243 0 0 0 0 0 14 212 0 0 213 0 0 0 0 0 14 212 0 0 213 0 0 0 0 0 26 226 0 0 1009 1 0 0 0 0 0 91 859 0 0 99.9 0.1 0 0 0 0 91 859 0 0 98.3 10 0	Peak Hour for Entire Intersection Begins at 07:45	ction Begins at 07:45	gins at 07:45	:45							-					_	7.0					540
285 0 0 0 0 24 201 0 0 24 201 0 0 24 201 0 0 24 201 0 0 0 14 212 0	14 0 10	9	10						-					•	•	(7	700	c	c	300	200
243 0 0 0 0 14 212 0 0 213 0 0 0 0 0 26 226 0 0 1009 1 0 0 0 0 0 0 0 0 99.9 0.1 0	15 0 4 0 19	0 4 0 19	4 0 19	0	19		0	285	0	0	285	0	0	0	0	>	7.4	2) ·	> (222	3 6
213 0 0 0 0 0 0 26 226 0 <td>10 7 0 24</td> <td>24</td> <td>70 7</td> <td>24</td> <td>24</td> <td></td> <td>C</td> <td>243</td> <td>0</td> <td>0</td> <td>243</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>4</td> <td>212</td> <td>0</td> <td>0</td> <td>57.7</td> <td>493</td>	10 7 0 24	24	70 7	24	24		C	243	0	0	243	0	0	0	0	0	4	212	0	0	57.7	493
1009 1 0 1010 0 0 0 0 91 859 0 0 99.9 0.1 0	7 (0	2000	7 0 0	2.6	22		o C	2 5	· C	· C	213	0	0	0	0	0	56	526	0	0	252	492
99.9 0.1 0 <td>0 96 0</td> <td>0</td> <td>0</td> <td>20</td> <td>04</td> <td>r</td> <td></td> <td>1009</td> <td>,</td> <td>0</td> <td>1010</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>9</td> <td>829</td> <td>0</td> <td>0</td> <td>920</td> <td>2054</td>	0 96 0	0	0	20	04	r		1009	,	0	1010	0	0	0	0	0	9	829	0	0	920	2054
885 .250 .000 .886 .000	0 220	o c	o c	,	5		· c	0 00	0	C		0	0	0	0		9.6	90.4	0	0		
992 1 0	000	000 000	0 00		020		0	200	020	9	ARG	000	000	000	000	000	.843	.950	00.	00.	.942	.951
100 0 98.3 0 0 0 0 0 2.2 8 0 0 0 0 0 0 1.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ono, pea, pon,	ooo. oca.	000		0.00	ŧ	3	5 5	5	3	200	2	0	C	c	0	68	843	0	0	932	2016
100 98.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 24 0	>	>	50	20		>	385	- (> 0	200	0	0 0	, (· c	· C	0.7 p	0 d	C	C	1 86	98.1
0 0 14 0 0 0 0 0 2.2 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	98.5 0 92.3 0 96.8	0	0	0 96.8	96.8		0	98.3	3	>	98.3	> (> 0	> 0	> <	> 0	9 0	- o) C	o c	10	20
0 0 1.4 0 0 0 0 0 2.2 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1	0 + 0	0 -	0	-		0	4	0	0	14	0	0	>	> •	> (71 (0 0	> <	> <	2 +	í Ļ
	0 0 3.8 0 1.1	0 3.8 0 1.1	3.8 0 1.1	0 1.1	- -		0	4.	0	0	4.	0	0	0	0	0	2.2	ر د.و	> (> 0	- c	4
	2	0 1 0	0	0	2		0	က	0	0	က	0	0	0	0	0	0	œ	>	> '	0 0	2 6
,	28 0 21	· C	· C	0 0	2		С	0.3	0	0	0.3	0	0	0	0	0	0	6.0	0	0	S. O.	o. O

Clough, Harbour & Associates LLP III Winners Circle, P.O. Box 5269

Exit 3 Airport Connector

Albany Shaker - Alb Int Terminal AM 7 to 9

Albany, NY 12205 www.cloughharbour.com

File Name: Albany Shaker - Alb Int Term Access AM Site Code: 71106009

: 7/11/2006 Start Date Page No

Albany Shaker - Alb Int Terminal AM

7 to 9

Exit 3 Airport Connector

Manual Turning Movement Count

Clough, Harbour & Associates LLP
Ill Winners Circle, P.O. Box 5269
Albany, NY 12205
File Nam

File Name: Albany Shaker - Alb Int Term Access AM Site Code: 71106009
Start Date: 7/11/2006
Page No: 1

As an an assessment as the second or other property property property and a second or other property p		***************************************				Group	s Printe	d- Pass	enger V	Groups Printed- Passenger Vehicles - SU Trucks & Buses - MU Trucks	SU Truc	ks & Bu	Ises - Mi	コープログ	ø						
	Alba	iny Inter	Albany International Airport Exit	ıl Airpor	t Exit		Albany	Albany Shaker Road	Road			Albany	Albany Shaker Road	Road							
		ŏ	Southbound	pu			≷	Westbound	ס			Е	Eastbound	T							
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds A	App. Total	Left	Thru	Right	Peds A	App. Total	Int. Total
00:00	ಣ	0	æ	0	31	0	148	0	+	148	0	0	0	0	0	16	142	0	-	158	337
07:15	9	0	=	0	23	0	165	-	0	166	0	0	0	0	0 0	92	176	· c	· C	200	380
02:30	<u>-</u>	0	4	0	15	0	231	0	0	231	0	0	0	0	0	16	170	0	0	186	432
07:45		0	9	0	24	0	268	-	0	269	0	0	0	0	0	27	220	0	0	247	540
Total	28	0	33	0	91	0	812	2	0	814	0	0	0	0	0	85	708	0	0	793	1698
08:00	-	0	4	0	19	0	285	0	0	285	0	0	0	0	0	24	201	0	0	225	529
08:15	19	0	c)	0	24	0	243	0	0	243	0	0	0	0	0	4	212	0	0	226	493
08:30		0	7	0	27	0	213	0	0	213	0	0	0	0	0	56	226	0	0	252	492
08:45	=	0	က	0	41	0	202	-	0	208	0	0	0	0	0	21	215	0	0	236	458
Total	65	0	19	0	84	0	948	,	0	949	0	0	0	0	0	85	854	0	0	626	1972
Grand Total	123	0	52	0	175	0	1760	ო	0	1763	0	0	0	0	0	170	1562	0	0	1732	3670
% Habbrich %	70.3	0	29.7	0		0	8.66	0.2	0		0	0	0	0	i	9.6	90.2	0	0	 }) }
Total %	3.4	0	1.4	0	4.8	0	84	0.1	0	48	0	0	0	0	0	4.6	42.6	0	0	47.2	
Passenger Vehicles																TOTAL PRINTED WHEN THE	The state of the s		•		
% Passenger Vehicles	97.6	0	84.6	0	93.7	0	98.6	100	0	98.6	0	0	0	0	0	95.9	98.2	0	0	86	98.1
SU Trucks & Buses	8	0	7	0	6	0	17	0	0	17	0	0	0	0	0	9	16	0	0	22	48
% SU Trucks & Buses	1.6	0	13.5	0	5.1	0	-	0	0	-	0	0	0	0	0	3.5	-	0	0	1.3	5.0
MU Trucks	- (0 (0	0	0	7	0	0	7	0	0	0	0	0	-	12	0	0	13	22
% MU Irucks	0.8	0	- 6.	0	<u>-</u>	0	0.4	0	0	0.4	0	0	0	0	0	9.0	9.0	0	0	9.0	9.0

Clough, Harbour & Associates LLP

III Winners Circle, P.O. Box 5269

Albany, NY 12205 www.cloughharbour.com

Albany Shaker & Watervliet Shaker

7 to 9 ΑM

Exit 3 Airport Connector

File Name: Albany Shaker - Watervliet Shaker AM

Site Code : 62806001 Start Date : 6/28/2006 Start Date Page No

Total
239
1
2
242 tional In 196 1 2 199 Albany Inter Out 43 0 0 43 14 0 1 15 Thru 110 0 0 110 Left 0 0 0 0 Peds 72 1 Right Peak Hour Data otal 1464 14 5 1483 Peak Hour Begins at 07:45 33 0 0 33 Passenger Vehicles SU Trucks & Buses MU Trucks North n 699 462 852 5 2 859 Out Out 765 204 205 Right 193 196 196 196 280 1 0 281 Right Thru 0 0 0 Sbeqs 0 0 Watervliet Shaker

Out In

468 3

1 1

7774 1610T S46 11 S

Albany Shaker & Watervliet Shaker

AM 7 to 9

Exit 3 Airport Connector

Clough, Harbour & Associates LLP
III Winners Circle, P.O. Box 5269
Albany, NY 12205
File Na

File Name: Albany Shaker - Watervliet Shaker AM Site Code: 62806001
Start Date: 6/28/2006
Page No: 3

		Albar	Albany Shaker Road	cer Roa	פ		Albany	Intern	International Airport Drive	Airpon	Drive		Alba	Albany Shaker Road	er Road			Watervi	Natervliet Shaker Road	er Road	73	F
	- Contraction of the Contraction)		2					2000	2			-		2			u	Eastbound	2		
Start Time Left Thru Right Peds App. Total	Left	Thru	Right	Peds	3 App. To	otal	Left	Thru	Right	Peds	Thru Right Peds App. Total	Left	Thru	Right	Peds	Left Thru Right Peds App. Total	Left	Thru	Right	Peds	Left Thru Right Peds App. Total Int.	ᆵ
Peak Hour Analysis From 07:00 to 08:45 - Peak 1 of 1	sis From (07:00 to	08:45 - 1	Peak 1 c	Jf 1			-	-											-	AND THE RESIDENCE WHEN THE PROPERTY OF THE PRO	
Peak Hour for Entire Intersection Begins at 07:45	tire Inters	ection B	legins at	07:45							*											
07:45	07:45 8	123	ı					9									52		75		127	

		202	Aidally Silaker noad	ביים ביים		Alban	Albany Intern	ational ,	airpori L	JINe		Albany	libany snaker Hoad	Load		>	Vaterviie	iet Snaker Hoad	er Hoad		
		S	Southbound	pun			Š	estbound	707			2	Northbound	ъ			Ea	Eastbound	73		
Start Time	Left	Thru	Right	Peds	Thru Right Peds App. Total	Left	Thru	Right	Peds A	App. Total	Left	Thru	Right	Peds A	App. Total	Left	Thru	Right	Peds A	App. Total	Int. Total
Peak Hour Analysis From 07:00 to 08:45 - Peak 1 of 1	is From	07:00 to	08:45 - F	eak 1 of	-		-	-			-			-						THE RESIDENCE AND THE THE PROPERTY OF THE PROP	
Peak Hour for Entire Intersection Begins at 07:45	ire Inters	section B	egins at (07:45																	
07:45	80	123)				9									25		22		127	558
08:00	9	110	48	0	164	32	က	52	0	63	69	146	-	0	216	46	0	89	0	114	557
08:15	9	117	43	0	166	21	-	55	0	44	69	=======================================	က	0	183	25	-	29	0	120	513
08:30	13	118	62	0	193	31	2	17	0	23	23	109	က	0	165	46	0	71	0	117	528
Total Volume	33	468		0	200	110	15	74	0	199	257	507	တ	0	773	196	-	281	0	478	2156
% App. Total	4.7	66.3	53			55.3	7.5	37.2	0		33.2	65.6	1.2	0	:	4	0.2	58.8	0		
품	.635	.951	.827	000.	.915	.786	.625	.740	000	.790	.931	.868	.750	000	.895	.942	.250	.937	000	.941	996
Passenger Vehicles	ဗ္ဗ	462	204	0	669	110	14	72	0	196	250	200	6	0	759	193	-	280	0	474	2128
% Passenger Vehicles	100	98.7	99.5	0	0.66	100	93.3	97.3	0	98.5	97.3	98.6	100	0	98.2	98.5	100	966	0	99.2	98.7
SU Trucks & Buses	0	4	•	0	2	0	0		0	_	7	9	0	0	5	7	0	-	0	က	22
% SU Trucks & Buses	0	0.9	0.5	0	0.7	0	0	4.	0	0.5	2.7	1.2	0	0	1.7	1.0	0	0.4	0	9.0	1.0
MU Trucks	0	2	0	0	0	0	•	_	0	2	0	-	0	0	-	-	0	0	0	-	9
% MU Trucks	0	0.4	0	0	0.3	0	6.7	4.	0	1.0	0	0.2	0	0	0.1	0.5	0	0	0	0.2	0.3

Clough, Harbour & Associates LLP

III Winners Circle, P.O. Box 5269

Albany, NY 12205

Albany Shaker & Watervliet Shaker

7 to 9 ΑM

Exit 3 Airport Connector

www.cloughharbour.com

File Name: Albany Shaker - Watervliet Shaker AM

Site Code : 62806001 Start Date : 6/28/2006 Page No : 2 Start Date Page No

Clough, Harbour & Associates LLP Ill Winners Circle, P.O. Box 5269 Albany, NY 12205 File Ne

Albany Shaker & Watervliet Shaker

AM 7 to 9

Exit 3 Airport Connector

File Name: Albany Shaker - Watervliet Shaker AM Site Code: 62806001 Start Date: 6/28/2006 Page No: 1

- y	
×	
¥	
_=	
-	
₹	
₹	
-	
s - MU Trucks	
ä	
ŭ	
2	
\mathbf{m}	
જ	
G	
¥	
೭	
SU Truck	
_	
76	
٠,	
'n	
ő	
ボ	
· <u>×</u>	
<u></u>	
Š	
-	
₫	
0	
듯	
ă	
ű	
ä	
σ.	
Ď	
₩	
_=	
Ξ	
О.	
iroups F	
₽	
7	
2	
G	
-	

700000000000000000000000000000000000000	***************************************		WOOD AND AND AND AND AND AND AND AND AND AN			Groups	Printec	f- Passe	Groups Printed- Passenger Vehicles - SU Trucks & Buses - MU Trucks	nicles -	SU Truc	ks & Bu	Ises - MI	J Truck	vo.						
Albany Shaker Road	any Shaker Road	naker Road	oad			Albany	Interne	itional A	Albany International Airport Drive	rive		Albany	Albany Shaker Road	Road		5	atervli	Watervliet Shaker Road	er Road		
S S	Southbound	punoq					We	Westbound				Š	Northbound	70			Ē	Eastbound	ס		
Thru Right Peds App. Total	Right Peds App. Total	Peds App. Total	App. Total		ت	Left	Thru	Right	Peds Apy	App. Total	Left	Thru	Right	Peds A	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
1.0 1.0	1.0 1.0	1.0			- O:	_	1.0	0.1	1.0		1.0	1.0	1.0	0.1		1.0	10	10	-		
84 18 0 111	18 0 111	0 1111	11		ဗ္ဗ			21	0	28	48	71	2	0	121	53	0	9	2	80	370
99 34 0 145	34 0 145	0 145	145		88		7	88	0	89	54	91	0	0	145	4	0	99	0	110	468
10 101 30 0 141 31	30 0 141	0 141	141		9		7	9	0	43	71	91	0	0	162	44	0	81	0	125	471
123 52 0 183	183	0 183	183	ľ	83		9	9	0	39	99	141	7	0	509	25	0	75	0	127	558
40/ 134 0	134 0 580	089	280		128		=	69	0	508	239	394	4	0	637	169	0	282	0	451	1876
110 48 0 164	48 0 164	0 164	164		35		က	22	0	63	69	146		0	216	46	0	89	С	114	557
117 43 0 166	43 0 166	0 166	166		21		-	23	0	4	69	111	ო	0	183	25	-	29	· C	12	513
118 62 0 193	62 0 193	0 193	193		31		2	17	0	53	53	109	ო	0	165	46	0) C	117	5.00
105 45 0	45 0 161	0 161	161		82		4	17	0	47	63	111	-	0	175	29		49	0	109	492
36 450 198 0 684 113	198 0 684	0 684	684		113		5	81	0	207	254	477	æ	0	739	203	2	255	0	460	2090
1264	332 0 1264	0 1264	1264		241		24	150	0	415	493	871	12	c	1376	372	c	537	c	011	3000
67.8 26.3 0	26.3 0	0			58.1		5.8	36.1	0		35.8	63.3	6.0	0	5	40.8	0	28.9	o c	5	2000
21.6 8.4 0 31.9	8.4 0 31.9	0 31.9	31.9		6.1		9.0	3.8	0	10.5	12.4	23	0.3	0	34.7	4.6	0.1	13.5	o C	88	
																					A STATE OF THE PERSON NAMED IN COLUMN 2 ASSESSMENT OF THE PERSON NAM
100 98 97.6 0 98 99.6	96 0 9.76	0 98	96		9.66		95.8	96.7	0	98.3	98.4	98.2	100	C	80	0 80	100	7 00	C	00	00
12 7	7 0			19	-	i	0	4	C	ı.	α		2	,	2.0	5.0	3	t 0	> 0	33.6	40.4
2.1	21 0 15	٠ ٦	τ.		0.4		· c		o c) C	7	- (ه د	> 0	D :	٠ • د	>	י	>	٥	4 9
0 + 4		2.0	5 0	1	r c		יי	۲.۱	5	71 0	٥.		0	5	4.1	0.8	0	9.0	0	0.7	1.2
	0 0	010	٥١	*****	> (- .		0	C)	0	ည	0	0	ς.	-	0	0	0	-	14
0.3 0.3	0.3	0		0.5	0		4.2	0.7	0	0.5	0	9.0	0	0	0.4	0.3	0	0	0	0.1	0.4

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

File Name: Wolf - Central PM Site Code : 62906010

Start Date: 6/29/2006 Page No: 4

Exit 3 Ariport Connector Wolf Rd & Central Ave 4 to 6

Clough, Harbour & Associates LLP III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com Manual Turning Movement Count

Exit 3 Ariport Connector Wolf Rd & Central Ave PM

4 to 6

File Name: Wolf - Central PM Site Code: 62906010 Start Date: 6/29/2006 Page No: 3

			Wolf Road	ad		The state of the s	Sen	tral Avenue	nue			87 Exit	-87 Exit 2 EB Off Ramp	Ramp			Cent	Pentral Avenue	9		
The second secon		Ϊ́	Southbound	pur			>	estbound	ō		•	Š	Northbound	P			E.	Eastbound	} _		
Start Time	Left		Right	Thru Right Peds App. Total	App. Total	Left	Thr	Right	Peds /	App. Total	Left	Thru	Right	Peds A	Peds App. Total	Left	Thru	Right	Peds	Ann Total	Int Total
Peak Hour Analysis From 16:00 to 17:45 - Peak 1 of	is From 1	6:00 to	17:45 - P	eak 1 of	-				-			-	•					,	_		
Peak Hour for Entire Intersection Begins at 16:45	ire Inters	ection Be	eqins at	16:45																	
16:45	108	0	247	0	355	0	342	107	0	449	O	163	59		-	104	223			207	
17:00	85	0	263	0	355	0	354	6	0	445	~ ~	160	45	0	216	96	25	C	c	308	1324
17:15	114	0	300	0	414	0	332	108	0	440	0	160	23	0	213	8 6	510) C	o C	310	1377
17:30	87	0	210	0	297	0	336	117	0	453	0	17	23	c	224	5	210	· c	· C	3.5	1286
Total Volume	401	0	1020	0	1421	0	1364	423	0	1787	2	654	219	0	875	393	864	0	, c	1257	5340
% App. Total	28.2	0	71.8	0	Phylin Phone and Phylin Phyllin Phylin Phylin Phylin Phyllin Phyllin Phylin Phylin Phy	0	76.3	23.7	0		0.2	74.7	52	0		31.3	68.7	0	· C)
품	.879	000.	.850	000.	.858	000	.963	904	000	.986	.250	.956	928	000	776	945	696	000	, 00	961	969
Passenger Vehicles	392	0	1016	0	1408	0	1342	416	0	1758	2	650	213	0	865	393	835	0	C	1228	5259
% Passenger Vehicles	97.8	0	93.6	0	99.1	0	98.4	98.3	0	98.4	100	99.4	97.3	0	6.86	100	96.6	0	· C	2 2 2	98.5
SU Trucks & Buses	တ	0	က	0	12	0	=	7	0	18	0	8	Ø	0	4	0	16	0	0	16	50
% SU Trucks & Buses	2.5	0	0.3	0	0.8	0	0.8	1.7	0	1.0	0	0.3	6.0	0	0.5	0	6.	0	0	6.	6.0
MU Trucks	0	0	 -	0	***	0	Ξ	0	0	Ξ	0	7	4	0	9	0	13	0	0	13	3.5
% MU Trucks	0	0	0.1	0	0.1	0	0.8	0	0	9.0	0	0.3	1.8	0	0.7	0	1.5	0	0	0.0	9.0

Clough, Harbour & Associates LLP III Winners Circle, P.O. Box 5269 Manual Turning Movement Count

Albany, NY 12205

www.cloughharbour.com

File Name: Wolf - Central PM Site Code : 62906010

: 6/29/2006 : 2 Start Date : Page No :

Exit 3 Ariport Connector Wolf Rd & Central Ave 4 to 6

Exit 3 Ariport Connector Wolf Rd & Central Ave PM

4 to 6

Clough, Harbour & Associates LLP
III Winners Circle, P.O. Box 5269
Albany, NY 12205
www.cloughharbour.com Manual Turning Movement Count

File Name: Wolf - Central PM Site Code: 62906010 Start Date: 6/29/2006 Page No: 1

		>	Wolf Road	aq		Central Avenue I-87 Exit 2 EB Off Ramp	Ceri	ntral Avenue	nue			I-87 Exit 2 EB Off Ramp	2 EB O	ff Ramp			S	Central Avenue	Jue	nonna compression de la compression della compre	
Andrew may be described to the control of the contr		ŏ	Southbound	pur			≥	estbound	9			S	Northbound	ַב			Щ	Eastbound	70		
Start Time	Left	Thru	Right		Peds App. Total	Left	Thru	Right	Peds Ap	App. Total	Left	Thru	Right	Peds /	App. Total	Left	Thru	Right	Peds	Ann Total	Int Total
Factor		1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0			0	10	, -			
16:00		0	217	0	328	0	354	83	0	437	-	130	49	c	180	3	σ.ς		9.0	308	+069
16:15		0	280	0	397	0	349	8	0	430		127	2 5	o c	2 2	8 8	070	o c	0 0	000	1000
16:30		0	240	0	335	0	339	9	0	430	٠ م	5.5	23.5	o c	2 5	8 8	202 205	o c	0 0	2400	7.00
16:45	5 80	0	247	0	355	0	342	107	0	449	0	163	20	0 0	200	2 5	223	o c	o c	207	1253
Total		0	984	0	1415	0	1384	362	0	1746	4	570	217	0	791	372	936	0	0	1308	5260
17:00	95	0	263	0	355	0	354	91	0	445	8	160	54	c	216	8	210	c	c	308	1304
17:15		0	300	0	414	0	332	108	0	440	0	160	23) C	2 5	8 5	210	o c	0 0	250	1277
17:30		0	210	0	297	0	336	117	0	453	0	171	23	0	224	100	210	o C	0 0	25.0	1086
17:45		0	210	0	304	0	290	95	0	384	0	151	73	O	224	0	214) C	· c	2 6	1004
lotal	387	0	983	0	1370	0	1312	410	0	1722	2	642	233	0	877	388	855	0	0	1243	5212
Grand Total	818	0	1967	C	2785	c	9696	077	c	2460	q	0		Ċ	000	Î	į				!
Apprch %	29.4	0	70.6	0	i	· c	77.7	1 00	> <	2	2 6	2121	5 6	> 0	200	2 6	1.9	o (0	2551	10472
Total %	7.8	0	18.8	0	26.6	0	25.7	7 4	o c	33.1	† -	7 4	7 2	> 0	1	7 7 7	70.7)	0 (
Passenger Vehicles										3	5	2	2.		B.C.	5.7	1/1	>	>	24.4	
% Passenger Vehicles	97.8	0	99.4	0	98.9	0	98.3	87.8	O	98.2	100	0 00	96 4	c	7 80	7 00	0	c	c	1	ć
SU Trucks & Buses	18	0	10	0	28	c	2	17		30	2	1.00	2		1.00	99.7	160	> 0	> 6	3/.0	98.3
% SH Trucks & Buses	000	C	C	· C	ì	· c	10	- 0	0 0	3;	o (- 0	0 (>	2	N	ŝ	0	0	33	-
MI Trucke	1	0	3 0		- 0		0.0	7.7	0	1.1	0	9.0	7.3	0	0.8	0.3	1.6	0	0	1.2	+:
% MII Trucke	o c	> <	4 6	> 0	V 7	> (7 6)	-	24	0	က	9	0	<u>t</u>	0	24	0	0	24	63
SACRET ON C	.	>	- - -	>		>	9. 9.	0	0	0.7	0	0.2	2.2	0	0.8	0	د .	0	0	0.9	9.0

Clough, Harbour & Associates LLP Manual Turning Movement Count III Winners Circle, P.O. Box 5269

www.cloughharbour.com Albany, NY 12205

File Name: Wolf - Sand Creek PM Site Code: 62806006

: 6/28/2006 : 4 Start Date

Page No

Exit 3 Airport Connector Wolf Rd & Sand Creek Rd 4 to 6

Wolf Rd & Sand Creek Rd PM

4 to 6

Exit 3 Airport Connector

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269

Albany, NY 12205 www.cloughharbour.com

File Name: Wolf - Sand Creek PM : 62806006 Site Code

: 6/28/2006 : 3 Start Date

Page No

	Management of the section of the sec	7.6	2 71 - 71	7			Cond	Cand Creek Road	Soad			*	Wolf Road		•		Sand	Sand Creek Road	oad		
		- (Wolf Hoad	2			2 ×	Westbound	} } } }			S	Northbound	0			Eas	Eastbound			Annual Confidence
		ัก	Southbound	חם			*	20000			-					4. 1	H	thoia	Dade	Ann Total	ţ
Start Time	Left		Thru Right	Peds	Peds App. Total	Left	Thru	Right	Peds A	App. Total	Left	Thru	Right	Peds /	App. Total	Len		nigir.	armal .	-	
Peak Hour Analysis From 16:00 to 17:45 - Peak 1 of	sis From	16:00 to	17:45 - P	eak 1 of	_																
Dook Hour for Entire Intersection Begins at 16:45	utire Inters	ection Be	agins at	16:45										(****						
16.45	8	195	44	0	307	22	8	45		160	99	194	22	~		í	5	*	*	211	
£		0 0		•	000	S. A.	g	44	ĸ	167	73	201	17	0	291	2	20	4	+	7	
17:00	/9	SON N	δţ	4	320	3 :	3 5	į	• (1	F	951	96	C	354	9	92	19	4	218	•
17:15	77	212	28	CI	349	38	202	45	ກ	701	:	- 6	9 (0 0	6	7	13/	23	ď	237	•
17.30	7.7	182	34	0	287	56	130	54	N	212	ري	012	٥	0	100	010	5	200	Ç	87.4	,
omido// lotoT	283	708	184	9	1271	91	417	177	-	969	293	826	<u>∞</u>	C)	1232	5/3	404	70.0	ų ,	5	
lotal volune		2 6	5 .) u			50 0	25.4	4		23.8	69.5	9.9	0.5		31.3	46.4	20.9	4.	-	
% App. Total		97.8	0.4.0	0.0			0.00	1.03	2	100	ĺ	853	779	250	870	935	.754	.746	.750	919	
岩		941	.793	375	.910	.875	.802	918.	Occ.	170.		550	2 6	3	0,00	073	403	182	42	870	
Passenger Vehicles	_	790	184	9	1262	88	417	176	=	989		840 0 40	ָ ק	V 5	200	2 2	200	5	9	6.66	
%. Dassenger Vehicles	9.66	99.0	100	100	99.3	90.1	100	99.4	9	98.6		98.8	67.5	3 °	0.0	3 0	0.00	3 <	2	,	
C11 Trucks & Buses		7	0	0	80	∞	0	-	0	o		o	N	> (7	> 0	- c	0 0	o c	· •	
SO HUCKS & Duses	0.4	6.0	0	0	9.0	8.8	0	9.0	0	6.		-	2.5	0 (). -	> C	, ,	o c	o c	- c	
MU Trucks	0	-	0	0	-	-	0	0	0	, ,	0 0	- ,	0 0	o c		o c	o c	o c	0 0	0	
% MU Trucks	0	0.1	0	0	0.1	<u>-</u> :	0	0	0	0.7			>	>	-	>	>	•	>	•	

.944 4037 99.2 30 0.7 0.7

% SU Trucks & Buses MU Trucks % MU Trucks

997 1078 1037 4070

Total

Exit 3 Airport Connector Wolf Rd & Sand Creek Rd

4 to 6

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269 Albany, NY 12205

www.cloughharbour.com

File Name: Wolf - Sand Creek PM Site Code: 62806006

: 6/28/2006 : 2 Start Date

Page No

Exit 3 Airport Connector Wolf Rd & Sand Creek Rd PM

4 to 6

Clough, Harbour & Associates LLP Ill Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com Manual Turning Movement Count

File Name: Wolf - Sand Creek PM Site Code: 62806006 Start Date: 6/28/2006 Page No: 1

		THE RESIDENCE AND ADDRESS OF THE PERSONS ASSESSED.	Int. Total	110	- 10	8/1	890	928	3630	0	/66	10/8	1037	948	4060		7690			G G	99.2	22	0.7	ď	o .
			App. Total	170	0 0	55	185	205	759	Š	- 070	218	237	230	968		1655		21.5	0	23.0	4	0.2	-	0 (
Road	-		Peds ⊅	4	1 (N ·		-	9	•	† •	4	က	N	13	,	20 7	Ξ	0.2	9	3	0	0	_	> 0
Sand Creek Road	Easthound	50000	Right	3.1	- 9	2 .	54	47	180	7	7 (ō	33	55	190	0	0/5	4.77	4.8	•	3	0	0	c	0
San	u		Thru	111	. 0	0 1	5)	გე	322	8	8 6	36	134	115	434	ļ	1 2	45.7	9.8	7	99.7	N	0.3	c	0 0
			Left	9	9 9	8 2	ر د ا	7.5	251	5,	2 4	0	67	28	259	Š	2 6	χ Σ.α	0.0	900	33.0	N	0.4	c	, (
S.			App. Total	304	262	202	1/2	987	1124	204	200	400	301	259	1205		6707	0	30.3	g	000	N	6.0	er.	(
2 2	pu		Heds	-	•	- c	> 0	7	4	c	o c	> 0	0	2	2	ď	2	9 6	- -	100	3	>	0	0	, ,
Wolf Road	Northbound	ä	Hight	16	ō	2 5	7 6	7	78	17	: %	2 4	9	ଯ	79	157	2 4	; c	7	95.5	5 6	0	3.8	•	9
2 2 2 2 2	Z	F	חשם	227	177	140	2 5	5	111		25.5					184	609	9 6	80.3	ō	3 7	<u> </u>	0.9	N	0
		40	Геп	09	99	7 8	- 0	0 0	265	73	77		0 !	65	230	אלע	3 c	1 (50	7.1	8 66		(0.2	0	C
nd Creek Road Wolf Road		A A	Арр. готаг	141	157	154	1 6	3 2	612	167	157		717	196	732	1344	:)	17 E	3,	7 86	9	2 (1.2	_	-
Road	멸	Dodo	รูกอน	7	e	י וכ	· •	- 9	9	7.	er.	0 0	V 0	0	13	δ	0	1 0	5	100	c	0 0	0	0	C
nd Creek Road	Westbound	ţ	11611	40	20	44	45	2 5	8	44	34	7	† (20	190	369	27.5	4	2	99.7	-	- (٥.٠	0	C
San	>	The	2	65	83	8	8 8	1000	878	8	102	130	2 7	8 :	444	773	57.5	101		666	-		- ·	0	0
		#a					2 %			25	2	26	2 4	0 5	& 20	173	12.9	20		91.3	14	0	o ·	-	9.0
		Ann Total	י משלי	296	252	280	307	1135	200	328	349	287	282	202	/77	2362		30.7		99.2	16	1	5	N	0.1
þ	밀	Peds		-	-	က	0	ĸ	י	4	7	С	, 4-	- 1	•	12	0.5	0.2	-	100	0	c		>	0
Wolf Road	Southbound	Right		33	43	4	44	166	3	48	28	34	98	92.4	0	342	14.5	4.4		99.4	2	90	9	>	0
	ű	Thru	1	66	152	170	195	712	ī	209	212	182	159	76.7	70/	1474	62.4	19.2	AND THE PERSON NAMED IN COLUMN	99.1	12	α C	5	4	0.1
		Left	10	- 0	26	29	89	252		29	77	71	67	080	202	534	22.6	6.9		9.66	7	0.4) (
	190A 00A	Start Time	48.00	0.00	16:15	16:30	16:45	Total		17:00	17:15	17:30	17:45	LetoT	3	Grand Total	Apprch %	% Lotal %	Passenger Vehicles	% Passenger Vehicles	SU Trucks & Buses	% SIL Trucks & Buses	MI Trucke		% MU Irucks

Exit 3 Airport Connector Wolf Rd & Metro Park Rd

4 to 6

Manual Turning Movement Count Clough, Harbour & Associates LLP

III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

File Name: Wolf - Metro Park PM Site Code: 62806004

Start Date: 6/28/2006

Page No : 4

Exit 3 Airport Connector Wolf Rd & Metro Park Rd

4 to 6

Manual Turning Movement Count

Clough, Harbour & Associates LLP III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

File Name: Wolf - Metro Park PM Site Code: 62806004

: 6/28/2006 : 3 Start Date: Page No:

		_ (Wolf Road	ָּקַ		~~~	Met	Aetro Park Roa	Road			3	Wolf Road	-			¥	less Access	SS		
		ֿֿֿֿֿ	southbound	2			-	Vestbound	힏			ž	lorthbound	g			ũ	astbound	70		
Start Time Left Thru Right Peds App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	Peds App. Total	Left	Thru	Right	Peds ,	Thru Right Peds App. Total	Left	Thru	Right	Peds	Thru Right Peds App Total	=
Peak Hour Analysis From 16:00 to 17:45 - Peak 1 of 1	rsis From 1	6:00 to	17:45 - Pe	3ak 1 of	-)				***************************************	0		deb.	
Peak Hour for Entire Intersection Benins at 16:45	tire Interse	ection Be	edins at 1	6.45																	

		Int. Total				703	20 K	2007	6000	6262		325.	2898	99 1	24	ά		-	0.0
	Eastbound	App. Total In			serve	7	. c	3 8	27	•	Chr	2	11	50	2) C	>	0	0
SS -		Peds An				c	·	> ₹	7	· •	- 0.70	Des.	7	100) C) C)	0	0
less Access		Right				0	1 0	· "	, r	0	- 0.	200.	7	100		· C	٠ (0	0
₽'		Thru	National Control of the Control of t			0	1 67	> C	2	α 1	0.7	OSC.	9	100	C	· C) (0	0
		Left				-	1	<u> </u>	2 12	5 7	1 000	000	22	100	C	· C	•	0	0
	Northbound	Peds App. Total				409	361	337	1430	2	720	4/0.	1417	99.1	13	0	9	0	0
2 }		Peds				-	· c	· C) 	- -	250	50.		100	0	C	•	>	0
WOII HOAD		Right				35	75	. E.	120	2 0	600	200.	119	99.2	•	0.8	;	>	0
		Thru				372	325	305	1300	000	27.00	† 5	1288	99.1	12	6.0		>	0
		Left			***************************************	4	2	-		9 0									
	Westbound	App. Total	***************************************			105	6	6	359		REE	3	358	99.7	-	0.3		>	0
מממ		Peds			-	0	0	C	-	03	250	3	-	9	0	0		>	0
		Right			29	69	51	4	223	62.1	a a a	9	222	9.66	•	0.4	c	>	0
		Thru				*	4	က	0.	2.5	563	9	ဢ	100	0	0	c	>	0
		Left			34	35	35	55	126	35.1	000		126	9	0	0	C	>	0
		Thru Right Peds App. Total	-		258	264	252	283	1057		934		1046	99.0	10	0.9	•	-	0.1
2 5		Peds	eak 1 of	16:45	0	0	_	0	-	0.1	250	,	-	9	0	0	c	٠ د	0
outhbourg		Right	17:45 - P	egins at	, 5	9	14	12	49	4.6	.875	9	94	9	0	0	c	۰ د	0
Ű.			16:00 to	section B	220	223	212	231	886		-	-	0/0	98.8	9		•		
		Left	sis From	ntire Intera	25	31		4	121	11.4	.756	+0+	<u> </u>	8	0	0	_		O
	i	Start Ime	Peak Hour Analysis From 16:00 to 17:45 - Peak 1 of 1	Peak Hour for Entire Intersection Begins at 16:45	16:45	17:00	17:15	17:30	Total Volume	% App. Total	Ħ		Passenger Vehicles	% Passenger Vehicles	SU Trucks & Buses	% SU Trucks & Buses	MI Trucks) · · · · · · · · · · · · ·	% MU TUCKS

Wolf Rd & Metro Park Rd Exit 3 Airport Connector

4 to 6

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

File Name: Wolf - Metro Park PM

: 6/28/2006 : 2 Site Code : 62806004 Start Date

Page No

Wolf Rd & Metro Park Rd Exit 3 Airport Connector

4 to 6

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

File Name: Wolf - Metro Park PM Site Code: 62806004

Start Date : 6/28/2006 Page No : 1

Start Time			-	Wolf Road	ğ	***************************************		Metro	ro Park Road	oad			≥	Wolf Road	70			Ŧ	Hess Access	SS		
Thin Right Peds App. Total Left Thin Right Peds App. Total Int. Int. Right Peds App. Total Int.			ű	outhbou	힏			Š	estboun	75			2	rthboun	Þ			ñ	stboun	ō		
1.0 1.0	Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right		op. Total	Left	Thru	Right		App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
15 183 10 0 218 35 6 47 2 90 5 277 19 0 301 9 1 4 2 16 25 220 23 13 2 326 2 326 16 0 4 2 16 25 220 13 0 258 34 15 1 326 13 1 4 2 17 74 828 42 10 96 2 296 23 13 1 1 4 2 2 2 2 2 2 2 1 <td< td=""><td>Factor</td><td>1.0</td><td>1.0</td><td>1.0</td><td>1.0</td><td></td><td>1.0</td><td>1.0</td><td>1.0</td><td>+</td><td></td><td>1.0</td><td>1.0</td><td>1.0</td><td>+</td><td></td><td>1.0</td><td>1.0</td><td>1.0</td><td>_</td><td></td><td></td></td<>	Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	+		1.0	1.0	1.0	+		1.0	1.0	1.0	_		
13 218 9 0 240 13 2 31 0 46 2 305 21 1 329 16 0 4 2 22 2 386 23 0 324 1 39 2 286 23 0 328 1 6 96 1 1200 87 1 1299 48 3 13 7 71 74 828 42 0 94 11 189 5 324 11 1200 87 1 1299 48 3 13 7 71 25 212 14 1 252 35 4 51 0 90 2 325 34 0 91 1 1200 87 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16:00	\$	193	9	0	218	35	9	47	2	8	5	277	19	0	301	6	-	4	7	16	625
21 197 10 0 228 37 2 52 2 320 24 0 346 10 1 3 2 16 25 220 13 1 2 324 1 1200 87 1 1299 48 3 13 1 7 71 31 223 10 0 264 35 1 69 0 105 4 372 32 1 409 11 2 2 0 15 2 2 2 1 409 11 1200 87 1 1209 48 3 13 1 7 7 1 4 372 32 1 400 1 100 8 3 1 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>16:15</td><td>5</td><td>218</td><td>6</td><td>0</td><td>240</td><td>13</td><td>7</td><td>31</td><td>0</td><td>46</td><td>8</td><td>305</td><td>51</td><td>-</td><td>329</td><td>16</td><td>C</td><td>4</td><td>۱۸</td><td>2</td><td>637</td></t<>	16:15	5	218	6	0	240	13	7	31	0	46	8	305	51	-	329	16	C	4	۱۸	2	637
25 220 13 0 258 34 1 59 1 96 2 298 23 0 323 13 1 17 74 828 42 0 944 11 189 5 324 11 1200 87 1 1299 48 3 13 7 71 31 223 10 0 264 35 1 69 0 105 4 372 32 1 409 11 2 2 0 15 40 231 12 34 0 361 17 3 0 25 3 1 0 3 1 2 2 2 2 4 4 36 1 1 14 1 252 34 0 36 1 6 2 325 34 0 36 1 1 1 1 1 1	16:30	21	197	10	0	228	37	7	25	8	83	α	320	24	0	346	2	·	m	1 01	16	683
74 828 42 0 944 11 189 5 324 11 1200 87 1 1299 48 3 13 7 71 31 223 10 0 264 35 1 69 0 105 2 325 34 0 361 17 3 0 5 25 25 212 14 1 252 35 4 51 0 90 2 325 34 0 361 17 3 0 5 25 22 3 4 0 90 1 305 31 0 361 17 3 0 3 1 30 3 1 2 3 4 4 0 69 1 305 31 0 31 1 1423 4 5 7 9 7 9 7 7 1 10	16:45	52	220	13	0	258	34	-	29	-	92	2	298	23	0	323	13	-	N	+	17	693
31 223 10 0 264 35 1 69 0 105 4 372 32 1 409 11 223 34 0 361 17 3 0 5 25 25 4 51 0 90 2 325 34 0 361 17 3 0 5 25 25 34 0 361 17 3 0 5 25 25 34 0 361 17 3 0 5 25 34 0 361 16 0 3 1 30 3 16 0 3 1 30 3 10 3 1	Total	74	828	45	0	944	119	=	189	5	324	=	1200	87	-	1299	48	က	13	7	71	2638
25 212 14 1 252 35 4 51 0 90 2 325 34 0 361 17 3 0 5 25 40 231 12 0 283 22 3 44 0 69 1 305 31 0 37 16 0 3 1 20 27 196 13 0 28 17 1 42 5 65 3 279 34 0 316 10 9 206 5 329 10 131 1 1423 54 5 7 9 75 3 1 10 10 1	17:00	31	223	10	0	564	32		69	0	105	4	372	32	-	409	=	8	Q	0	15	793
40 231 12 0 283 22 3 44 0 69 1 305 31 0 337 16 0 3 1 20 27 196 13 0 236 17 1 42 5 65 3 279 34 0 316 10 2 3 1 <	17:15	52	212	4	-	252	32	4	51	0	8	8	325	34	0	361	17	က	0	52	25	728
27 196 13 0 236 17 1 42 5 65 3 279 34 0 316 10 0 2 3 15 123 862 49 1 1035 109 9 206 5 329 10 1281 131 1 1423 54 5 7 9 75 197 1690 91 1 1690 91 10 653 21 2481 218 2 2722 102 8 20 10 146 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 14 15 14	17:30	40	231	12	0	283	55	က	44	0	69	-	305	31	0	337	16	0	က	-	2	209
197 1690 91 1 1979 228 20 395 10 1281 131 1 1423 54 5 7 9 75 197 1690 91 1 1979 228 20 395 10 663 21 2481 218 2 2722 102 8 20 16 146 16 146 17 17 17 17 17 17 18 0.1 69.9 5.5 13.7 11 11 11 18 0.1 49.5 19 0.1 0.3 2.7 1.7 0 10 10 0.4 45.1 4 0 49.5 13.7 11 0 1 0.4 45.1 4 0 49.5 1.9 0.1 0.0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< td=""><td>17:45</td><td>27</td><td>196</td><td><u>က</u></td><td>0</td><td>236</td><td>17</td><td>-</td><td>42</td><td>2</td><td>92</td><td>က</td><td>279</td><td>34</td><td>0</td><td>316</td><td>9</td><td>0</td><td>0</td><td>က</td><td>15</td><td>632</td></t<>	17:45	27	196	<u>က</u>	0	236	17	-	42	2	92	က	279	34	0	316	9	0	0	က	15	632
197 1690 91 1 1979 228 20 395 10 653 21 2481 218 2 2722 102 8 20 16 146 5 10 85.4 4.6 0.1 34.9 3.1 60.5 1.5 0.2 11.9 0.4 45.1 4 0 49.5 1.9 0.1 0.4 0.3 0.7 1.0 0.4 45.1 4 0 49.5 1.9 0.1 0.4 0.3 0.7 0.0 0.4 45.1 4 0 49.5 1.9 0.1 0.4 0.3 0.7 0.0 0.0 0.0 0 0.0	Total	123	862	49	-	1035	109	0	206	5	329	10	1281	131	-	1423	54	5	7	0	75	2862
10 85.4 4.6 0.1 34.9 3.1 60.5 1.5 0.8 91.1 8 0.1 69.9 5.5 13.7 11 3.6 30.7 1.7 0 20 1.7 0 0 1.9 0.4 45.1 4 0 49.5 1.9 0.1 0.4 0.3 2.7 1.1 0.4 0.3 2.7 1.1 0.4 0.3 2.7 1.0 0.4 0.3	Grand Total	197	1690	91	,	1979	228	8	395	01	653	21	2481	218	7	2722	102	œ	20	16	146	5500
3.6 30.7 1.7 0 36 4.1 0.4 7.2 0.2 11.9 0.4 45.1 4 0 49.5 1.9 0.1 0.4 0.3 2.7 100 98.8 98.9 100 98.9 100 100 99.5 100 99.1 100 99.1 100 99.1 100 99.1 100 99.1 100 99.1 100 99.1 100 99.1 100 99.1 100 99.1 100 99.1 100 99.1 100 99.1 100 99.1 100 99.1 100 99.1 100 99.1 100 99.1 100 99.1 100	Apprch %	9	85.4	4.6	0.1		34.9	3.1	60.5	1.5		0.8	91.1	æ	0.1		669	5.5	13.7	=))))
100 98.8 98.9 100 99.2 100 99.5 100 99.1 100<	% Lotal %	3.6	30.7	1.7	0	36	4.	0.4	7.2	0.2	11.9	0.4	45.1	4	0	49.5	6	0.1	0.4	0.3	2.7	
100 98.8 98.9 100 98.9 100 99.2 100 99.5 100 99.1 100 99.1 100 99.1 100 99.1 100 99.1 100 99.1 100 99.1 100 98.6	Passenger Vehicles													***************************************								
0 20 1 0 21 0 0 3 0 3 0 21 1 0 22 1 0 1 2 0 0 1 2 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0	% Passenger Vehicles	100	98.8	6.86	9	98.9	100	100	99.2	100	99.5	100	99.1	99.1	100	99.1	66	100	95	100	986	90
0 1.2 1.1 0 1.1 0 0 0.8 0 0.5 0 0.8 0.5 0 0.8 1 0 5 0 1.4 0 0 0 1.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SU Trucks & Buses	0	20	-	0	21	0	0	က	0	3	0	21	-	c	22	,	c	,	2	0	αν
0 01 0 0 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0	% SU Trucks & Buses	0	1.2	<u>-</u>	0	1.1	0	0	0.8	0	0.5	0	0.8	0.5	· C	ا ا		o C	- LC	o c	1 4	p o
0 0.1 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0	MU Trucks	0	-	0	0	-	0	0	0	0	0	C		-	U	0		0) (ò	: 0	9 (7
	% MU Trucks	0	0.1	0	0	0.1	0	0	0	0	0	0	· C	0.5	· C	0	o C	o c) C	0 0	o C	, c

Wolf & I-87 NB Off-Ramp Exit 3 Airport Connector 4 to 6

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

File Name: Wolf - Exit 4 NB Off-Ramp PM Site Code: 71106002 Start Date: 7/11/2006 Page No: 4

Peak Hour Data 2525 13 3 2541 Total Peak Hour Begins at 16:30 Passenger Vehicles SU Trucks & Buses MU Trucks 1543 In 863 North 861 869 2 998 Out 0000 0000 Left 989 Out 1988 7 9 2004 473 473 464 464 128 0 1 129 129 129 0 0 0 0 78-1 0 0 0

Exit 3 Airport Connector Wolf & I-87 NB Off-Ramp

4 to 6

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

File Name: Wolf - Exit 4 NB Off-Ramp PM Site Code: 71106002 Start Date: 7/11/2006 Page No: 3

Southbound	And and and and of Property of Type			Wolf Boad	75			*	olf Road				1-87 N	-87 NB Off-Ramp	amp							
260 0 0 0 371 0 8 379 106 0 41 0 260 0 0 0 0 371 0 8 379 106 0 41 0 200 0 0 0 0 449 1 2 452 109 0 33 0 200 0 0 0 0 449 1 2 452 109 0 33 0 200 0 0 0 0 0 449 1 2 452 109 0 26 0 219 0 0 0 0 0 0 129 0 26 0 26 0 0 0 0 26 149 1 12 154 473 0 129 0 21.44 0 129 0 0 1 0 1 <th< th=""><th></th><th></th><th>ú</th><th>outhbou</th><th>ַ בַ</th><th></th><th></th><th>. 0</th><th>rthboun</th><th>. 75</th><th></th><th></th><th>ű</th><th>stboun</th><th>7</th><th></th><th></th><th></th><th></th><th>A CONTRACTOR OF THE PERSON NAMED IN CONT</th><th>per la parente con constitue esty della deletata</th><th></th></th<>			ú	outhbou	ַ בַ			. 0	rthboun	. 75			ű	stboun	7					A CONTRACTOR OF THE PERSON NAMED IN CONT	per la parente con constitue esty della deletata	
260 0 0 0 371 0 8 379 106 0 41 200 0 0 0 0 0 0 449 1 2 452 109 0 33 200 0 0 0 0 0 0 1 366 140 0 26 219 0 0 0 0 0 0 1531 1 12 1544 473 0 26 871 0 0 0 0 0 0 1531 1 12 1544 473 0 129 873 000 0 0 0 0 0 0 129 0 129 863 0 0 0 0 0 0 0 128 0 128 99.1 0 0 0 0 0 0 0 0 <th< th=""><th>Start Time</th><th></th><th></th><th>Right</th><th>Peds</th><th>App. Total</th><th>Left</th><th>Thru</th><th>Right</th><th></th><th>pp. Total</th><th>Left</th><th>Thru</th><th>Right</th><th></th><th>pp. Total</th><th>Left</th><th>Thru</th><th>Right</th><th>- 1</th><th>App. Total</th><th>Int. Total</th></th<>	Start Time			Right	Peds	App. Total	Left	Thru	Right		pp. Total	Left	Thru	Right		pp. Total	Left	Thru	Right	- 1	App. Total	Int. Total
260 0 0 0 371 0 8 379 106 0 41 200 0 0 0 0 449 1 2 452 109 0 33 200 0 0 0 0 0 0 1 366 140 0 26 219 0 0 0 0 0 1 366 140 0 26 871 0 0 0 0 0 0 129 0 26 873 0 0 0 0 0 0 0 129 0 129 873 0 0 0 0 0 0 0 128 0 128 99.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Dook Hour Analys	ic From	16:00 to	17.45 - P	pak 1 of	-																
1 260 0 0 0 371 0 8 379 106 0 41 0 200 0 0 0 0 449 1 2 452 109 0 33 1 219 0 0 0 0 0 0 1 366 140 0 26 2 871 0 0 0 0 0 0 1531 1 12 1544 473 0 26 20 873 0 0 0 0 0 159 0 129 0 214 500 838 0 0 0 0 0 0 0 129 0 129 500 838 0 0 0 0 0 0 1449 1 12 455 109 0 149 500 863 0 0	המשר וסכו המשל	2	20.00	2	3	-																
1 260 0 0 371 0 8 379 106 0 41 0 200 0 0 0 449 1 2 452 109 0 33 1 219 0 0 0 0 0 12 452 109 0 20 2 200 0 0 0 0 0 12 440 0 26 0.2 871 0 0 0 0 0 129 0 129 0.2 0 0 0 0 0 0 129 0 129 0.2 0 0 0 0 0 0 0 128 0 129 0 0 0 0 0 0 0 128 0 128 0 0 0 0 0 0 0 0 0	Peak Hour for Ent	ire Inters	ection B	egins at 1	16:30																_	
0 260 0 260 0 0 0 0 0 449 1 2 452 106 0 41 0 200 0 0 0 0 0 0 449 1 2 452 109 0 33 0 218 0 1 249 1 2 452 109 0 33 0 218 0 0 0 0 0 0 1 366 140 0 26 0 869 0 2 871 0 0 0 0 0 129 0 129 0 99 0 0 0 0 0 0 0 0 0 144 0 129 0 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <	16:30	0	191	,	-	meneror												•	;	Ċ	1	700
0 200 0 200 0 0 0 449 1 2 452 109 0 33 0 218 0 1 219 0 0 0 0 0 365 140 0 26 0 218 0 0 0 0 0 0 123 1 12 154 473 0 26 0 99.8 0 0 0 0 0 0 129 0 129 0 129 0 99.8 0 0 0 0 0 0 124 473 0 129 0 99.8 0 0 0 0 0 0 0 124 473 0 124 0 0 0 0 0 0 0 0 0 124 473 0 124 0 0 0 </td <td>16.45</td> <td>c</td> <td>260</td> <td>C</td> <td>C</td> <td>260</td> <td>C</td> <td>C</td> <td>C</td> <td>0</td> <td>0</td> <td>0</td> <td>371</td> <td>0</td> <td>σ</td> <td>379</td> <td>106</td> <td>0</td> <td>41</td> <td>)</td> <td>14/</td> <td>00/</td>	16.45	c	260	C	C	260	C	C	C	0	0	0	371	0	σ	379	106	0	41)	14/	00/
0 250 0 0 365 0 1 366 140 0 26 0 869 0 2 871 0 0 0 0 1531 1 12 1544 473 0 129 0 99.8 0 0.2 871 0 0 0 0 0 129 786 0 21.4 0.00 .36 .00 .00 0 0 0 0 129 786 0 21.4 .000 .836 .000 </td <td>10.1</td> <td>> <</td> <td>3 6</td> <td>0</td> <td>0 0</td> <td>300</td> <td>o c</td> <td>· c</td> <td>· c</td> <td>· c</td> <td>c</td> <td>· C</td> <td>449</td> <td>-</td> <td>ς.</td> <td>452</td> <td>109</td> <td>0</td> <td>83</td> <td>0</td> <td>142</td> <td>794</td>	10.1	> <	3 6	0	0 0	300	o c	· c	· c	· c	c	· C	449	-	ς.	452	109	0	83	0	142	794
0 218 0 1 219 0 <td>00:71</td> <td>></td> <td>3</td> <td>) ·</td> <td>ο.</td> <td>000</td> <td>o (</td> <td>> <</td> <td>> <</td> <td>> 0</td> <td>0 0</td> <td>o c</td> <td>100</td> <td>• <</td> <td>۱ -</td> <td>366</td> <td>140</td> <td>c</td> <td>26</td> <td>C</td> <td>166</td> <td>751</td>	00:71	>	3) ·	ο.	000	o (> <	> <	> 0	0 0	o c	100	• <	۱ -	366	140	c	26	C	166	751
0 869 0 2 871 0 0 0 0 1531 1 12 1544 473 0 129 0 99.8 0 0.2 0 0 0 0 0 0 10.0 124 473 0 124 0.000 .836 .000 .000 .000 .000 .000 .000 .852 .250 .375 .854 .845 .000 .787 0 861 0 0 0 0 0 0 128 .000 .787 .444 0 128 0 99.1 0 0 0 0 0 99.5 100 10 99.2 0<	17:15	0	218	0	_	219	>	>	>	>	>	>	200	>	-	000	2	> 0	1 0	0	000	1.400
0 99.8 0 0.2 0 0 0 0 99.2 0.1 0.8 78.6 0 21.4 .000 .836 .000 .000 .000 .862 .250 .375 .854 .845 .000 .787 .000 .836 .000 <td>Total Volume</td> <td>c</td> <td>869</td> <td>c</td> <td>٥</td> <td>871</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1531</td> <td>-</td> <td>72</td> <td>1544</td> <td>473</td> <td>0</td> <td>129</td> <td>0</td> <td>200</td> <td>200</td>	Total Volume	c	869	c	٥	871	0	0	0	0	0	0	1531	-	72	1544	473	0	129	0	200	200
39.0 39.0 39.0 30.0 <th< td=""><td>John Total</td><td>o c</td><td>8 8</td><td>o c</td><td>i 0</td><td></td><td>· C</td><td>· C</td><td>· C</td><td>c</td><td></td><td>C</td><td>66</td><td>0.1</td><td>0.8</td><td></td><td>78.6</td><td>0</td><td>21.4</td><td>0</td><td></td><td></td></th<>	John Total	o c	8 8	o c	i 0		· C	· C	· C	c		C	66	0.1	0.8		78.6	0	21.4	0		
	% App. 10lal	2 0	93.0	-	4 5		900	5	000	000	000	000	852	250	375	854	.845	000	787.	90.	.907	.950
0 861 0 2 863 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	77	3	000	1	DOC:		3	3	000	999	3	2	100	7	C.F	1537	161	C	128	c	592	2662
0 99.1 0 100 99.1 0 0 0 0 0 0 99.5 100 100 99.5 98.1 0 99.2 0 99.5 0 99.1 0 99.2 0 99.	Passenger Vehicles	0	861	0	N	863	>	>	>	>	>	>	1224		7 :	3 5	5 ;	,		0 (9 6	
0 0.8 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0	9/ Poesenner Vahirles	С	99.1	0	100	99.1	0	0	0	0	0	0	99.5	90	100	99.5	98.1	0	38.5	>	98.3	33.5
0 0.8 0 0.8 0 0 0.8 0 0 0 0 0 0 0.4 0 0 0.4 0.2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	communication of the communica	· C	_	· C		7	c	C	C	C	C	C	9	0	0	9		0	0	0	-	14
	SU Incks & Buses	0 (- (0 (> 0	- 0	·	0 0	0 0) C	· c	· c	0	· C	c	0.4	0	C	C	0	0.2	0.5
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0	% SU Trucks & Buses	0	χ. Ο	0	>	Ö.	>	>	>	>	>	۰ د	† ·)	0	;	į		. +		C	+
0 01 0 0 01 0 0 0 0 0 0 0 0 0 0 0 1 1.7 0 0.8	MU Trucks	0	•	0	0	-	0	0	0	0	0	0	-	0	0	_	œ	>		>	ָ מ	= ;
	% MITTIICKS	C	0	0	0	0.1	0	0	0	0	0	0	0.1	0	0	0.1	1.7	0	0.8	0	ر تئ	4.0

Exit 3 Airport Connector Wolf & I-87 NB Off-Ramp

4 to 6

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269

Albany, NY 12205 www.cloughharbour.com

File Name: Wolf - Exit 4 NB Off-Ramp PM

Site Code : 71106002 Start Date : 7/11/2006 Page No : 2

Clough, Harbour & Associates LLP III Winners Circle, P.O. Box 5269 Albany, NY 12205 Manual Turning Movement Count

Exit 3 Airport Connector Wolf & I-87 NB Off-Ramp

PM 4 to 6

File Name: Wolf - Exit 4 NB Off-Ramp PM Site Code: 71106002 Start Date: 7/11/2006 Page No: 1

rucks	And the same of th
MUT	Name and Address of the Owner, where
Buses - I	The state of the s
SU Trucks &	Contraction of the Party of the
	The state of the s
Issenger Vehicles	The state of the s
Passeng	
Printed-	
Groups P	
	_

Notificad Noti	ALIAN COMPANY OF THE PROPERTY	TOTAL STREET, ST.	And the second s	The state of the s			Group	s Printe	d- Pass	enger V	Groups Printed- Passenger Vehicles - SU Trucks & Buses - MU Trucks	SU Truk	cks & B	M - sasn	U Truck	S						
Contribound				Wolf RC	ad			3	olf Roa	q			1-87 N	IB Off-R	amp							
Column Hight Peds App. Total Left Thru Left	The state of the s		S)	outhbo	puņ			Š	rthbou	Þ			ü	asthoun	-							
0 207 0 0 0 368 0 0 344 0 0 445 0 0 445 0 0 445 0 0 147 0 18 0 145 0 145 0 145 0 145 0 145 0 145 0 145 0 145 0 145 0 145 0 145 0 145 0 145 0 145 0 145 0 145 0 145 0 145 0 145 0	Start Time	Left	Thru				Left	L	Right	spac	Voo. Total	Left	Thru	Right	Peds	Ann Total	#a	Thru	Bioht	ļ.,,,,	Ann Total	Totol
199 199	16:00	0	207	0	0	207	C	c	c			-	260	,		1 Oct		2	100		App Otal	
1	16.15	C	100	C	*	000		0 0	0	0	0 ()	3 :	٠ د	>	200	30	>	77	0	158	<u> </u>
0 191 0 192 0 0 346 0 1 347 118 0 29 0 0 256 0 0 0 0 0 0 41 0 29 0 41 0 29 0 41 0 42 11 0 29 0 41 0 1429 0 9 41 0 41 0 41 0 41 0 110 0 110 0 0 0 0 0 0 0 0 0 0 0 110 0	0.00	0 0	9 7	0 (200	>	>	>	0	0	0	344	0	0	344	137	0	<u>4</u>	0	155	569
0 260 0 0 0 0 371 0 8 379 106 0 41 0 11 0 41 0 11 0 41 0 11 0	10:30	0	19.	0	_	192	0	0	0	0	0	0	346	O	,-	347	118	c	00	C	147	989
0 857 0 2 859 0 0 0 1429 0 9 1438 497 0 110 0 0 208 0 0 0 0 0 0 1429 0 9 1438 497 0 110 0 0 218 0 1 248 1 2 452 109 0 110 0 0 208 0 0 0 0 0 0 0 0 266 0 318 107 0 266 0 328 10 328 10 328 10 328 10 328 10 328 10 328 10 328 10 328 10 328 10 328 10 328 10 328 10 328 10 328 11 12 2882 962 0 127 0 127 0 </td <td>16:45</td> <td>0</td> <td>260</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>С</td> <td>C</td> <td>371</td> <td>c</td> <td>α</td> <td>370</td> <td>2 5</td> <td>o c</td> <td>3 -</td> <td>0 0</td> <td>74.</td> <td>7 00</td>	16:45	0	260	0	0		0	0	0	0	С	C	371	c	α	370	2 5	o c	3 -	0 0	74.	7 00
0 200 0 0 449 1 2 452 109 0 33 0 0 218 0 1 219 0 0 0 0 365 0 1 366 140 0 26 0 26 0 0 0 0 386 107 0 38 0 0 386 107 0 38 0 386 0 386 0 386 0 386 0 386 0 386 0 127 0 0 0 0 0 318 109 0 326 0 326 0 127 0 0 0 0 0 1440 1 3 1444 465 0 127 0	Total	0	857	0	2		0	0	0	0	0	0	1429	o	σ	1438	497	0	1 5	> <	14/	00/
0 200 0 0 0 0 0 0 0 0 0 0 365 0 1 2452 109 0 286 0 1 366 140 0 26 0 0 365 0 1 366 140 0 26 0 0 366 140 0 266 0 266 0 366 107 0 266 0 366 0 0 366 107 0 366 0 0 366 0 366 107 0 366 0 366 0 366 0 366 0 366 0 366 0 366 0 378 0 366 0 366 0 366 0 127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							_					,) !)	•	}	?	>	2	>	3	282
0 218 0 1 219 0 0 0 365 0 1 366 103 0 36 0 366 103 0 36 0 36 107 0 36 0 36 0 36 107 0 36 0 36 107 0 36 0 37 0 1 0 36 0 37 0 1 1 0 0 0 0	17:00	0	200	0	0	200	0	0	0	C	c	C	440	-	c	45.0	9	c	ć	(7	1
0 208 0 0 208 0 0 308 0 0 308 140 0 26 0 0 308 107 0 26 0 0 318 107 0 26 0 0 318 107 0 36 0 0 38 107 0 38 0 0 318 107 0 38 0 0 318 107 0 38 0 0 318 107 0 38 0 0 318 107 0 32 0 127 0	17:15	0	218	0	-	219	c	c	· c) C	0 0	o c	9 9	- c	٠ ١	700	60	> 0	ဂ္ဂ (> •	147	76/
0 212 0 226 0 0 0 0 0 0 0 0 308 107 0 36 107 0 36 0 0 212 0 2 214 0	17:30	_	acc	• <	٠ ر	2 6	o 0	0 (0	، د	O	>	200	>	_	300	140	0	56	0	166	751
0 212 0 2 214 0 0 0 0 318 0 0 318 0 0 318 0 0 318 109 0 32 0 0 638 0 3 841 0 0 0 0 0 0 127 0 0 99.7 0 0.3 1700 0 <td< td=""><td>17.45</td><td>0</td><td>9 6</td><td>0</td><td>> (</td><td></td><td>-</td><td>5</td><td>></td><td>0</td><td>0</td><td>0</td><td>308</td><td>0</td><td>0</td><td>308</td><td>107</td><td>0</td><td>36</td><td>0</td><td>143</td><td>656</td></td<>	17.45	0	9 6	0	> (-	5	>	0	0	0	308	0	0	308	107	0	36	0	143	656
0 838 0 3 841 0 0 0 0 1440 1 3 1444 465 0 127 0 0 1695 0 5 1700 0 0 0 0 0 2869 1 12 2882 962 0 237 0 1 0 99.7 0 0.3 0	C4. /-	0	717)	7		0	0	0	0	0	0	318	0	0	318	109	0	32	О	141	673
0 1695 0 5 1700 0 0 0 0 2869 1 12 2882 962 0 237 0 0 99.7 0 0.3 0 0 0 0 0 0 0 19.8 0 19.8 0 19.8 0 19.8 0	Olai	>	838	0	m		0	0	0	0	0	0	1440	-	က	1444	465	0	127	0	592	2877
0 99.7 0 0.3 0 <td>Grand Total</td> <td>0</td> <td>1695</td> <td>0</td> <td>5</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>C</td> <td>C</td> <td>c</td> <td>2869</td> <td>4-</td> <td>5</td> <td>COBC</td> <td>CaO</td> <td>c</td> <td>201</td> <td>c</td> <td>4</td> <td></td>	Grand Total	0	1695	0	5		0	0	0	C	C	c	2869	4-	5	COBC	CaO	c	201	c	4	
0 29.3 0 0.1 29.4 0 0 0 0 49.6 0 0.2 49.9 16.6 0 4.1 0 0 98.9 0 0 0 0 0 0 99.3 100 100 99.3 16.6 0 4.1 0 0 17 0 0 0 0 0 0 14 0 0 14 0 0 14 0 <td>Apprch %</td> <td>0</td> <td>99.7</td> <td>0</td> <td>0.3</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>c</td> <td>)</td> <td>· c</td> <td>8 8 7</td> <td>- c</td> <td>, C</td> <td>7007</td> <td>200</td> <td>> <</td> <td>150</td> <td>> 0</td> <td>88</td> <td>2/81</td>	Apprch %	0	99.7	0	0.3		0	0	0	c)	· c	8 8 7	- c	, C	7007	200	> <	150	> 0	88	2/81
0 98.9 0 100 98.9 0 0 0 99.3 100 100 99.3 100 100 99.3 100 100 99.2 0 0 0 0 14 0 0 14 0 0 14 0 0 14 0 0 14 0	Total %	0	29.3	0	0.1		0	0	C	· c	C	· c	40.5	o c	; c	000	4 60.7	> 0	0.7	> 0	1	
0 98.9 0 100 98.9 0 0 0 0 99.3 100 100 99.3 100 100 99.3 100 100 99.2 0 0 99.2 0 0 99.2 0 0 0 0 0 14 0 0 14 0 0 14 0 0 14 0 0 14 0 <td>Passenger Vehicles</td> <td></td> <td></td> <td>THE PARTY OF THE P</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>)</td> <td></td> <td>2</td> <td></td> <td>2.0</td> <td>49.9</td> <td>0.0</td> <td>></td> <td>+,-</td> <td>0</td> <td>7.</td> <td>79 Per 1919 (1919) (191</td>	Passenger Vehicles			THE PARTY OF THE P)		2		2.0	49.9	0.0	>	+,-	0	7 .	79 Per 1919 (1919) (191
0 17 0 0 17 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0	% Passenger Vehicles	0	98.9	0	100		0	0	0	0	0	С	66	100	100	00	20	c	00	c	000	2
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SU Trucks & Buses	0	17	0	0	17	0	0	C	c	c	0	14			7.0	9		4.0	> 0	0.00	80
0 0.1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	% SU Trucks & Buses	0	-	С	С	•	c	· C		· c	0 0	0 0		0	0 († I	וכ	۰ د	>	>	O	S S
0 0.1 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0	MII Trucks	C	-									٥	0.0	5	0	0.5	0.5	0	0	0	4.0	9.0
	% MII Trucke	0 0	- +	0	0	- ;	> (> (> ·	>	>	0	S.	0	0	2	-	0	N	0	13	19
	SADDI OM S	>	- - -	>	>	5	>	0	0	0	0	0	0.2	0	0	0.2	-	0	0.8	0		0.3

Wolf Rd & Albany Shaker Exit 3 Airport Connector 4 to 6

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269 Albany, NY 12205

www.cloughharbour.com

File Name: Albany Shaker - Wolf PM Site Code: 71106006

Start Date : 7/11/2006 Page No : 4

Wolf Rd & Albany Shaker Exit 3 Airport Connector

4 to 6 ₽

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

File Name: Albany Shaker - Wolf PM Site Code: 71106006 Start Date: 7/11/2006 Page No: 3

		1-87	I-87 NB On-Ramo	Ramp			Albany	y Shaker Road	Road			3	Wolf Road				Albany	Albany Shaker Road	Road		
		Š	Southbound	-			3	estbound	70			2	rthboun	0			Ä	Eastbound	-		
And the second s		į				4-	F	tqoid	Dade	Ann Total	#al	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds A	App. Total	Int. Total
Start lime	Lett		Inru Hight		Peds App. lotal	Ē	2 = -	1160		App. Total			2	_					a post a resident de la company de la compan		
Peak Hour Analysis From 16:00 to 17:45 - Peak 1 of 1	sis From 1	16:00 to	17:45 - F	Peak 10	_																
Peak Hour for Entire Intersection Begins at 16:45	tire Intersu	ection B	egins at	16:45						-	!				-		160	4 7		416	1233
16.45	C	c	,	C	C	83	144	11	0	304	170	203					60	3	(1 7
10.43	> •	> (> 0	0 (•	3 8	7 7	6	· c	070	176	188	183	0	547	72	143	124	0	333	201
12:00	0	0	0)	O	3 :	04.	3 3	> 0	4 00		2 6	77.	· C	456	ą.	114	155	7	366	1124
17:15	0	0	0	0	0	8	138	84	>	305	5	2 3	2 ;	۰ د	2 5	3 6	. 6	130	· C	347	1122
17.30	c	C	C	C	0	84	175	29	0	326	167	134	144	4	443	5	2	3		200	1004
30.7						310	603	291	c	1204	658	661	642	4	1965	343	559	564	N	1400	4037
I otal Volume	>	>	0	· C	-	5 5	3 3		•	}	3000	33.6	20.7	0		23.4	38.1	38.4	0.1		
% App. Total	0	0	0	0		7.57	50.1	24.2	0			2.5	04.1	1.0	000	200	708	910	250	882	940
што	000	000	C	000	000	923	.861	998.	000	.923		814	.877	CZZ.	080.	SOS.	170.	2 0	5	1 (P 0 0 Y
	3	200	9			1	603	201	c	1202		658	641	4	1952	343	552	553	N	1450	4004
Passenger Vehicles	>	>	>	כ	-	5 5	400	2 4	0	2 2		100	00	100	00	100	7.86	0.86	90	98.8	99.3
% Passenger Vehicles	0	0	0	0	0	99.7	99.8	3	>	0.0		99.0	0.00	3	1 (2	. (d	10	C	4	25
a contract to	C	C	С	0	0	-		0	0	2		N	_	>	,	> (,	2 ,	> <	*	ы С
SO ITUCKS & DUSES		• •	· C			0	0	C	0	0.2		0.3	0.5	0	4.0	0	_	Σ.	-	1	
% SU Trucks & Buses	>	י כ	> () ر		9	į		· c	_		-	C	C	g	0			0	N	œ
MU Trucks	0	0	0	ی	د	-	>	> (> (0		- 0	0 0) C	0 0	· C	0	0	С	0.1	0.5
% MU Trucks	0	0	0	ی	0	0	0	0	0	5		0.7	>	>	5	>) i	į	•		

Wolf Rd & Albany Shaker Exit 3 Airport Connector 4 to 6

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

File Name: Albany Shaker - Wolf PM Site Code: 71106006

Start Date : 7/11/2006 Page No : 2

Exit 3 Airport Connector Wolf Rd & Albany Shaker

4 to 6

Clough, Harbour & Associates LLP III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com Manual Turning Movement Count

File Name: Albany Shaker - Wolf PM Site Code: 71106006 Start Date: 7/11/2006 Page No: 1

				III. Olal	1067	1132	100	1030	4522		1158	1124	1122	1024	4428	0	8820			ć	33.2	2	9.0	5	0.2
	MAAR STREET, SAN		-	Арр. готал	352	351	343	346	1461	6	955	300	347	314	1366	1000	1707	,	31.0	7	30.7	<u> </u>	-	ĸ	0.2
	Road	,	Dodo	cpa.	0	C	· c	o c	0	c	> 0	N :	0	0	2	c	۷ +		0	9	3 0	>	0	С	0
	Albany Shaker Road	Fasthound	tabio	1161	128	114	. 5	15.5	517	7	47.4	က္က	130	121	230	4047	2 6	, č	\	6 00	20.0	- :	9.	-	0.1
	Albany	ш	I Product	2	125	121	107	160	545	4	2 ;	4 6	133	117	507	1040	2 + 10	- 1		7 00	200	2 .	-	4	0.4
			#a	3	66 6	116	9	8 8	402	72	7 2	င္တ	84	9/	327	7.00	0 40	9 0		00 5	5.5	† i	0.5	0	0
S			Ann Total	ישוטו ילקלי	464	484	447	513	1908	277	7 4	450	448	470	1922	3830	3	40.0	46.0	00	2.5	- (O.4	72	0.3
SU Trucks & Buses - MU Trucks	70	þ	spec		0	16	C	· c	16	c	o c	> <	4	0	4	0	א כ	9 0	i	100	3	0	0	0	0
uses - M	Wolf Road	Northbound	Right		146	131	131	140	548	183	3 4	2 7	44	156	658	1206	2 2		5	8 66	-		- -	N	0.2
cks & B	5	ž	Thru		160	157	167	203	687	188	136	3 5	4	173	631	1318	34.4	14.7	1.1	9 66	4		D.0		0.1
SU Tru			Left		158	180	149	170	657	176	145	2 1	<u>`</u>	141	629	1286	33.6	14.4		98.6	6	1 0	>.	თ	0.7
ted- Passenger Vehicles -			App. Total		7221	297	301	304	1153	272	305	100	020	240	1140	2293		25.6	2	99.7	5	0	V. 0	N	0.1
enger V	r Road	g	Peds	-	>	0	0	0	0	O	· C	o c	> 0	0	0	0	C	C	•	0	0	· C		0	0
ed-Pass	y Shaker Road	Vestbound	Right	, 6	80	69	7	11	286	63	84	. 2	6 6	3	274	260	24.4	6.3		100	0	c	0	>	0
Groups Print	Alban	\$	Thru	20	77	157	151	144	574	146	138	175	- +	3 5	26/	1141	49.8	12.7		9.66	က	6	5	N	0.5
Grou			Left	00	3	7	79	83	293	63	8	84	7 (7/	662	592	25.8	9.9		99.7	24	0	9	>	0
			Peds App. Total		o (0	0	0	0	0	0	C	0 0	> 0	5	0		0		0	0	C	0	> 1	0
	lamp	밀	Peds '	C	0 ()	0	0	0	0	0	0	• <	0	>	0	0	0		0	0	С)	0
	I-87 NB On-Ramp	Southbound	Right	c	0 0	-	0	0	0	0	0	0	· C	0	>	0	0	0		0	0	0	c	> ()
THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO PERSONS AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO PERSONS AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO PERSONS AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO PERSONS AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO PERSONS AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO PERSON NAMED	1-87	တ်	Thru	c	0 0	0	0	0	0	0	0	0	c	0	>	0	0	0		0	0	0	c	0 (o
			Left	c	0 0) c	0	0	0	0	0	0	c	0	>	0	0	0		0	0	0	c	0 0	>
		The state of the s	Start Time	16:00	16:45	10.13	16:30	16:45	Total	17:00	17:15	17:30	17.45	TetoT	1000	Grand Total	% Habbarch %	Lotal %	Passenger Vehicles	% Passenger Vehicles	SU Trucks & Buses	% SU Trucks & Buses	MII Trucks	O'MIT TIME '0	% IMO Trucks

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269

Albany, NY 12205 www.cloughharbour.com

File Name: Albany Shaker - Old Wolf PM Site Code: 71106004 Start Date: 7/11/2006 Page No: 4

Albany Shaker & Old Wolf Rd Exit 3 Airport Connector 4 to 6

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

File Name: Albany Shaker - Old Wolf PM Site Code: 71106004 Start Date: 7/11/2006 Page No: 3

Albany Shaker & Old Wolf Rd PM

4 to 6

Exit 3 Airport Connector

		PO	Old Wolf Road	ad	ALL COLORS OF THE PARTY OF THE	ALLAS ALAS PURITAMENTO ALLAS AND ALL		Shaker Road	Road			I-87 S	-87 SB On-Ramp	È,			Albany S Eas	Ubany Shaker Road Eastbound	Road		Assessment of the Assessment o
		S	Southbound	ع			M	estbound				2					L	tqui C	Dode	Ann Total	Int Total
Start Time Left	Left	Thru	Thru Right Peds App. Total	Peds	App. Total	Left	Thru	Right	Peds /	App. Total	Left	Thru	Right	Peds App	App. Total	Leff	nun	าเดิน		pp. Total	HIL. LOWER
סומו -			ָ	10 4 00		1															
Peak Hour Analysis From 16:00 to 17:45 - Feak 1 of 1	S From	6:00 10	17:45 - FE	ak o	_																
Deak Hour for Entire Intersection Begins at 16:30	re Inters	action Be	voins at 10	3:30						-		,	(ć	•						
16:30	134	60	85	0	248	87	185	17	0	588	0	0)	י מי	· c	9	040	160	c	429	1038
1000		0	40	-	287		506	25	0	321	0	0	0	-	_	0	6 .	2 1	1 0	0	1000
16:45	20	0	3	-	0			L	•	000	C	c	C	C	0	83	201	158	>	382	22
17:00	165	5	113	0	329		//	0	>	727	> 0	0 (• •	o c	· C	77	224	164	0	452	1051
17.15	164	27	92	0	283	94	197	25	0	316	0	0	0	0	>	2 2	700	640	ď	1677	4046
Total Value	278	105	375	-	1147		768	82	0	1218	0	0	>	4	4	2 :	t 1	2 6	0 0	5	
loga voluile	5	3	5		:			1	c		_	c	C	00		10.1	51.5	38.2	J.C	\$1000000000000000000000000000000000000	-
% App. Total	56.3	10.9	32.7	0.1		30.2	53.1	0.7	0	0.00	9	000	000	333	333	664	964	976	.375	.928	.962
410	883	.613	.830	.250	.872		.919	.820	3	948	000.	39.	3	33.	20.	100	957	838	c.	1664	The second secon
	641	101	274	+	1137		762	78	0	1205	0	0	>	4	7	2	S S	1 9	2		
Passenger Vehicles	5	- U - C	5 6	- (5		00	05.1	c	080	С	0	0	9	8	97.6	33.5	99.7	3	33.5	
% Passenger Vehicles	99.5	96.8	99.7	3	93		33.5		•	; *	· c	· c	_	c	C	4	7	Q	0	13	
SH Trucks & Buses	S	4	-	0	9	0	ည	4	>	= ;	> 0	> 0	> 0	o c	· C	0	α <	03	С	0.8	
	α ς	0.00	0	0	0.0		0.7	6.4	0	6.0	0	>	>	> '	> 0	t o	,) c	• •		
% SO Frucks a buses	9 0		,	· C	C		-	c	0	7	0	0	0	0	0	>	>	> 1) (0 (
MO I rucks	>	>	O	· c	· ·	- (- •	o c	· C	0	c	C	C	C	0	0	0	0	0	O	
% MU Trucks	0	0	0	0	0	0.3	_ ;	>	>	4.0	>	•	•		-						

Albany Shaker & Old Wolf Rd Exit 3 Airport Connector

4 to 6

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269

Albany, NY 12205 www.cloughharbour.com

File Name: Albany Shaker - Old Wolf PM

Site Code : 71106004 Start Date : 7/11/2006 Page No : 2

Exit 3 Airport Connector Albany Shaker & Old Wolf Rd PM 4 to 6

Clough, Harbour & Associates LLP III Winners Circle, P.O. Box 5269 Albany, NY 12205 Manual Turning Movement Count

File Name: Albany Shaker - Old Wolf PM Site Code: 71106004 Start Date: 7/11/2006 Page No: 1

And a second control of the second control o	A THE REPORT OF A PROPERTY OF	A CALLAND AND A CALLAND A CALLAND AND A CALLAND A CALLAND AND A CALLAND AND A CALLAND AND A CALLAND A CALL				Group	os Printe	d- Pass	enger V	Groups Printed- Passenger Vehicles - SU Trucks & Buses - MU Trucks	SU Truc	ks & Bu	Ses - M	U Truck	,						
		ŏ	Old Wolf Road	Soad			Alban	Albany Shaker Road	Road			I-87 S	I-87 SB On-Ramp	amp		PERSONAL PROPERTY OF THE PERSON NAMED AND POST OF THE PERSON NAMED AND POS	Albany	Albany Shaker Road	Road	And the second s	
		ഗ്	Southbound	pur			\$	Westbound	ā			Š	Northbound	তু			, щ	Eastbound	703		
Start Time	Left	Thru	Right		Peds App. Total	Left	Thru	Right	Peds A	App. Total	Left	Thru	Right	Peds /	App. Total	Leff	Thru	Right	Peds	App. Total	Int. Total
16:00		18	85	0	251		191	38	4	303	0	0	0		0	27	202	126		355	o O
16:15		38	92	0	267		242	27	0	359	0	0	0	4	4	, &	216	157) C	401	123
16:30		29	82	0	248		185	17	0	289	c	· c	· C	· 07	· «	3 6	200	4 5 8 2 8 2 8 3	· ·	2 5	3 4
16:45		18	85	-	287		508	52	0	321	0	0	0	·	,	8 8	219	160	- ۸	424	1038
Total	602	103	347	-	1053	(,)	827	107	0	1272	0	0	0	80	8	138	857	601	ı m	1599	3932
17:00	165	51	113	0	329		177	15	0	292	0	0	0	0	0	88	50	158	C	382	1003
17:15		27	92	0	283		197	52	0	316	0	0	0	0	C	9	224	164	· C	452	105
17:30		14	2	0	239	88	212	4	0	340	0	0	0	·	· -	8	25	110	0 0	344	8
17:45		15	55	-	210		173	27	0	279	0	0	0	. 01	. 64	27	174	126	0	327	818
Total	623	107	330	-	1061	361	759	107	0	1227	0	0	0	3	3	137	801	292	0	1505	3796
Grand Total	1225	210	229	8	2114	669	1586	214	0	2499	0	0	0	-	-	275	1658	1168	e	3104	7728
Apprch %		6.6	35	0.1		28	63.5	8.6	0		0	0	0	100	•	6	53.4	37.6) -	· } ·	2
Total %	1	2.7	8.8	0	27.4	6	20.5	2.8	0	32.3	0	0	0	0.1	0.1	3.6	21.5	15.1	0	40.5	
Passenger Vehicles													The state of the s			***************************************					This is a said of the said and
% Passenger Vehicles	99.2	95.7	66	100	98.8	9.66	99.2	94.9	0	98.9	0	0	0	100	100	96.7	99.1	9.66	100	1 66	6.86
SU Trucks & Buses		တ	7	0	26		12	F	0	25	0	0	0	0	0	6	15	2	0	29	08
% SU Trucks & Buses	O.	4.3	-	0	1.2	0.3	0.8	5.1	0	-	0	0	0	0	0	3.3	6.0	0.4	0	6	} •
MU Irucks		0	0	0	0		-	0	0	2	0	0	0	0	0	0	0	0	0	C	
% MU Trucks	0	0	0	0	0	0.1	0.1	0	0	0.1	0	0	0	0	0	0	0	0	0	0	0 1

Manual Turning Movement Count

Clough, Harbour & Associates LLP

III Winners Circle, P.O. Box 5269 Albany, NY 12205

www.cloughharbour.com

Exit 3 Airport Connector Old Wolf Rd & I-87 SB Exit 4 Off-Ramp PM

4 to 6

File Name: Old Wolf - Exit 4 SB PM Site Code: 62906008

Start Date : 6/29/2006 Page No : 4

Page No

Manual Turning Movement Count

Clough, Harbour & Associates LLP III Winners Circle, P.O. Box 5269 Albany, NY 12205 www.cloughharbour.com

Exit 3 Airport Connector Old Wolf Rd & I-87 SB Exit 4 Off-Ramp

4 to 6

File Name: Old Wolf - Exit 4 SB PM Site Code: 62906008 Start Date: 6/29/2006 Page No: 3

		ŏ	Old Wolf Road	peo			I-87 SB E	Exit 4 Off-Ramp	f-Ramp			PIO	Old Wolf Road	ad			Term	Ferminal Drive	۸e		
		ŭ	Southbound	2			We	estbound	•			Š	Northbound	ס			Eä	Eastbound			THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, TH
Start Time	Left	Thru	Right	Thru Right Peds App. Total	App. Total	Left	Thru	Right	Peds A	App. Total	Left	Thru	Right	Peds A	App. Total	Left	Thru	Right	Peds A	App. Total	Int. Total
Peak Hour Analysis From 16:00 to 17:45 - Peak 1 of	is From 1	6:00 to	17:45 - P	eak 1 of 1																	
Peak Hour for Entire Intersection Begins at 16:45	ire Interse	ction B	egins at 1	6:45																•	0
16.45	c	96	, ,	0	96	180	0	4	_											2	8
17:00	· C	115	· C	c	1.	166	•	m	0	170	0	29	0	0	29	-	0		0	N	354
7.00	o c	2 6	o	o c	5	174	. c	^	•	182	0	6	0	0	93	0	0	7	0	~	368
17:30	o c	- 6	o C	o c	. 22	207	o C	. m	0	204	0	82	0	0	82	•	0	,	0	a	347
Total Volume	c	358		C	358	721	,	17	2	741	0	330	0	0	330	2	0	5	•	ω	1437
% Ann Total	o C	100	0	0)	97.3	0.1	2.3	0.3	aanna.	0	100	0	0		52	0	62.5	12.5		
PHF	000	778	000	000	778	788.	.250	.607	.500	906.	000	.887	000	000:	788.	.500	000.	.625	.250	1.000	976.
soloido)/ resonosod	0	349		0	349	715	-	17	2	735	0	322	0	0	322	7	0	2	-	∞	1414
9. Descriper Verices	· c	97.5	· C	0	97.5	99.2	8	100	100	99.2	0	9.76	0	0	97.6	100	0	9	100	100	98.4
Cold Tayoko & Busoo	· C	9	· C	· C	ç	ĸ	0	0	0	2	0	9	0	0	9	0	0	0	0	0	17
% SIJ Tencke & Busses	0	1.7	0	0	1.7	0.7	0	0	0	0.7	0	4.	0	0	1 .	0	0	0	0	0	1.2
MU Trucks	0	က	0	0	က		0	0	0	Y	0	7	0	0	Ø	0	0	0	0	0	U
% MU Trucks	0	0.8	0	0	0.8	0.1	0	0	0	0.1	0	9.0	0	0	9.0	0	0	0	0	0	0.7

Clough, Harbour & Associates LLP Manual Turning Movement Count

III Winners Circle, P.O. Box 5269

Albany, NY 12205

www.cloughharbour.com

Old Wolf Rd & I-87 SB Exit 4 Off-Ramp

4 to 6

Exit 3 Airport Connector

File Name: Old Wolf - Exit 4 SB PM Site Code: 62906008

: 6/29/2006 : 2

Start Date: Page No:

Clough, Harbour & Associates LLP
III Winners Circle, P.O. Box 5269
Albany, NY 12205
www.cloughharbour.com Manual Turning Movement Count

Exit 3 Airport Connector Old Wolf Rd & I-87 SB Exit 4 Off-Ramp PM

4 to 6

File Name: Old Wolf - Exit 4 SB PM Site Code: 62906008 Start Date: 6/29/2006 Page No: 1

THE REAL PROPERTY OF THE PERSON OF THE PERSO	And the second s	3	2								University of the second	THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	Constitution of the last of th	TOTAL STREET,							
		5 6	Old Wolf Hoad	oad oad		-	I-87 SB E	Exit 4 Off-Ramp	f-Ramp			PO	Old Wolf Road	ad			Terr	Terminal Drive	ive		
	-	ဂ္ဂ	Southbound	2			ž	Vestbound	0			Š	Northbound	9			Ш	Eastbound	7		
Start Time	Left	Thr	Right	Peds App. Total	App. Total	Left	Thru	Right	Peds Ap	App. Total	Left	Thru	Right	Peds A	Ann Total	He l	Thru	Richt	Dode	Ann Total	lot T tol
16:00	0	91	0	0	91	181	c	o		90	-	77	,	ored.	Pp. Out	1	3 (50	- 3		mr. IQia
16:15	0	71	C	· c	7.1	158	o c) (J	0 0	2 5	> 0	‡ 6	> (> (44	_	0)	0	-	326
16:30	· C	8	0 0	o c	- 8	0 1	0	o (> (40	>	5	>	0	63		0	0		N	300
16.45	o c	2 6	> 0	> 0	26	165	o	က	0	168	0	24	0	0	54	-	0	0	0	-	315
24.07		0 0	0	0	3	180	0	4	-	185	0	85	0	0	82	0	0	-	-	0	368
10g	>	000	>	>	320	684	0	23	-	707	0	246	0	0	246	က	0		5	9	1309
17:00	0	115	0	0	115	166	-	က	C	170	c	67	c	c	23	+	c	•	(Ć	i
17:15	0	9	0	0	91	174	c	۰,	· 	180	· c	3 8	> <	o c	6 6	- (> 0	- (> (N I	354
17:30	C	56	c	· C	. ((. 6	0 0	٠ ،	- (70.0	> 0	2 1	> •	>	56	0	0	N	0	2	368
17.45	o C	9 4	0 0	0 0	9 4	107	> (n (> '	204	0	82	0	0	85		0		0	N	347
5.77	0	5 6	0	0	40	199	0	2	0	201	0	71	0	0	71	0	0	0		-	319
800	>	909)	>	89	/40		15		757	0	316	0	0	316	2	0	4	-	7	1388
Grand Total	0	658	0	0	658	1424		37	ď	1464	c	562	c	c	Can	t.	c	L	Ć	(
% Hobbach %	0	9	0	0	december of	97.3	C	5 6) t		o c	9 5	> c	> <	200	O F	> 0	Ω I	, S	55	7697
Total %	0	24.4	0	0	24.4	52.8	C	1 4		543	o c	2 6	> <	> 0	9	0,0	> (30.5	23.1		
Passenger Vehicles									5	2.	>	0.02	>	0	δ.	7.0	0	0.2	0.1	0.5	***************************************
% Passenger Vehicles	0	97.3	0	0	97.3	99.2	100	97.3	100	00	C	9 90	c	c	90	5	c	•	,	9	
SU Trucks & Buses	0	-	0	0	=	10	c	-	2	-		7.00	> 0	0	0.00	3	5	3	3 (3	98.1
% SU Trucks & Buses	0	1.7	0	0	1.7	0.7	· C	- 2	o c	- α - c	>	9 6	> c	> 0	1 2	> 0)	> (۰ د	0	37
MU Trucks	0	7	C	C	7	6	0	i		2 0	>	6.1		0	7.7	0	0	0	0	0	4.
% MU Trucks	0	-	0	0		, c	> c	> c	> 0	V +	> 0	4 1))	4 1	0 (0	0	0	0	13
-				,	:	- 5	>	>	>	- - -	>		>	>	0.7	0	0	0	0	0	0.5

Albany Shaker & Alb Int Terminal

4 to 6

Exit 3 Airport Connector

Manual Turning Movement Count

Clough, Harbour & Associates LLP

III Winners Circle, P.O. Box 5269

Albany, NY 12205 www.cloughharbour.com

File Name: Albany Shaker - Alb Int Term Access PM

Site Code : 71106010

Start Date : 7/11/2006 Page No

Shaker In 783 1 3 787 Albany Out 1640 6 2 1648 Total 2423 7 5 2435 0 0 0 0 Right 0 0 0 0 Peds 783 1 3 787 Thru Peak Hour Data Peak Hour Begins at 16:30 Passenger Vehicles SU Trucks & Buses MU Trucks North 208 0 0 265 57 0 0 57 Hight 135 135 0 0 132 0 0 7 2 0 32 132 spad 1432 6 2 1440 Thru Albany tuO 840 1 5 844 1567 1567 1567 | bac | totoT | 704S | 9 | 6 | 6 | 542

Albany Shaker & Alb Int Terminal

4 to 6 PM

Exit 3 Airport Connector

Manual Turning Movement Count

Clough, Harbour & Associates LLP

III Winners Circle, P.O. Box 5269
Albany, NY 12205
Www.cloughharbour.com

File Name: Albany Shaker - Alb Int Term Access PM Site Code: 71106010 Start Date: 7/11/2006 Page No: 3

Start Time Left Thru Right Peds App. Total Int.		Alba	any Inte S	Nbany International Airport Exit Drive Southbound	al Airpo and	r Exit	Alban	Mbany Shaker Road Westbound	r Road nd			Albar	Nbany Shaker Road Eastbound	ır Road nd							
Peak Hour Analysis From 16:00 to 17:45 - Peak 1 of 1	Start Time	Left	Thru	Right	Peds	App. Total	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Hight	Peds	App. Total	Ξ
	eak Hour Analy:	sis From	16:00 to	17:45 - P	eak 1 of	-															

	Č		Drive	Drive Southbound	Ĭ		Albany	Shaker Road estbound	Road			Albany Ea	Ibany Shaker Road Eastbound	Road							
Start Time	Left		Right	Peds	Thru Right Peds App. Total	Left	Thru	Right	Peds A	App. Total	Left	Thru	Right	Peds Ap	App. Total	Left	Thru	Right	Peds A	App. Total	Int. Total
Peak Hour Analysis From 16:00 to 17:45 - Peak 1 of	is From	16:00 to	17:45 - Pt	eak 1 of	-					-	***************************************							ANALOG ANALOG WATER TOTAL PROPERTY.	and the state of t		
Peak Hour for Entire Intersection Begins at 16:30	ire Inters	ection Be	egins at 1	16:30																	
16:30	99		2		88												428			464	738
16:45	34	0	12	0	46	0	191	0	0	191	0	0	0	0	0	38	336	0	0	374	611
17:00	25	0	19	0	71	_	217	0	0	218	0	0	0	0	0	8	349	0	0	379	668
17:15	24	0	9	0	09	0	193	0	0	193	0	0	0	0	0	8	327	0	0	360	613
Total Volume	208	0	22	0	265	-	787	0	0	788	0	0	0	0	0	137	1440	0	0	1577	2630
% App. Total	78.5	0	21.5	0	***************************************	0.1	6.66	0	0		0	0	0	0		8.7	91.3	0	0		
H	.765	000	.713	80.	.753	.250	206.	000:	000.	906	000	000.	00.	000.	000.	.901	.841	000.	000.	.850	.891
Passenger Vehicles	208	0	22	0	265	-	783	0	0	784	0	0	0	0	0	135	1432	0	0	1567	2616
% Passenger Vehicles	100	0	100	0	100	100	99.5	0	0	99.5	0	0	0	0	0	98.5	99.4	0	0	99.4	99.5
SU Trucks & Buses	0	0	0	0	0	0		0	0		0	0	0	0	0	7	9	0	0	80	ნ
% SU Trucks & Buses	0	0	0	0	0	0	0.1	0	0	0.1	0	0	0	0	0	5.	0.4	0	0	0.5	0.3
MU Trucks	0	0	0	0	0	0	က	0	0	က	0	0	0	0	0	0	2	0	0	7	5
% MU Trucks	0	0	0	0	0	0	0.4	0	0	0.4	0	0	0	0	0	0	0.1	0	0	0.1	0.2

Albany Shaker & Alb Int Terminal

4 to 6

Exit 3 Airport Connector

Manual Turning Movement Count

Clough, Harbour & Associates LLP

III Winners Circle, P.O. Box 5269 Albany, NY 12205

www.cloughharbour.com

File Name: Albany Shaker - Alb Int Term Access PM

Site Code : 71106010 Start Date : 7/11/2006

Page No

Manual Turning Movement Count

Clough, Harbour & Associates LLP III Winners Circle, P.O. Box 5269 Albany, NY 12205 File Nam

Albany Shaker & Alb Int Terminal PM

4 to 6

Exit 3 Airport Connector

File Name: Albany Shaker - Alb Int Term Access PM Site Code: 71106010 Start Date: 7/11/2006 Page No: 1

- 4	
	2
-	į
Ł	3
-	Ś
- 5	
_	
•	
_	١
=	į
-	į
& Buses - Mil Trucke	
g	į
Q.	Į
U	į
=	ì
~	١
-	•
~	ĺ
Vehicles - SU Trucks &	•
tt.	١
ت.	į
7	i
~	ί
-	•
-	•
_	
-	
-	,
C)	þ
•	
U.	۱
Œ.	ì
-	i
C	ł
-	١
-	•
Q)	Ì
>	
-	
7	
<u> </u>	'
0	ž
2	
Š	
send	
send	
ssend	
assend	
Passend	
· Passeno	
4- Passeno	***************************************
d- Passeno	
ted- Passeno	
nted- Passend	
inted- Passend	
rinted- Passend	
Printed- Passend	
Printed-Passend	
s Printed-Passend	
ps Printed-Passend	
ups Printed- Passend	
oups Printed-Passend	
oups Printed- Passend	
iroups Printed- Passend	
Groups Printed- Passenger Vel	
Groups Printed- Passend	
Groups Printed- Passend	
Groups Printed- Passend	The second secon

THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED AND ADDRESS				***		ביסמל	Groups Printe	d- Pass	ed- Passenger Vehicles - SU Trucks & Buses - MU Trucks	hicles -	SU Truc	ks & Bu	ses - ML	1 Trucks							
	Alba	Albany International Airport Exit	nationa	Airpor	t Exit																
			Drive				Albany	Albany Shaker Road	Road			Albany	Albany Shaker Road	Road							
	And the second s	S	Southbound	pu			₹	estbound	ğ			Ëä	Eastbound								
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds Apr	App. Total	Left	Thru	Right	Peds An	Ann Total	Ha l	The	tasia	i	F	Total
16:00		0	œ	0	56	C	178	-		170				2	0.00	15	חוור	ii fi		App. Iotal	int. Iotal
16:15		0	15	C	12		2 6	- c	0 0	0.00	> 0	> () (.	>	€	348	0	0	388	623
16:30		· c	2 6	0	2 6		307	o (o	402	>	0	0	0	0	22	267	0	0	292	566
16:45	3 6	> <	2 5	> 0	S G		92	0	0	186	0	0	0	0	0	36	428	0	0	464	738
5		0	7	5	94	0	191	0	0	191	0	0	0	0	0	38	336	c	· C	374	
Olai		0	ဂို	0	260	-	758	-	0	760	0	0	0	0	0	139	1379	0	0	1518	2538
17:00	52	0	19	0	71	•	217	C	c	910	c	c	c	(-	ć		,			
17:15	54	0	9	C	9	· c	103	o c	0 0	2 6	> 0	> (> (۰ د	>	3	349	0	0	379	899
17:30	41	C	5	· C	200	o c	5 5	> 0	-	3 ()	Э,	0	0	0	33	327	0	0	360	613
17:45	48	· c	<u> </u>	o c	† c	> 0	2 7	> 0)	9/	۰ د	0	0	0	0	34	265	0	0	533	529
Total	105) c	5 6	0	200	۰ ح	3	0	0	143	0	0	0	0	0	24	251	0	0	275	481
	3	>	3	>	240	-	82/	0	0	730	0	0	0	0	0	121	1192	0	0	1313	2291
Grand Total	400	0	108	0	208	~	1487	+	c	1490	c	c	c	c	•	0		•	,		
Apprch %	78.7	0	21.3	0	· · · · · · · · · · · · · · · · · · ·	0.1	8 66	· -	o c	2	> <	> c	> 0	> 0	>	000	797	0	0	2831	4829
% Lotal %	8.3	0	2.2	0	10.5	C	30.8	; 0	o c	300	> <	> c	> C	> 0	(80.8 8.08	0	0		
Passenger Vehicles								>		8.9		>	>)	5	5.4	53.2	0	0	58.6	
% Passenger Vehicles	99.5	0	99.1	0	99.4	100	66	100	C	00	c	c	c	c	(0	0	(•		
SU Trucks & Buses	2	0	-	C	ď	0	u u	2		2 6			> 0	0	5	38.8	38.5	0	0	99.2	99.2
% StJ Trucks & Buses	0.5	c	0	· c) (d	> <	0	> 0	> 0	0 0	> ()	>	>	0	က	ಕ್ಷ	0	0	16	24
MII Triicke		0	5		0.0		o.0	٥	0	0.3	0	0	0	0	0	1.2	0.5	0	0	9.0	0.5
MII Trioke	0 0	> 0	> <	> 0) (>	٥	0	0	9	0	0	0	0	0	0		0	C	7	13
אסוווס וומכעס	>	>	>	>	0	0	0.4	0	0	4.0	0	0	0	0	0	0	03	· c	· c	0	2 0
														,	-)	;	>	>	4.5	5

Manual Turning Movement Count

Clough, Harbour & Associates LLP III Winners Circle, P.O. Box 5269

> Albany Shaker & Watervliet Shaker Exit 3 Airport Connector

4 to 6 PM

Albany, NY 12205 www.cloughharbour.com

File Name: Albany Shaker - Watervliet Shaker PM : 62806002 : 6/28/2006 Site Code

Start Date Page No

1	
<	

File Name: Albany Shaker - Watervliet Shaker PM Site Code: 62806002 Start Date: 6/28/2006 Page No: 3

Manual Turning Movement Count

Clough, Harbour & Associates LLP
Clough, Harbour & Associates LLP
Clough, Harbour & Associates LLP
Albany, NY 12205
File Name
Www.cloughharbour.com Exit 3 Airport Connector

Albany Shaker & Watervliet Shaker 4 to 6 Md

otal 670 721 712	2757 2757 99.5 90.4 0.4
139 166 153	895 895 895 99.5 0 0
Road	000
nakel Sund 78	93 370 62.3 849 99.2 0 0
tervliet Shaker Eastbound Thru Right 2 78	0.5 375 100 0 0 0
Wate	56 60 60 221 37.2 221 100 0 0 0
	202 202 226 821 821 814 99.1 0.7 0.7
load Peds App. Total	000000000000000000000000000000000000000
Shaker Roa thbound Right Pec	111111111111111111111111111111111111111
Albany Shaker Road Northbound Thru Right Peds	111 118 123 449 445 99.1 0 0 0 0
Alb	89 70 70 102 361 44 44 44 44 6.6 0.6 0.6 0.6
le:	100 85 86 367 920 7.5 99.7 0.3
Albany International Airport Drive Westbound Peds App. Total	000000000000000000000000000000000000000
tional Airpo	28 26 26 26 26 26 26 26 26 26 26 26 26 26
ternational Air Westbound Right	7 2 2 3 3 5 4 6 7 1 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
bany Int	54 72 72 56 57 57 539 643 643 643 643 643 100 100 100 100 100 100 100 100 100 10
a	0.10
ī. 2	St. 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
atervliet Shaker	bound Sar Deak 1 Sar 16:30 Sar 16:30 A4 66 A3 210 210 00 00 00
yvliet	Southbound Southbound Southbound Southbound Strain South Strain Str
Wate	Alb
2	Le Hour Analysis Fre Hour Analysis Fre Hour for Entire It (16:30 16:30 17:15 17:15 17:15 PASSENDER Vehicles % PASSENDER Vehicles SU Trucks & Buses SU Trucks
xit 3 Airport Colling Ibany Shaker & Watervliet Shaker Ibany Shaker & Watervliet Shaker Ibany Shaker Road 4 to 6	Start Time
xit 3 Ai libany oM 4 to 6	Pea Pea Pea

Manual Turning Movement Count

Clough, Harbour & Associates LLP

III Winners Circle, P.O. Box 5269 Albany, NY 12205

Albany Shaker & Watervliet Shaker

4 to 6 ₽

Exit 3 Airport Connector

www.cloughharbour.com

File Name: Albany Shaker - Watervliet Shaker PM Site Code: 62806002

: 6/28/2006 : 2 Start Date : Page No :

Manual Turning Movement Count

Clough, Harbour & Associates LLP
III Winners Circle, P.O. Box 5269
Albany, NY 12205
File Ne

Albany Shaker & Watervliet Shaker PM

4 to 6

Exit 3 Airport Connector

File Name: Albany Shaker - Watervliet Shaker PM Site Code: 62806002 Start Date: 6/28/2006 Page No: 1

Southbound Weart Time Left Thru Right Peds App. Total Left Thru Factor 1.0			Alban)	Albany Shaker Road	r Road		Albai	Albany International Airport Drive Albany Shaker Road	national Airport Drive	Virport	Drive		Albany	Albany Shaker Road	Road			Watervliet Shaker Boad	ot Shak	or Roar	THE CONTRACT OF STREET, STREET	
Left Thru Right Peds App. Total Left Thru 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.8 1.4 42 0 200 85 6 25 138 53 0 216 50 6 16 165 57 0 238 54 7 76 611 196 0 883 261 22 76 611 196 0 883 261 21 10 190 43 0 243 57 5 10 190 44 0 187 63 5 10 100 50 0 160 51 4 44 630 203 0 160 51 4 44 630 22.7 0 488 38 6.8 70.5 22.7 0 65.1		-	ŭ	onthbou	밀			Š	Westbound	•			Š	Northbound	7		-	ŭ	Factbound) 		
1.0 1.0 <th>Time</th> <th>Left</th> <th>Thru</th> <th>Right</th> <th></th> <th>App. Total</th> <th>Left</th> <th>Thru</th> <th>Right</th> <th>Peds</th> <th>App. Total</th> <th>Left</th> <th>Thru</th> <th>Right</th> <th>Space</th> <th>Ann Total</th> <th>Heff</th> <th>Thui</th> <th>Richt</th> <th>Pade</th> <th>Ann Total</th> <th>Int Total</th>	Time	Left	Thru	Right		App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Space	Ann Total	Heff	Thui	Richt	Pade	Ann Total	Int Total
18 140 42 0 200 85 25 138 53 0 216 50 16 165 57 0 238 54 17 168 44 0 229 72 10 190 43 0 243 57 10 190 43 0 243 57 10 100 44 0 197 63 10 100 50 0 160 51 44 630 203 0 160 51 44 630 203 0 1760 488 6.8 70.5 22.7 0 48 65.1 9 100 99.4 99.2 0 99.4 99.5 1 0 0.4 0.3 0 0.8 0 0 0 0.4 0.3 0 0 0 0 0 0.2 0 0 0 0 0 0 0.2 0 0 0 0 0 100 0.2 0 0 0 0 0 100 0.2<	Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		10	10	, 0		- da	-		: C		App. Iolai	III. 10la
25 138 53 0 216 50 16 165 57 0 238 54 17 168 44 0 229 72 76 611 196 0 883 261 10 190 43 0 243 57 13 140 44 0 243 57 14 630 203 0 160 51 44 630 203 0 1760 488 6.8 70.5 22.7 0 488 6.8 70.5 22.7 0 34.3 9.5 0 100 99.4 99.2 0 99.4 99.2 1 0 0.4 0.3 0 0.3 0.8 0 0.2 0 0.3 0 0 0 0.2 0.5 0 0 0	16:00	<u>\$</u>	140	42	0	200	85	9	41	0	132	69	22	2	2	151	5.0	2 +	0.1		90,	000
16 165 57 0 238 54 76 611 196 0 883 261 10 190 43 0 243 57 10 190 43 0 243 57 13 140 44 0 197 63 10 100 50 0 160 51 44 630 203 0 1760 488 6.8 70.5 22.7 0 65.1 9 6.8 70.5 22.7 0 99.4 99.2 1 100 99.4 99.2 0 99.4 99.2 1 0 0.3 0.4 0.3 0 0 0 0 0.2 0.5 0 0 0 0 0	16:15	52	138	53	0	216	20	9	52	0	8	83	82	1	o c	5 5	9 0	- c	5 6	o c	9 5	200
17 168 44 0 229 72 76 611 196 0 883 261 11 200 66 0 277 56 10 190 43 0 243 57 13 140 44 0 197 63 10 100 50 0 160 51 44 630 203 0 1760 488 6.8 70.5 22.7 0 65.1 9 6.8 70.5 22.7 0 95.4 95.5 0 100 99.4 99.2 7 8 0 9 4 10 99.4 99.2 0 99.4 99.5 1 0 0 <td>16:30</td> <td>16</td> <td>165</td> <td>22</td> <td>0</td> <td>238</td> <td>54</td> <td>7</td> <td>32</td> <td>0</td> <td>8</td> <td>9 2</td> <td>6</td> <td>- თ</td> <td>0 0</td> <td>200</td> <td>44</td> <td>o 0</td> <td>\$ 8</td> <td>> C</td> <td>52</td> <td>591 799</td>	16:30	16	165	22	0	238	54	7	32	0	8	9 2	6	- თ	0 0	200	44	o 0	\$ 8	> C	52	591 799
11 200 66 0 277 56 10 190 43 0 243 57 10 190 44 0 197 63 140 44 0 160 51 65 10 100 50 0 160 51 65 10 120 1241 399 0 1760 488 6.8 70.5 22.7 0 85.1 9.5 100 99.4 99.2 1 100 99.4 99.2 1 0 0 0 0 0 0 0 0 0	16:45	17	168	4	0	229	72	2	92	0	9	80	Ξ	0	0	202	150	4 0	2 82	o c	30.0	000 670
11 200 66 0 277 56 10 190 43 0 243 57 13 140 44 0 197 63 10 100 50 0 160 51 44 630 203 0 1760 488 3 6.8 70.5 22.7 0 65.1 5 2.3 24.2 7.8 0 34.3 9.5 0 100 99.4 99.2 0 99.4 99.2 10 0 5 1 0 6 4 0 0 0.3 0.3 0.8 0 0 0 0 0.2 0.5 0 0 0 0 0	otal	9	611	196	0	883	261	27	124	0	406	334	382	80	0	724	173	8	348	0	524	2537
10 190 43 0 243 57 13 140 44 0 197 63 10 50 0 160 51 44 630 203 0 160 51 120 1241 399 0 1760 488 3 6.8 70.5 22.7 0 65.1 5 2.3 24.2 7.8 0 34.3 9.5 0 100 99.4 99.2 0 99.4 99.2 10 0 5 1 0 6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17:00	=	200	99	0	277	26	က	56	0	85	70	118	Ŋ	c	193	56	4	400	c	166	704
13 140 44 0 197 63 10 100 50 0 160 51 44 630 203 0 160 51 120 1241 399 0 1760 488 3 6.8 70.5 22.7 0 65.1 5 2.3 24.2 7.8 0 34.3 9.5 0 100 99.4 99.2 0 99.4 99.2 10 0 5 1 0 6 4 0 0 0.2 0.2 0 0 0 0 0 0.2 0.5 0 0 0 0	17:15	9	9	43	0	243	22	5	78	0	06	102	123	•	· C	926	8 6	- c	3 8	o c	2 4	740
10 100 50 0 160 51 44 630 203 0 877 227 1 120 1241 399 0 1760 488 3 6.8 70.5 22.7 0 65.1 5 2.3 24.2 7.8 0 34.3 9.5 0 100 99.4 99.2 0 10 4 9 10 0 5 1 0 6 4 0 0 0.2 0.3 0 4 0 0 0.2 0.5 0 0 0	17:30	13	140	4	0	197	83	Ŋ	24	0	92	9	9	· c	· c	100	3 8	> -	3 8	> <	200	717
44 630 203 0 877 227 120 1241 399 0 1760 488 3 6.8 70.5 22.7 0 65.1 5 2.3 24.2 7.8 0 34.3 9.5 0 100 99.4 99.2 0 99.4 99.2 10 0 5 1 0 4 0 0.4 0.3 0 0.8 0 0.2 2 0 0 0 0.2 0.5 0 0.2 0	17:45	9	5	20	0	160	51	4	22	0	12	75	8 8	۵ 4	o c	1 2 4	9 6	- c	2 6	> 0	3 5	4:0
120 1241 399 0 1760 488 6.8 70.5 22.7 0 65.1 5 6.1 5 6.1 100 99.4 99.2 0 99.4 99.2 10 0 0.4 0.3 0 0.2 0.5 0 0.2 0.2 0.5 0 0.2 0.2 0.5 0 0.2 0.2 0.5 0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0	Total	4	630	203	0	877	227	17	100	0	344	353	433	10	0	796	197	0	372	00	571	0588
6.8 70.5 22.7 0 65.1 5 2.3 24.2 7.8 0 34.3 9.5 0 0 0 0.4 0.3 0 0.8 0 0 0.2 0.5 0 0.2 0.5 0 0.2 0.5 0 0.2 0.5 0 0.2 0.5 0 0.2 0.3 0.8	nd Total	120	1241	399	0	1760	488	æ	224	0	750	687	815	ά	c	1500	07.6	i u		, ,		0 0
2.3 24.2 7.8 0 34.3 9.5 0 100 99.4 99.2 0 99.4 99.2 10 0 0.4 0.3 0 0.8 0 0 0.2 2 0 0 0.8 0 0.2 0.5 0 0 0 0 0.2 0.5 0 0 0	pprch %	8.9	70.5	22.7	0		65.1	5.1	29.9	0		45.2	53.6	5 0	o c	0.70	ο α ο α	о и С	02/	> c	282	5125
100 99.4 99.2 0 99.4 99.2 10 0 5 1 0 6 4 0 0.4 0.3 0 0.3 0.8 0 0.2 2 0 4 0 0 0.2 0.5 0 0.2 0	lotal %	2.3	24.2	7.8	0	34.3	9.5	0.7	4.4	0	14.6	13.4	15.9	0.4	0	29.7	7.2	5 0	2.5	o c	21.4	
100 99.4 99.2 0 99.4 99.2 10 0 5 1 0 6 4 0 0.4 0.3 0 0.3 0.8 0 0.2 2 0 4 0 0 0.2 0.5 0 0.2 0	er Vehicles														the state of the s				***************************************		1	***************************************
0 5 1 0 6 4 0 0.4 0.3 0 0.3 0.8 0 2 2 0 4 0 0 0.2 0.5 0 0.2 0.5	Jer Vehicles	100	99.4	99.2	0	99.4	99.5	100	100	0	99.5	98.3	99.3	100	C	8	00	100	00	c	0	ò
0 0.4 0.3 0 0.3 0.8 0 2 2 0 4 0 0 0.2 0.5 0 0.2 0.	cs & Buses	0	വ	-	0	9	4	0	c	C	4	ĸ	V		,	5	1.00	3))) (> 0	33.0	33.2
0 0.2 0.5 0 4 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0 0.5 0 0 0.5 0 0 0 0	ks & Buses	0	0.4	0.3	0	0.3	0.8	C	· C	· C	. r.	4 C	ר ע	> <	o c	0 0	- 0	> 0	1 0	> (ا ک	52
0 0.2 0.5 0 0.2	Trucks	0	2	2	C	4	c	c			2		5		٥	0.0	0.3	اد	0.7	0	0.5	0.5
	Trucks	0	0	ر ا بر	· C	- 0	0 0	o c	> c	> 0	5 0	- ,	N 6)	>	ဘ	C)	0	0	0	2	15
	-		!)	>	; i	>	>	>	>	>		7.0	>	0	9.0	0.5	0	0	0	0.2	0.3

ATTACHMENT C MICROSIMULATION CALIBRATION GUIDELINES

Calibration Criteria

Criteria and Measures	Calibration Acceptance Targets
Hourly Flows, Model Versus Observed	
Individual Link Flows	
Within 15%, for 700 veh/h < Flow < 2700 veh/h	>85% of cases
Within 100 veh/h, for Flow < 700 veh/h	>85% of cases
Within 400 veh/h, for Flow > 2700 veh/h	>85% of cases
Sum of All Link Flows	Within 5% of sum of all link counts
GEH Statistic < 5 for Individual Link Flows	>85% of cases
GEH Statistic for Sum of All Link Flows	GEH < 4 for sum of all link counts
Travel Times, Model Versus Observed	
Journey Times, Network	
Within 15% (or 1 min, if higher)	>85% of cases
,g,	
Visual Audits	
Individual Link Speeds	
Visually Acceptable Speed-Flow	To analyst's satisfaction
Relationship	,
·	
Bottlenecks	
Visually Acceptable Queuing	To analyst's satisfaction

Source: Traffic Analysis Toolbox Volume III: Guidelines for Applying Traffic Microsimulation Modeling Software, Publication No. FHWA-HRT-04-040, Federal Highway Administration, July 2004.

ATTACHMENT D LEVEL OF SERVICE CRITERIA

From the Highway Capacity Manual 2000 published by the Transportation Research Board:

Signalized Intersections

HCS S	TABLE A SIGNALIZED LOS STANDARDS
LOS	Control Delay per Vehicle (s/veh)
A	10 or less
В	10 – 20
С	20 - 35
D	35 – 55
Е	55 - 80
F	greater than 80

^{*} s/veh = seconds per vehicle

- **LOS** A describes operations with low control delay, up to 10 s/veh. This LOS occurs when progression is extremely favorable and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may tend to contribute to low delay values.
- **LOS B** describes operations with control delay greater than 10 and up to 20 s/veh. This level generally occurs with good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of delay.
- **LOS** C describes operations with control delay greater than 20 and up to 35 s/veh. These higher delays may result from only fair progression, longer cycle lengths, or both. Individual cycle failures may begin to appear at this level. Cycle failure occurs when a green phase does not serve queued vehicles, and overflows occur. The number of vehicles stopping is significant at this level, though many still pass through the intersection without stopping.
- **LOS D** describes operations with control delay greater than 35 and up to 55 s/veh. At LOS D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high volume-to-capacity (v/c) ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.
- **LOS E** describes operations with control delay greater than 55 and up to 80 s/veh. These high delay values generally indicate poor progression, long cycle lengths, and high v/c ratios. Individual cycle failures are frequent.
- **LOS** F describes operations with delay in excess of 80.0 s/veh. This level, considered unacceptable to most drivers, often occurs with over-saturation, that is, when arrival flow rates exceed the capacity of lane groups. It may also occur at high v/c ratios with many individual cycle failures. Poor progression and long cycle lengths may also contribute significantly to high delay levels. Often, vehicles do not pass through the intersection in one signal cycle.

Unsignalized Intersection Delay

The level of service criteria for an unsignalized intersection differs from that of a signalized intersection because of the expectation that signalized intersections encounter more traffic and therefore greater delays. The thresholds for the levels of service of unsignalized intersections are as follows:

TABLE B HCS UNSIGNALIZED LOS STANDARDS					
LOS	Control Delay per Vehicle (s/veh)				
A	10 or less				
В	10 – 15 15 - 25				
С					
D	25 – 35				
Е	35 - 50				
F	greater than 50				

^{*} s/veh = seconds per vehicle

Levels-of-service A, B, and C are considered acceptable, LOS D is generally considered marginally acceptable during peak periods and LOS E and F are considered unacceptable.

Freeways

A basic freeway segment can be characterized by three performance measures: density in terms of passenger cars per mile per lane, speed in terms of mean passenger-car sped and volume-to capacity (v/c) ratio. The measure used to provide an estimate of the LOS is density and are as follows:

TABLE C HCS FREEWAY LOS STANDARDS				
LOS	Density (pc/mi/ln)			
A	0 – 11			
В	11 – 18			
С	18 – 26			
D	26 – 35			
Е	35 - 45			
F	> 45			

Ramps and Ramp Junctions

TABLE D HCS MERGE AND DIVERGE AREA LOS STANDARDS				
LOS	Density (pc/mi/ln)			
A	10 or less			
В	10 – 20			
С	20 - 28			
D	28 – 35			
Е	Greater than 35			
F	Demand exceeds capacity			

LOS in merge (and diverge) influence areas is determined by density for all cases of stable operation, represented by LOS A through E. LOS F exists when the total flow departing from the merge area exceeds the capacity of the downstream freeway segment.

LOS A represents unrestricted operations. Density is low enough to permit smooth merging and diverging, with virtually no turbulence in the traffic stream.

LOS B, merging and diverging maneuvers become noticeable to through drivers, and minimal turbulence occurs. Merging drivers must adjust speeds to accomplish smooth transitions from the acceleration lane to the freeway.

LOS C, speed within the influence area begins to decline as turbulence levels become noticeable. Both ramp and freeway vehicles begin to adjust their speeds to accomplish smooth transitions.

LOS D, turbulence levels in the influence area become intrusive, and virtually all vehicles slow to accommodate merging and diverging. Some ramp queues may form at heavily used on-ramps, but freeway operations remains stable.

LOS E represents conditions approaching capacity.

Weaving Segments

A single LOS is used to characterize total flow in the weaving segment, although it is recognized that in some situations (particularly in cases of constrained operations) nonweaving vehicles may achieve higher-quality operations than weaving vehicles.

TABLE E HCS WEAVE LOS STANDARDS					
LOS	Density (pc/mi/ln)				
A	10 or less				
В	10 – 20				
С	20 - 28				
D	28 – 35				
Е	35 – 43				
F	F Greater than 43				

ATTACHMENT E LEVEL OF SERVICE WORKSHEETS

Application	<u>Input</u>	Output
Operational (LOS)	FFS, N, v _b	LOS, S, D
Design (N)	FFS, LOS, v _n	N, S, D
Design (v _D)	FFS, LOS, N	v _p , S, D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N. S. D
Planning (v _p)	FFS, LOS, N	v _p . S, D

	now rose therms	117			
General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Northbo	ound I-87
Agency or Company	CHA		From/To	Exit 2 to	Exit 4
Date Performed	9/08/2011		Jurisdiction	NYSDC	
Analysis Time Period	AM		Analysis Year	2009 - E	Existing
Project Description Exit 4					
Oper.(LOS)		7.1	Des.(N)	□ Pla	anning Data
Flow Inputs					
Volume, V AADT	3000	veh/h	Peak-Hour Factor, PHF	0.92	
		veh/day	%Trucks and Buses, P _T	2	*
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		and to the	General Terrain:	Level	
Driver type adjustment	1.00	veh/h	Grade % Length	mi	
Calculate Flow Adjustr			Up/Down %		
f _p	1.00		E_R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
Lane Width	12.0	ft	f_LW		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	i i		
Interchange Density	0.50	l/mi	f _{LC}		mi/h
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance		111771	Design (N)	-	
			Design (N)		
Operational (LOS)					
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x	n n	Design LOS	_	
f _p)	1098	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x N x)$	t _{HV} x	pc/h
S	56.0	mi/h	f _p)		pom
$D = v_p / S$	19.6	pc/mi/ln	S		mi/h
LOS	79.0 C	ροπιπ	D = v _p / S		pc/mi/ln
-00	C		Required Number of Lanes, N		•
Glossary		***************************************	Factor Location		
N - Number of lanes	S - Speed				
√ - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
, - Flow rate	FFS - Free-flow	sneed	E _T - Exhibits 23-8, 23-10, 23-1	1	f _{LC} - Exhibit 23-5
OS - Level of service		·	f _p - Page 23-12		f _N - Exhibit 23-6
	BFFS - Base fre	ee-now speed	LOS, S, FFS, v _p - Exhibits 23-2	2, 23-3	f _{ID} - Exhibit 23-7
DDHV - Directional design ho	ur volume		_		יטו

Generated: 12/12/2011 3:48 PM

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mi/h) Froe-Flow Speed FFS = <u>75 mith</u> 70 mith 70 65 miih 60 mids 60 55 milh 50 30 0 400 0081200 1600 2000 2400 Flow Rate (nc/h/lin)

Application	Input	Output
Operational (LOS)	FFS, N, v _o	LOS, S, D
Design (N)	FFS, LOS, V _n	N, S, D
Design (v _p)	FFS, LOS, N	v _p , S, D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _n , S, D

	Flow Rate (pc/h/l	n)			
General Information			Site Information		
Analyst Agency or Company Date Performed	SEB CHA		Highway/Direction of Travel From/To Jurisdiction	Exit 4 to NYSDO	T
Analysis Time Period Project Description Exit 4	AM		Analysis Year	2009 - E	existing
Froject Description Exit 4 ☐ Oper.(LOS)		F-12-1	D - /N	ş	
Flow Inputs		\$ 0.55.	Des.(N)	III Pla	anning Data
Volume, V AADT	5150	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.92 2	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjustr	nents				
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
Lane Width	12.0	ft	f _{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft			
Interchange Density	0.50	I/mi	f _{LC}		mi/h
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance	Measures		Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x N x	x f.n. x		Design (N) Design LOS		
f _p)	1885	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N \times f_p)$: f _{HV} x	pc/h
	<i>55.7</i>	mi/h	s		mi/h
D = v _p / S LOS	33.8 D	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	D		Required Number of Lanes, N		
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fr		E _R - Exhibits23-8, 23-10 E _T - Exhibits 23-8, 23-10, 23-1 f _p - Page 23-12	1	f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6
DDHV - Directional design ho		- F	LOS, S, FFS, v _p - Exhibits 23-	2, 23-3	f _{ID} - Exhibit 23-7

Generated: 12/12/2011 3:51 PM

Application	<u>Input</u>	Output
Operational (LOS)	FFS, N, v _B	LOS, S, D
Design (N)	FFS, LOS, v _n	N, S, D
Design (v _p)	FFS, LOS, N	v _p , S, D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _n , S, D

	Flow Rate (pc/h/l	n)			
General Information	<u> </u>		Site Information		
Analyst	SEB		Highway/Direction of Travel		ound I-87
Agency or Company	CHA		From/To		ff to Exit 4 on
Date Performed Analysis Time Period	9/08/2011 AM		Jurisdiction	NYSDC	
Project Description Exit 4	AM		Analysis Year	2009 - E	=xisting
Oper.(LOS)		fin r	Des.(N)	□ PI	anning Data
Flow Inputs				* 1 K	anning Data
Volume, V	2200	veh/h	Peak-Hour Factor, PHF	0.92	
AADT		veh/day	%Trucks and Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D	4.00	veh/h	Grade % Length	mi	
Driver type adjustment Calculate Flow Adjustr	1.00		Up/Down %		
	1.00		E _R	1.2	
f _p			-		
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	<u>S</u>	
Lane Width	12.0	ft	f_{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h
Interchange Density	0.50	l/mi			mi/h
Number of Lanes, N	3		f _{ID}		
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance	Measures		Design (N)		
Operational (LOS)			Design (N)		
	w.f. w		Design LOS		
v _p = (V or DDHV) / (PHF x N x	^{X 1} HV ^X 805	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N \times N)$	cf _{HV} x	
f _p)			f_{ρ})		pc/h
S	56.0	mi/h	S		mi/h
$D = v_p / S$	14.4	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	В		Required Number of Lanes, N	l	родини
Glossary			Factor Location		
N - Number of lanes	S - Speed				
V - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
v _o - Flow rate	FFS - Free-flov	v speed	E _T - Exhibits 23-8, 23-10, 23-1	11	f _{LC} - Exhibit 23-5
LOS - Level of service	BFFS - Base fr	·	f _p - Page 23-12		f _N - Exhibit 23-6
DDHV - Directional design ho		oo non opeca	LOS, S, FFS, v _p - Exhibits 23-	2, 23-3	f _{ID} - Exhibit 23-7
Julia - Directional design 10	ui voiuiile		· ·		

Application	Input	Output
Operational (LOS)	FFS, N, v _B	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	v _p , S, D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _o , S, D

	How Kate (pc/h/li	n)			
General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Southbo	ound I-87
Agency or Company	CHA		From/To	Exit 5 o	n to Exit 4 on
Date Performed	12/08/2011		Jurisdiction	NYSDO	T
Analysis Time Period	AM		Analysis Year	2009 - E	Existing
Project Description Exit 4					
Oper.(LOS)			Des.(N)	□ Pla	anning Data
Flow Inputs					
Volume, V	4600	veh/h	Peak-Hour Factor, PHF	0.92	
AADT		veh/day	%Trucks and Buses, P_T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D	1.00	veh/h	Grade % Length	mi	
Driver type adjustment Calculate Flow Adjustr	1.00		Up/Down %		
	1.00		· ·		
f _p			E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
Lane Width	12.0	ft	f_LW		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft			
Interchange Density	0.50	l/mi	f _{LC}		mi/h
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance			Design (N)		
			Design (N)		
Operational (LOS)			Design LOS		
v _p = (V or DDHV) / (PHF x N :	x f _{HV} x 1683	n o /h /l n			
f _p)	1003	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x N)$	CI _{HV} X	pc/h
S	56.0	mi/h	f _p)		·
$D = v_p / S$	30.1	pc/mi/ln	S		mi/h
LOS	D	pommi	D = v _p / S		pc/mi/ln
			Required Number of Lanes, N	I	
Glossary			Factor Location		
N - Number of lanes	S - Speed		E		f F12200
V - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
v _o - Flow rate	FFS - Free-flow	v speed	E _T - Exhibits 23-8, 23-10, 23-2	11	f _{LC} - Exhibit 23-5
LOS - Level of service	BFFS - Base from		f _p - Page 23-12		f _N - Exhibit 23-6
DDHV - Directional design ho		oo now speed	LOS, S, FFS, v _p - Exhibits 23-	-2, 23-3	f _{ID} - Exhibit 23-7
	our volume				

Application	Input	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	Vp. S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N. S. D
Planning (v _p)	FFS, LOS, N	V _D , S, D

	Flow Rate (pc/h/l	n)			
General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Northbo	ound I-87
Agency or Company	CHA		From/To	Exit 4 to	Exit 5
Date Performed	9/08/2011		Jurisdiction	NYSDC)T
Analysis Time Period	AM		Analysis Year	2009 - L	Existing
Project Description Exit 4					
✓ Oper.(LOS) Flow Inputs			Des.(N)	□ Pla	anning Data
Volume, V	2700	veh/h	Peak-Hour Factor, PHF	0.92	
AADT	2700	veh/day	%Trucks and Buses, P _T	2	
Peak-Hr Prop. of AADT, K		voinady	%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D		veh/h	Grade % Length	mi	
Driver type adjustment	1.00	·	Up/Down %		
Calculate Flow Adjustr	nents				
f _p	1.00		E_R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
ane Width	12.0	ft	f{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h
nterchange Density	0.50	I/mi			
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance	Measures		Design (N)		
Operational (LOS)			Design (N)		
$v_p = (V \text{ or DDHV}) / (PHF x N)$	vf v		Design LOS		
•	^ 'HV ^ 988	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N \times N)$	f _{HV} x	
(p)			f_p)		pc/h
S	56.0	mi/h	S		mi/h
$D = v_p / S$	17.6	pc/mi/ln	$D = v_p / S$		pc/mi/ln
_OS	В		Required Number of Lanes, N		ρο/ιτι/π
Glossary			Factor Location		
N - Number of lanes	S - Speed				
√ - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
- Flow rate	FFS - Free-flow	/ speed	E _T - Exhibits 23-8, 23-10, 23-1	1	f _{LC} - Exhibit 23-5
OS - Level of service	BFFS - Base fr		f _p - Page 23-12		f _N - Exhibit 23-6
DDHV - Directional design ho		ee-now speed	LOS, S, FFS, v _p - Exhibits 23-	2, 23-3	f _{ID} - Exhibit 23-7
	ui voiullie		r.		***

Application	Input	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	Vp. S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (N)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	V _B , S, D

	Filow Rate (po	/h/ l n)			
General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Southb	ound I-87
Agency or Company	CHA		From/To	Exit 5 to	o Exit 4
Date Performed	9/08/2011		Jurisdiction	NYSDC	DΤ
Analysis Time Period	AM		Analysis Year	2009 - 1	Existing
Project Description Exit 4					
Oper.(LOS))		Des.(N)	□ PI	anning Data
Flow Inputs					
Volume, V	4400	veh/h	Peak-Hour Factor, PHF	0.92	
AADT		veh/day	%Trucks and Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		In <i>I</i> In	General Terrain:	Level	
Driver type adjustment	1.00	veh/h	Grade % Length Up/Down %	mi	
Calculate Flow Adjusti			Op/Down 78		
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs	7.0		Calc Speed Adj and FF		
Lane Width	12.0	ft		<u> </u>	
Rt-Shoulder Lat. Clearance	6.0	ft	f_{LW}		mi/h
Interchange Density	0.50	l/mi	f _{LC}		mi/h
Number of Lanes, N	3	1/1111	f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance		111/11	Dooign (N)		
LOS and Performance	Measures		Design (N)		
Operational (LOS)			Design (N)		
$v_p = (V \text{ or DDHV}) / (PHF \times N)$	x f _{HV} x		Design LOS		
(p)	1610	pc/h/ln	$V_p = (V \text{ or DDHV}) / (PHF \times N)$	x f _{HV} x	pc/h
p [,]	56.0	mi/h	f _p)		ролі
) = v _p / S	28.8	pc/mi/ln	S		mi/h
_OS	20.0 D	pc/m/m	D = v _p / S		pc/mi/ln
	<i>U</i>		Required Number of Lanes, N	١	
Glossary			Factor Location		
N - Number of lanes	S - Speed		E Evhibite02.0.00.40		f F. 1. 1. 1. 2. 0. 1
√ - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
/p - Flow rate	FFS - Free-flo	ow speed	E _T - Exhibits 23-8, 23-10, 23-	11	f _{LC} - Exhibit 23-5
OS - Level of service		free-flow speed	f _p - Page 23-12		f _N - Exhibit 23-6
DDHV - Directional design ho			LOS, S, FFS, v _p - Exhibits 23	-2, 23-3	f _{ID} - Exhibit 23-7
	· • · · · · · · · · · · · · · · · ·				

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenges-Car Speed (mith) Free-Flow Speed FFS = <u>75</u> mith 70 mith 70 65 miih 60 mids 60 55 milh 40 400 200 1200 1600 2000 2400 Flow Rate (nc/h/ln)

Application	<u>Input</u>	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	v _p , S, D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (N)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _p , S, D

	Flow Rate (pc/h/i	in)			
General Information		***************************************	Site Information		
Analyst	SEB		Highway/Direction of Travel	Northbo	ound I-87
Agency or Company	CHA		From/To	Exit 5 to	Exit 6
Date Performed	9/08/2011		Jurisdiction	NYSDO)T
Analysis Time Period	AM		Analysis Year	2009 - E	Existing
Project Description Exit 4					
✓ Oper.(LOS)		\$ 100 to	Des.(N)	□ Pla	anning Data
Flow Inputs	0500				
Volume, V AADT	2500	veh/h	Peak-Hour Factor, PHF	0.92	
		veh/day	%Trucks and Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terrain: Grade % Length	Level mi	
Driver type adjustment	1.00	VC(1//1)	Grade % Length Up/Down %	mi	
Calculate Flow Adjustr			Op/DOWN 78		
fp	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
Lane Width	12.0	ft	f _{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft			
Interchange Density	0.50	I/mi	f _{LC}		mi/h
Number of Lanes, N	4		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance	Measures		Design (N)		
Operational (LOS)			Design (N)		
Operational (LOS)	r		Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF \times N)$	х т _{НV} х 686	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N)$	x f _{uv} x	
f _p)		•	f_p)	+ 1 V	pc/h
S	56.0	mi/h	C		mi/h
$D = v_p / S$	12.3	pc/mi/ln	5 D=v /S		
LOS	В		D = v _p / S Required Number of Lanes, N	ı	pc/mi/ln
Glossary			Factor Location	·	
N - Number of lanes	S - Speed		p actor Location		
V - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
•	•	w spood	E _T - Exhibits 23-8, 23-10, 23-	11	f _{LC} - Exhibit 23-5
v _p - Flow rate	FFS - Free-flow		f _n - Page 23-12		f _N - Exhibit 23-6
LOS - Level of service	BFFS - Base fi	ree-flow speed	LOS, S, FFS, v _p - Exhibits 23-	-2. 23-3	f _{ID} - Exhibit 23-7
DDHV - Directional design ho	ur volume		р	_, 🗸	-iD::::01.20 /

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mith) Free-Flow Speed FFS = 75 mish Application Input Output 70 mish 70 Operational (LOS) FFS, N, vp LOS, S, D 65 mith 60 miih Design (N) FFS, LOS, v_n N, S, D 60 55 min Design (v_n) FFS, LOS, N Vp. S. D 50 Planning (LOS) FFS, N, AADT LOS, S, D Planning (N) FFS, LOS, AADT N, S, D 40 Planning (v_n) FFS, LOS, N v_p, S, D 1200 1600 2000 2400 Flow Rate (pc/h/lin) General Information Site Information Analyst SEB Highway/Direction of Travel Southbound I-87 Agency or Company From/To CHA Exit 6 to Exit 5 Date Performed 9/08/2011 Jurisdiction NYSDOT Analysis Time Period Analysis Year 2009 - Existing AM Project Description Exit 4 ☐ Des.(N) □ Planning Data Flow Inputs Volume, V 6100 Peak-Hour Factor, PHF 0.92 veh/h %Trucks and Buses, P_T AADT veh/day 2 %RVs, P_R Peak-Hr Prop. of AADT, K 0 Peak-Hr Direction Prop, D General Terrain: Level $DDHV = AADT \times K \times D$ veh/h Grade % Length mi Driver type adjustment 1.00 Up/Down % Calculate Flow Adjustments 1.00 E_R 1.2 E_{T} 1.5 0.990 $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$ Speed Inputs Calc Speed Adj and FFS Lane Width 12.0 ft f_{LW} mi/h Rt-Shoulder Lat. Clearance 6.0 ft f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes. N 4 f_N mi/h FFS (measured) 56.0 mi/h **FFS** 56.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ 1674 $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ pc/h/ln $f_p)$ pc/h 56.0 mi/h mi/h D = v_p / S 29.9 pc/mi/ln $D = v_n / S$ pc/mi/ln LOS D Required Number of Lanes, N Glossary **Factor Location** N - Number of lanes S - Speed E_B - Exhibits23-8, 23-10 f_{IW} - Exhibit 23-4

DDHV - Directional design hour volume

D - Density

FFS - Free-flow speed

BFFS - Base free-flow speed

V - Hourly volume

LOS - Level of service

- Flow rate

E_T - Exhibits 23-8, 23-10, 23-11

LOS, S, FFS, v_p - Exhibits 23-2, 23-3

f_p - Page 23-12

f_{LC} - Exhibit 23-5

f_N - Exhibit 23-6

f_{ID} - Exhibit 23-7

	RA	MPS AND	VAINL JOIM	STICING W	OKKSHE	<u> </u>						
General Infort	mation			Site Infor	mation							
Analyst	SEB		Fre	eeway/Dir of Tra	avel i	Northbound I-8	7					
agency or Company	CHA		Ju	nction	1	Exit 2W On-Ra	mp					
Date Performed	9/08/		Ju	risdiction	ļ	NYSDOT	•					
nalysis Time Period	AM		An	alysis Year	:	2009 Existing						
Project Description	Exit 4					_						
nputs												
lpstream Adj Ramp		Terrain: Level						Downstre Ramp	eam Adj			
▼ Yes ☐ On								☐ Yes	□ On			
□ No Off								☑ No	☐ Off			
_{rup} = 1100 1	ft							L _{down} =	ft			
		S	$_{\rm F}$ = 56.0 mph		$S_{FR} = 4$	0.0 mph		\/ -	veh/h			
u' = 690 ve	eh/h		Sketch (s	show lanes, L _A ,	$L_{D'}V_{R'}V_{f}$			$V_D =$	ven/m			
Conversion to	pc/h Un	der Base C	onditions									
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	fp	v = V/PH	F x f _{HV} x f _p			
reeway	2650	0.92	Level	2	0	0.990	1.00		2909			
Ramp	340	0.92	Level	2	0	0.990	1.00		373			
JpStream	690	0.92	Level	2	0	0.990	1.00	757				
DownStream								101				
		Merge Areas		•		•	Diverge Are	erge Areas				
stimation of		Estimati	ion of v ₁₂									
	V ₁₂ = V _F	(P)										
	12 1		- 0 0 0 0			V ₁₂	$= V_R + (V_F -$	· V _R)P _{FD}				
EQ =		(Equation 2			L _{EQ} =		(Equation	25-8 or 25-	9)			
FM =	0.601	using Equation	on (Exhibit 25-5)		P _{FD} =		using Equ	ation (Exhibi	t 25-12)			
12 =	1749	pc/h			V ₁₂ =		pc/h					
or V _{av34}		pc/h (Equatio	n 25-4 or 25-		V ₃ or V _{av34}		•	ion 25-15 or 2	5-16)			
	5)	_				₄ > 2,700 pc/h			0 10)			
s V_3 or $V_{av34} > 2,700$												
s V_3 or $V_{av34} > 1.5$ *	$V_{12}/2 \square Ye$	s 🗹 No			Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No							
Yes,V _{12a} =	pc/h	(Equation 25-	8)		If Yes,V _{12a} = pc/h (Equation 25-18)							
Capacity Che	cks				Capacity Checks							
	Actual	Ca	pacity	LOS F?		Actu	al	Capacity	LOS F			
		Î I	, ,	î .	V _F		Exhibit					
V	2202	F., Likit 0F 7		N-	<u> </u>	1/	_	_				
V_{FO}	3282	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhibit					
					V _R		Exhibit	25-3				
Flow Entering	Merge In	fluence A	'ea		Flow En	tering Div	verge Influ	ience Are	ea			
	Actual	Max D	esirable	Violation?		Actual	1	esirable	Violation?			
V _{R12}	2122	Exhibit 25-7	4600:AII	No	V ₁₂		Exhibit 25-1	4				
Level of Service Determination (if not F) Level of Service Determination							Determina	tion (if n	ot F)			
		0.0078 V ₁₂ - 0.00			1	$D_R = 4.252 +$		•				
_R = 16.5 (pc)		12	М		L	c/mi/ln)	12					
OS = B (Exhib						xhibit 25-4)						
Speed Detern	•				`	etermina	tion					
preed Deleili							uon					
	$M_S = 0.286 \text{ (Exibit 25-19)}$					xhibit 25-19)						
1 _S = 0.286 (Exit	,	S _R = 52.0 mph (Exhibit 25-19)					S _R = mph (Exhibit 25-19)					
-					., .							
_R = 52.0 mph (., .	on (Exhibit 25- oh (Exhibit 25-						

		RAMP	S AND RAM			RKS	HEET			
General Info	rmation			Site Infor						
Analyst Agency or Compan Date Performed Analysis Time Perio Project Description	9/08/. od AM		Ju Ju	eeway/Dir of Tr nction risdiction nalysis Year		Northb Exit 4 I NYSDO 2009 E	TC			
Inputs	EXIL 4									
		Terrain: Leve							Downstrea	m Adi
Upstream Adj Ram									Ramp	iiii Auj
☐ Yes ☐ C	n								✓ Yes	✓ On
™ No □ C	off								□ No	☐ Off
L _{up} = ft									L _{down} =	2660 ft
V _u = veh/	'h	S	$_{FF} = 56.0 \text{ mph}$ Sketch (\pm	show lanes, L _A ,	$S_{FR} = \frac{1}{2}$ $L_{D'}V_{R'}V_{f}$	40.0 mp	h		V _D =	550 veh/h
Conversion	to pc/h Und	der Base (Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	3000	0.92	Level	2	0	0.	.990	1.00	32	93
Ramp	810	0.82	Level	2	0	0	.990	1.00	99	98
UpStream								1.00		
DownStream	am 550 0.92 Level 2 0 0.990 1.00 Merge Areas Diverge Ar						1.00	604		
Estimation of		Estimat	ion c		Diverge Areas					
	V ₁₂ = V _F	(D)						= V _R + (V _F - V _F	\D	
1		(' _{FM}) ation 25-2 or	25-3)		-			Equation 25-8		
L _{EQ} = P _{FM} =		Equation (E			L _{EQ} = P _{FD} =			.632 using Eq		ihit 25-12)
V ₁₂ =	pc/h	_900.00. (2			V ₁₂ =			448 pc/h	dation (Exil	IIDIT 20 12)
V ₃ or V _{av34}		(Equation 25	-4 or 25-5)		V ₃ or V _{av34}			45 pc/h (Equa	tion 25-15	or 25-16)
Is V_3 or $V_{av34} > 2.7$,			34 > 2,7		Yes Mo		0. 20 .0,
Is V ₃ or V _{av34} > 1.5								Tyes ✓ No		
If Yes,V _{12a} =	pc/h	(Equation 25	-8)		If Yes,V _{12a} =			oc/h (Equation	25-18)	
Capacity Ch	ecks				Capacit	y Ch	ecks			
	Actual	C	apacity	LOS F?			Actual	Ca	pacity	LOS F
					V _F		3293	Exhibit 25-1	4 6780	No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2295	Exhibit 25-1	4 6780	No
					V _R		998	Exhibit 25-3	2100	No
Flow Enterin	ng Merge In	1			Flow En	ıterir	ig Dive	rge Influen		
	Actual	1	Desirable	Violation?		_	Actual	Max Desirab		Violation
V _{R12}	<u> </u>	Exhibit 25-7	· - ·		V ₁₂		2448	Exhibit 25-14	4400:All	No No
Level of Ser								terminatio		F)
$D_R = 5.475 + 0$		0.0078 V ₁₂ -	0.00627 L _A					0.0086 V ₁₂ - 0.	009 L _D	
$D_R = (pc/m)$					1,		/mi/ln)			
	oit 25-4)					•	bit 25-4)			
Speed Deter	mination				Speed L					
$M_S = $ (Exibit 2					1 *		xhibit 25			
• •	hibit 25-19)					-	(Exhibit			
	hibit 25-19)				S ₀ = 61.4 mph (Exhibit 25-19)					
. ,										
S ₀ = mph (Ex	hibit 25-19) hibit 25-14)	All Rights Resen	red		$S_0 = 6^{\circ}$	1.4 mpt 2.2 mpt	(Exhibit	25-19) 25-15)	erated: 12/16/	/2011

		RAI	MPS AND	RAMP JUNG	CTIONS W	ORKSHE	ET .					
Genera	I Inforr				Site Infor							
Analyst Agency or C Date Perfori Analysis Tin Project Desi	med ne Period	SEB CHA 9/08/: AM	2011	Jui Jui	eeway/Dir of Tr nction isdiction alysis Year		Northbound I-8 Exit 4 NB On-F NYSDOT 2009 Existing					
Inputs	cription	LAIL 4										
Upstream A	dj Ramp		Terrain: Level						Downstre Ramp	am Adj		
☐ Yes	□ On								✓ Yes	☐ On		
✓ No	☐ Off								□ No	✓ Off		
-up =	ft		S	_{FF} = 56.0 mph		S _{FR} = 4	0.0 mph		L _{down} =	3500 ft		
√ _u =	veh/h			Sketch (s	how lanes, L _A ,	$L_{D'}V_{R'}V_{f}$			$V_D =$	440 veh/h		
Conver	sion to	pc/h Und	der Base (Conditions								
(pc/l	h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PHI	= x f _{HV} x f _p		
Freeway		2200	0.92	Level	2	0	0.990	1.00		2415		
Ramp		550	0.92	Level	2	0	0.990	1.00		604		
UpStream DownStrea	ım	440	0.96	Level	2	0	0.990	1.00	_	463		
Downstea	1111		Merge Areas	Levei	Z	0	0.990	Diverge Are		403		
Estimation of v ₁₂						Estimati	on of v ₁₂	2.vo.go /	-			
		V ₁₂ = V _F	(P)			1		= V _R + (V _F	- \/ \P			
l =		12 1	1 141	25-2 or 25-3)		l =	* 12		*R/' FD 25-8 or 25-9))		
- _{EQ} =				on (Exhibit 25-5)		L _{EQ} = P _{FD} =			ation (Exhibit			
P _{FM} = V ₁₂ =		0.603 1456 r		OII (EXIIIDII 25-5)		V ₁₂ =		pc/h	ation (Exhibit	25-12)		
12 - V ₃ or V _{av34}				n 25-4 or 25-5)		V ₁₂ – V ₃ or V _{av34}		•	tion 25-15 or 25	i ₋ 16)		
	> 2 700	pc/h? ☐ Yes		123-4 01 23-3)			4 > 2,700 pc/h			1-10)		
		V ₁₂ /2					₁₄ > 2,766 pc/11 ₁₄ > 1.5 * V ₁₂ /2					
f Yes,V _{12a} =		· -	Equation 25	-8)		If Yes, V _{12a} =						
Capacit			(Equation 20	<u> </u>		If Yes,V _{12a} = pc/h (Equation 25-18) Capacity Checks						
Сарасп	ly Office	Actual	T C	apacity	LOS F?	Capacity	Actu	al I	Capacity	LOS F?		
		7101441	Ī	apa on y		V _F	7.101.0	Exhibit	1			
V _F		3019	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V ₂	Exhibit	_			
, F(0	3017	EXHIBIT 25 7		140	V _R	· R	Exhibit		+		
	- 4 - 11	Mayerale	<u> </u>		<u> </u>	;	ta viva er Dir					
-10W E	nering	Actual	fluence A	rea Desirable	Violation?	ILIOM EU	Actual		uence Are Desirable	Violation?		
V _{R1}		2060	Exhibit 25-7	4600:All	No	V ₁₂	Actual	Exhibit 25-		v ioiation :		
Level of Service Determination (if not F) Level of Service Determination							ot F)					
			0.0078 V ₁₂ - 0.0				$D_{R} = 4.252 +$			··· /		
O _R =	15.6 (pc/i	• • • • • • • • • • • • • • • • • • • •	12 313	А		L	c/mi/ln)	12	2 0			
_OS =	B (Exhibi	t 25-4)					xhibit 25-4)					
Speed I	Determ	ination					etermina	tion				
_	.280 (Exib					'	xhibit 25-19)					
Ü	-	Exhibit 25-19)					oh (Exhibit 25-	19)				
-11 3	2.1 mpn (L	-ATTION 23-17)										
	43 mnh /	vhihit 25-10\				$S_0 = mr$	oh (Exhibit 25-1	19)				
S ₀ = 54	-	Exhibit 25-19) Exhibit 25-14)					oh (Exhibit 25- oh (Exhibit 25-					

		RAMPS	AND RAM	P JUNCTI	ONS WO	RKS	HEET				
General Info	rmation		7 1112 117 111	Site Infor							
Analyst Agency or Company Date Performed Analysis Time Perio	SEB CHA 9/08/ d AM		Ju Ju	eeway/Dir of Tranction Inction Irisdiction Inalysis Year	avel	Northbo Exit 5 N NYSDC 2009 Ex	T				
Project Description	Exit 4										
Inputs		Terrain: Level							Dawastras	A al:	
Upstream Adj Ramp		2010							Downstrea Ramp	m Auj	
✓ Yes ✓ O	n								□ Yes	□ On	
□ No □ O	ff									☐ Off	
3500	•									ft	
L _{up} = 3500	π	S	_{FF} = 56.0 mph		S _{FR} = 3	5.0 mp	h		L _{down} =	11	
$V_u = 550 \text{ v}$	eh/h			show lanes, L _A ,		.о.ор			V _D =	veh/h	
Conversion t	o pc/h Und	der Base C		A	D K I						
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	2700	0.92	Level	2	0		990	1.00	296	54	
Ramp	440	0.96	Level	2	0		990	1.00	46		
UpStream	550	0.92	Level	2	0	0.9	990	1.00	60	4	
DownStream											
Merge Areas Estimation of v ₁₂					Ectimot	ion o		Diverge Areas			
Estillation o					Estimati	1011 0					
	$V_{12} = V_F$							= V _R + (V _F - V			
L _{EQ} =		ation 25-2 or			L _{EQ} =			808.59 (Equat			
P _{FM} =	_	Equation (E	khibit 25-5)		P _{FD} =			.706 using Ed	quation (Exhi	bit 25-12)	
V ₁₂ =	pc/h	<i>-</i>			V ₁₂ =			228 pc/h			
V ₃ or V _{av34}		(Equation 25	-4 or 25-5)		V ₃ or V _{av34}	0.7		36 pc/h (Equa	ation 25-15	or 25-16)	
Is V_3 or $V_{av34} > 2.79$								Yes ☑ No			
Is V_3 or $V_{av34} > 1.5$ If Yes, $V_{12a} =$	·=		0)					Yes Mo	OF 10\		
Capacity Che		(Equation 25	-0)		If Yes,V _{12a} = pc/h (Equation 25-18) Capacity Checks						
Сараспу Спе	Actual	l Ca	pacity	LOS F?	Capacity	y Crie	Actual	l Ca	pacity	LOS F?	
	Actual		pacity	LOST:	V _F		2964	Exhibit 25-1	<u> </u>	No	
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V ₂	2501	Exhibit 25-1	+	No	
1 +0		EXHIBIT 20 7			V _R	·R	463	Exhibit 25-3	+	No	
Flow Enterin	a Morae In	fluence A	roa		 	torin		rge Influen		110	
I IOW LIILEIIII	Actual	1		Violation?	I IOW LII		octual	Max Desiral		Violation?	
Actual Max Desirable Viola V _{R12} Exhibit 25-7					V ₁₂	_	228	Exhibit 25-14	4400:All	No	
Level of Serv	rice Detern	nination (i	f not F)		4	Serv	rice De	terminatio	n (if not l	=)	
$D_R = 5.475 + 0$.00734 v _R +	0.0078 V ₁₂ -	0.00627 L _A			D _R = 4	.252 + 0	.0086 V ₁₂ - 0	.009 L _D	•	
D _R = (pc/mi	/ln)				D _R = 21	.2 (pc/	mi/ln)				
	it 25-4)						oit 25-4)				
Speed Deter	mination				Speed D	Deter	minatio	on			
M _S = (Exibit 25-19)					$D_s = 0.4$	470 (E:	xhibit 25	-19)			
-	nibit 25-19)				S _R = 49	.4 mph	(Exhibit	25-19)			
	nibit 25-19)				$S_0 = 61.4 \text{ mph (Exhibit 25-19)}$						
-	nibit 25-14)					.9 mph	(Exhibit	25-15)			
Copyright © 2007 University of Florida, All Rights Reserved					HCS+TM \		- 0	Ger	nerated: 12/16/	2011 8:32 <i>A</i>	

		KAIVIP	S AND RAM			KNO	пеет				
General Info	rmation			Site Infor	mation						
Analyst Agency or Compan Date Performed Analysis Time Peric	9/08/		Ji Ji	reeway/Dir of Tr unction urisdiction nalysis Year]]	Southb Exit 2W NYSDC 2009 E	/ Off DT				
Project Description	Exit 4										
Inputs											
Upstream Adj Ramı		Terrain: Leve							Downstrea Ramp	m Adj	
☐ Yes ☐ O									✓ Yes	☑ On	
✓ No	ff								□ No	☐ Off	
L _{up} = ft		5	_{FF} = 56.0 mph		S _{FR} = 4	0 0 mn	h		L _{down} =	1300 ft	
V _u = veh/			Sketch (show lanes, L _A		0.0 mp	'''		V _D =	310 veh/h	
Conversion	to pc/h Un	der Base (Conditions					-			
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	5150	0.92	Level	2	0	0.	990	1.00	565	54	
Ramp	890	0.92	Level	2	0	0.	990	1.00	97	7	
UpStream	240	0.00	Lauri	1		+-	000	1.00			
DownStream	310	0.92 Merge Areas	Level	2	0	0.	990	1.00 Diverge Areas	34	0	
Estimation o		ivier ge Areas			Estimati	ion o		Diverge Areas			
		(D.)			Lotimati			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\D		
	$V_{12} = V_F$							= V _R + (V _F - V _I			
L _{EQ} =		ation 25-2 or			L _{EQ} =			Equation 25-8			
P _{FM} =	_	Equation (E	xhibit 25-5)		P _{FD} =			.574 using Ed	uation (Exhi	bit 25-12)	
V ₁₂ =	pc/h				V ₁₂ =			660 pc/h			
V_3 or V_{av34}		(Equation 25	-4 or 25-5)		V_3 or V_{av34}			994 pc/h (Equ	ation 25-15	or 25-16	
Is V_3 or $V_{av34} > 2.7$								Yes Mo			
Is V ₃ or V _{av34} > 1.5	:=				0 0.0			Tyes ✓ No			
If Yes,V _{12a} =		(Equation 25	-8)		If Yes,V _{12a} =			oc/h (Equation	25-18)		
Capacity Ch	ecks				Capacity	y Ch	ecks				
	Actual	C	apacity	LOS F?			Actual		pacity	LOS F	
					V _F		5654	Exhibit 25-1	4 6780	No	
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	4677	Exhibit 25-1	4 6780	No	
					V_R		977	Exhibit 25-3	3 2100	No	
Flow Enterin	g Merge In	fluence A	rea		Flow En	terin	g Dive	rge Influen	ce Area		
	Actual	1	Desirable	Violation?		_	Actual	Max Desiral		Violation	
V _{R12}		Exhibit 25-7			V ₁₂	3	3660	Exhibit 25-14	4400:All	No	
Level of Serv	vice Deterr	nination (i	f not F)			Ser	vice De	terminatio	n (if not l		
$D_R = 5.475 + 0$					_			.0086 V ₁₂ - 0.	-		
D _R = (pc/mi		12	, ,				/mi/ln)	12	2		
***	oit 25-4)					(Exhil	oit 25-4)				
Speed Deter					Speed D	•		on			
$M_S = $ (Exibit 2							xhibit 25				
· ·	hibit 25-19)					•	(Exhibit	*			
					1	-					
	hibit 25-19)				S_0 = 57.6 mph (Exhibit 25-19) S = 52.2 mph (Exhibit 25-15)						
S = mph (Exhibit 25-14)											

0		IVAIVIE	S AND RAM			IVIVO					
General Info				Site Infor							
Analyst Agency or Compan Date Performed Analysis Time Perio	9/08/		J	reeway/Dir of Tr unction urisdiction analysis Year]]	Southb Exit 4 S NYSD(2009 E	TC				
Project Description						2007 2	, mounty				
Inputs											
Upstream Adj Ram	р	Terrain: Leve							Downstrea Ramp	m Adj	
□ Yes □ C	n								✓ Yes	✓ On	
M No □ C	ff								□ No	☐ Off	
L _{up} = ft		S	FF = 56.0 mph		S _{FR} = 4	0.0 mp	h		401111	3100 ft	
V _u = veh/	h		Sketch (show lanes, L _A	$L_{D'}V_{R'}V_{f}$				V _D =	490 veh/	
Conversion	to pc/h Un	der Base (Conditions								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	5500	0.92	Level	2	0	0.	990	1.00	603	38	
Ramp	1070	0.92	Level	2	0	0.	990	1.00	117	75	
UpStream	1					+					
DownStream	490	0.93	Level	3	0	0.	985	1.00 Diverge Areas	53	5	
Estimation o		Merge Areas			Estimati	ion c		Diverge Areas			
Liganiation		>			LStillati	011					
	$V_{12} = V_{F}$							= V _R + (V _F - V			
L _{EQ} =		ation 25-2 or			L _{EQ} =			Equation 25-8			
P _{FM} =	using	Equation (E	xhibit 25-5)		P _{FD} =		0	.555 using Ed	quation (Exh	bit 25-12)	
V ₁₂ =	pc/h				V ₁₂ =		3	874 pc/h			
V ₃ or V _{av34}		(Equation 25	-4 or 25-5)		V_3 or V_{av34}			164 pc/h (Equ	ation 25-15	or 25-16	
Is V_3 or $V_{av34} > 2.7$	'00 pc/h?	s 🗆 No			Is V ₃ or V _{av3}	$_{34} > 2.7$	'00 pc/h?	Tyes ✓ No			
Is V_3 or $V_{av34} > 1.5$	* V ₁₂ /2	s 🗆 No			Is V ₃ or V _{av3}	₃₄ > 1.5	* V ₁₂ /2	Tyes ✓ No			
If Yes,V _{12a} =	pc/h	(Equation 25	-8)		If Yes,V _{12a} =		ŗ	oc/h (Equation	25-18)		
Capacity Ch	ecks				Capacity	y Ch	ecks				
	Actual	C	apacity	LOS F?			Actual	Ca	pacity	LOS F	
					V _F		6038	Exhibit 25-1	4 6780	No	
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	4863	Exhibit 25-1	4 6780	No	
10					V _R		1175	Exhibit 25-3	3 2100	No	
Flow Enterin	na Merce In	ofluence A	ro2			torir		rge Influen		1	
i iow Entern	Actual	1	Desirable	Violation?	i-iow eli		Actual	Max Desiral		Violation	
V _{R12}	, iotaai	Exhibit 25-7	D CONTRACTO	violation:	V ₁₂	_	3874	Exhibit 25-14	4400:All	No	
Level of Service Determination (if not F)								eterminatio			
$D_{R} = 5.475 + 0$).0086 V ₁₂ - 0.	-	,	
$D_R = 3.473 + C$ $D_R = (pc/m)$		0.0070 V ₁₂	0.00021 L _A			• • •	/mi/ln)	12 - 0.	_D		
**	oit 25-4)				1 ***		bit 25-4)				
Speed Deter					Speed D	•					
M _S = (Exibit 2					1. "	,	xhibit 25	*			
	hibit 25-19)				1	-	(Exhibit				
$S_0 = mph (Ex$	hibit 25-19)				$S_0 = 56.9 \text{ mph (Exhibit 25-19)}$						
S = mph (Exhibit 25-14)					S = 51		(Exhibit				

	RAI	MPS AND I	KAMP JUNG	CHONS W	ORKSHE	<u>:EI</u>						
General Infor	mation			Site Infor	mation							
Analyst	SEB		Fre	eeway/Dir of Tr	avel	Southbound	-87					
gency or Company	CHA		Ju	nction	Exit 4 SB On-Ramp							
ate Performed	9/08/	2011	Ju	risdiction	1	NYSDOT						
analysis Time Period	AM		An	alysis Year	2	2009 Existing	I					
roject Description	Exit 4											
nputs												
pstream Adj Ramp		Terrain: Level						Downstro Ramp	eam Adj			
Yes On								☐ Yes	□ On			
■ No ■ Off	:							✓ No	☐ Off			
up = 2035	ft							L _{down} =	ft			
		S	$_{\rm F} = 56.0 \; {\rm mph}$		$S_{FR} = 4$	0.0 mph		V _D =	veh/h			
u' = 490 Ve	eh/h		Sketch (s	show lanes, L _A ,	$L_{D'}V_{R'}V_{f}$			V _D –	ven/n			
Conversion to	pc/h Und	der Base C	onditions									
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p			
reeway	4600	0.92	Level	2	0	0.990	1.00		5050			
Ramp	540	0.93	Level	5	0	0.976	1.00		595			
JpStream	490	0.93	Level	3	0	0.985	1.00		535			
DownStream		1			1	1						
		Merge Areas					Diverge Ar	eas				
stimation of	v ₁₂				Estimati	ion of v ₁	2					
	V ₁₂ = V _F	(P.,,)			1			\/ \D				
_	12 1	ation 25-2 or	25-2\			V ₁	$_2 = V_R + (V_F)$					
EQ =					L _{EQ} =		(Equation	n 25-8 or 25-	·9)			
FM =			on (Exhibit 25-5)		P _{FD} =		using Eq	uation (Exhibi	t 25-12)			
12 =	3044				V ₁₂ =		pc/h					
or V _{av34}		pc/h (Equatio	n 25-4 or 25-		V ₃ or V _{av34}		pc/h (Equa	tion 25-15 or 2	5-16)			
s V ₃ or V _{av34} > 2,70	5)	- M N-				$_{\rm A} > 2,700 \rm pc$	/h? ☐ Yes ☐	No				
						•	¹²					
s V_3 or $V_{av34} > 1.5$ *	· -				If Yes, V _{12a} =			uation 25-18	١			
Yes,V _{12a} =		(Equation 25-	8)		120			Janon 25-10	/			
Capacity Che	cks				Capacity	y Checks	<u> </u>					
	Actual	Ca	pacity	LOS F?		Ac	tual	Capacity	LOS F			
					V_{F}		Exhibit	25-14				
V_{FO}	5645	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _D	Exhibit	25-14				
10					V _R			25-3				
low Entoring	Morae In	fluoroo A	·	ļ		toring D	iverge Infl					
low Entering		1		Violation?	FIOW EII				Violation			
V	Actual		esirable	Violation?	\/	Actual	1	Desirable 14	violation			
V _{R12}	3639	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-		- (5)			
evel of Serv		<u>-</u>					Determina		ot F)			
		0.0078 V ₁₂ - 0.00	1627 L _A			$O_{R} = 4.252$	+ 0.0086 V ₁	₂ - 0.009 L _D				
_R = 27.9 (pc	/mi/ln)				$D_R = (p$	c/mi/ln)						
OS = C (Exhib	oit 25-4)				LOS = (E	xhibit 25-4	.)					
Speed Detern	nination				Speed D	Petermin	ation					
l _S = 0.397 (Exil			xhibit 25-19)									
U.39/(EXII				; ₋ 10)								
-	R= 50.4 mph (Exhibit 25-19)						S _R = mph (Exhibit 25-19)					
5 _R = 50.4 mph (c	. /=	10\					
t_{R} = 50.4 mph (t_{0} = 50.6 mph (Exhibit 25-19) Exhibit 25-14)					oh (Exhibit 25 oh (Exhibit 25						

	11/71	III O AILD	RAMP JUNG		<u> </u>							
General Info	rmation			Site Infor	mation							
Analyst Agency or Company Date Performed Analysis Time Perio	9/08/	2011	Ju Ju	eeway/Dir of Tr nction risdiction nalysis Year	E N	Southbound I-6 Exit 5 SB On-F NYSDOT 2009 Existing						
Project Description						<u> </u>						
nputs												
Jpstream Adj Ramp		Terrain: Level						Downstr Ramp	eam Adj			
Yes O								✓ Yes	✓ On			
™ No □ O	ff							□ No	☐ Off			
_{-up} = ft		S	_{FF} = 56.0 mph		S _{FR} = 40	0.0 mph		L _{down} =	2035 ft			
$l_{\rm u} = {\rm veh/l}$	า		Sketch (s	show lanes, L _A ,	$L_{D'}V_{R'}V_{f}$			$V_D =$	540 veh/h			
Conversion t	to pc/h Und	der Base C	Conditions									
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	IF x f _{HV} x f _p			
Freeway	4400	0.92	Level	2	0	0.990	1.00		4830			
Ramp	490	0.93	Level	3	0	0.985	1.00		535			
UpStream	F 40	0.00	1 1			0.07/	1.00	505				
DownStream	540	0.93 Merge Areas	Level	5	0	0.976	1.00 Diverge A	roac	595			
Estimation of v ₁₂ Estimation o						on of v		1642				
		(D)										
	$V_{12} = V_F$		05.0)			V ₁₂	$= V_R + (V_F)$	V _R)P _{FD}				
-EQ =	-	ation 25-2 or			L _{EQ} =		(Equatio	n 25-8 or 25	-9)			
P _{FM} =			on (Exhibit 25-5)		P _{FD} =		using Ed	quation (Exhib	it 25-12)			
/ ₁₂ =	2911				V ₁₂ =		pc/h					
7 ₃ or V _{av34}	1919 5)	pc/h (Equatio	n 25-4 or 25-		V_3 or V_{av34}		pc/h (Equ	ation 25-15 or 2	5-16)			
Is V ₃ or V _{av34} > 2,7	,	s 🔽 No			Is V ₃ or V _{av3}	4 > 2,700 pc/h	?	No				
Is V_3 or $V_{av34} > 1.5$					Is V ₃ or V _{av3}	₄ > 1.5 * V ₁₂ /2	☐ Yes ☐	No				
Yes,V _{12a} =	·=	(Equation 25	-8)		If Yes,V _{12a} =		pc/h (Eq	uation 25-18)			
Capacity Che		(Equation 25	<u> </u>		120	Checks						
Sapacity One	Actual	T C:	npacity	LOS F?	Сараспу	Actu	al	Capacity	LOS F			
	Actual		ipacity	LOST:	V _F	Acto		it 25-14	1001			
V	E24E	Evhibit 25 7		No		. V						
V_{FO}	5365	Exhibit 25-7		No	$V_{FO} = V_F$	V R	_	it 25-14	_			
	<u> </u>	<u> </u>			V _R			it 25-3				
Flow Enterin				Lyrun	Flow En			luence Ar				
\/	Actual	1	Desirable	Violation?	\/	Actual	_	Desirable	Violation?			
V _{R12} 3446 Exhibit 25-7 4600:All No V ₁₂ Exhibit 25-7 Evel of Service Determination (if not F)												
									ot F)			
	- 0.00734 v _R + 0	אנטט.ט. V ₁₂ - 0.0	UOZ/ LA				- 0.0086 V	₁₂ - 0.009 L _D				
$O_{R} = 26.5 \text{ (p)}$	-					c/mi/ln)						
	bit 25-4)					xhibit 25-4)						
Speed Deter	mination				' '	etermina	tion					
$M_{\rm S} = 0.371 (Ex$	ibit 25-19)				$D_s = (Exhibit 25-19)$							
		S _R = mph (Exhibit 25-19)										
$S_R = 50.8 \text{ mph}$,				S ₀ = mph (Exhibit 25-19)							
	(Exhibit 25-19)				$S_0 = mp$	h (Exhibit 25-	19)					

			FREEWA	Y WEAV	ING WOR	KSHEE	Τ		
Genera	Informat	ion			Site Info	rmation			
Analyst SEB Agency/Company CHA Date Performed 9/08/2011 Analysis Time Period AM				Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	Location	I-87 Northbound Exit 2E on to 2W off NYSDOT 2009 Existing			
Inputs					1				
Weaving nu Weaving se Terrain	e-flow speed, and mber of lanes, g length, L (ft)	N	56 4 815 Lev	el	Weaving type Volume ratio Weaving ratio	, VR		A 0.: 0.:	
Conver	sions to p	c/h Unde	er Base C	ondition			•		_
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f_{HV}	fp	V
V_{o1}	2320	0.92	2	0	1.5	1.2	0.990	1.00	2546
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0
V _{w1}	690	0.92	2	0	1.5	1.2	0.990	1.00	757
V_{w2}	330	0.92	2	0	1.5	1.2	0.990	1.00	362
V _w		•	•	1119	V_{nw}		•	•	2546
V	1				,	ı			3665
Weavin	g and No	n-Weavin	g Speeds	S					
			Unconstr					trained	
a /Fubibit 2	1.()	Weaving	(i = w)	Non-Wea	ving (i = nw)	:	ng (i = w)	i e	ving (= nw)
a (Exhibit 24 b (Exhibit 24		<u> </u>				0.35 2.20		0.0020 4.00	
c (Exhibit 24						0.97		1.30	
d (Exhibit 2						0.80		0.75	
Weaving intens						2.20		0.27	
Weaving and no speeds, Si (mi/h						29.36 5			.22
Number of I Maximum n	anes required umber of lanes If Nw < Nw	s, Nw (max)	·		1.46 1.40	if Nw > Nv	v (max) constr	rained operati	ion
				Level o	f Service,	and Cap	acity		
	gment speed,			41.74					
	gment density,	, D (pc/mi/ln)		21.95					
Level of ser	vice, LOS			С					
Capacity of	base condition	n, c _b (pc/h)		6158					
Capacity as	a 15-minute fl	ow rate, c (vel	n/h)	6097					
Capacity as	a full-hour vol	ume, c _h (veh/h	1)	5609					
Notes									

a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 1/9/2012 11:46 AM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

			FREEWA	Y WEAV	ING WOR	KSHEE	Τ		
General	Informat	ion			Site Info	rmation			
Analyst SEB Agency/Company CHA Date Performed 9/08/2011 Analysis Time Period AM				Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	Location	I-87 Southbound Exit 2W on to 2E off NYSDOT 2009 Existing		ff	
Inputs									
Weaving nur Weaving seg Terrain	e-flow speed, s mber of lanes, g length, L (ft)	Ň	56 4 810 Lev	el	Weaving type Volume ratio Weaving ratio	, VR		A 0. 0.:	
Convers	sions to p	c/h Unde	er Base C	ondition		r	1	1	
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f _{HV}	fp	V
V_{o1}	3680	0.92	2	0	1.5	1.2	0.990	1.00	4039
V_{02}	0	0.92	2	0	1.5	1.2	0.990	1.00	0
V _{w1}	570	0.92	2	0	1.5	1.2	0.990	1.00	625
V_{w2}	310	0.92	2	0	1.5	1.2	0.990	1.00	340
$V_{_{\mathrm{W}}}$		•	•	965	V_{nw}		•	•	4039
V	1				,	ı			5004
Weaving	g and No	n-Weavin	g Speeds	3					
			Unconstr	4				trained	
a /Fubibit 24	()	Weaving			ving (i = nw)	Weavir	ng (i = w)	Non-Wea	ving (= nw)
a (Exhibit 24 b (Exhibit 24		0.15 2.20			.00				
c (Exhibit 24		0.97			.30				
d (Exhibit 24		0.80			0.75				
Weaving intensit		1.05)	0.	0.50				
Weaving and no speeds, Si (mi/h)		37.4	1	45	5.75				
Number of la Maximum nu	anes required a umber of lanes				1.13 1.40				
		(max) uncons					v (max) constr	rained operati	ion
					f Service,	and Cap	acity		
				43.86					
Weaving segment density, D (pc/mi/ln)			28.52 D						
Level of service, LOS Capacity of base condition, c _h (pc/h)			6776						
		ow rate, c (vel	n/h)	6709					
		ume, c _h (veh/h		6172					
Notes	a rail flour voi	unio, oh (vonin	''	0172					
hanres									

a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 1/9/2012 11:47 AM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mi/h) Free-Flow Spred <u>FFS = 75 midt</u> 70 midt 0 65 miih 60 midt 60 55 mish 50 30 400 00S1200 1600 2000 2400 Flow Rate (pc/h/lin)

Application	Input	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, V _n	N, S, D
Design (v _p)	FFS, LOS, N	Vp. S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	V _B , S, D

General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Northbo	und I-87
Agency or Company	CHA		From/To	Exit 2 to	Exit 4
Date Performed	9/08/2011		Jurisdiction	NYSDO	T
Analysis Time Period	PM		Analysis Year	2009 - E	Existing
Project Description Exit 4					
✓ Oper.(LOS))		Des.(N)	□ Pla	nning Data
Flow Inputs	5100				
Volume, V	5100	veh/h	Peak-Hour Factor, PHF	0.86	
AADT		veh/day	%Trucks and Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade % Length	mi	
Calculate Flow Adjusti			Up/Down %		
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	<u>S</u>	
ane Width	12.0	ft	f{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h
nterchange Density	0.50	I/mi			
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance	Measures		Design (N)		
			Design (N)		·
Operational (LOS)			Design LOS	4	
$V_{p} = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 1997	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N \times N)$	f v	
(p)	7007	ролли	f)	'HV ^	pc/h
6	55.0	mi/h	"p"		
$D = v_p / S$	36.3	pc/mi/ln	5		mi/h
os [°]	E	•	$D = v_p / S$		pc/mi/ln
			Required Number of Lanes, N		
Glossary		······	Factor Location		
N - Number of lanes	S - Speed		F - Evhihite23 9 22 10		f Evhibit 00 4
/ - Hourly volume	D - Density		E _R - Exhibits 23-8, 23-10		f _{LW} - Exhibit 23-4
, - Flow rate	FFS - Free-flow	speed	E _T - Exhibits 23-8, 23-10, 23-1	1	f _{LC} - Exhibit 23-5
OS - Level of service	BFFS - Base fre	·	f _p - Page 23-12		f _N - Exhibit 23-6
DDHV - Directional design ho			LOS, S, FFS, v _p - Exhibits 23-	2, 23-3	f _{ID} - Exhibit 23-7
	-a. romino				

Application	<u>Input</u>	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	Vp. S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _p , S, D

	Flow Rate (pc/h/li	n)			
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	SEB CHA 9/08/2011 PM		Highway/Direction of Travel From/To Jurisdiction Analysis Year	Southbo Exit 4 to NYSDC 2009 - L)T
Project Description Exit 4					
✓ Oper.(LOS)	<u> </u>		Des.(N)	□ Pla	anning Data
Flow Inputs Volume, V	3750	veh/h	Peak-Hour Factor, PHF	0.92	
AADT	0,00	veh/day	%Trucks and Buses, P _T	2	
Peak-Hr Prop. of AADT, K		,	%RVs, P _R	0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terrain: Grade % Length	Level mi	
Driver type adjustment	1.00		Up/Down %		
Calculate Flow Adjusti					
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
Lane Width	12.0	ft	f _{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft			
Interchange Density	0.50	I/mi	f _{LC}		mi/h
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance	Measures		Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x N	x f y		Design (N) Design LOS		
f _p)	13/2	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x N x f_p)$	cf _{HV} x	pc/h
S / C	56.0	mi/h	S		mi/h
$D = v_p / S$	24.5	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	С		Required Number of Lanes, N	İ	p 3
Glossary			Factor Location		
N - Number of lanes	S - Speed				
V - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
v _p - Flow rate	FFS - Free-flow	v speed	E _T - Exhibits 23-8, 23-10, 23-1	11	f _{LC} - Exhibit 23-5
LOS - Level of service DDHV - Directional design ho	BFFS - Base fro		f _p - Page 23-12 LOS, S, FFS, v _p - Exhibits 23-	2, 23-3	f _N - Exhibit 23-6 f _{ID} - Exhibit 23-7
ווסכייייייייייייייייייייייייייייייייייי	ui voiuitie				

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mith) Froe-Flow Speed FFS = 75 midt 70 mich 70 65 midt 60 mish 60 55 min 30 400 0080 1200 1600 2000 2400 Flow Rate (pc/h/lin)

Application	<u>Input</u>	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	v _p , S, D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (N)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _o , S, D

General Information			Site Information		
Analyst	OCD.		Site Information	A	
Agency or Company	SEB CHA		Highway/Direction of Travel		ound I-87
Date Performed	9/09/2011		From/To Jurisdiction		ff to Exit 4 on
Analysis Time Period	9/09/2011 PM		Analysis Year	NYSDO	
Project Description Exit 4	T IVI		Allalysis real	2009 - E	Exisurig
✓ Oper.(LOS)			Des.(N)	PI:	anning Data
Flow Inputs			500.(14)	s 1 IC	aning Data
Volume, V	4500	veh/h	Peak-Hour Factor, PHF	0.86	
AADT		veh/day	%Trucks and Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
$DDHV = AADT \times K \times D$		veh/h	Grade % Length	mi	
Driver type adjustment	1.00		Up/Down %		
Calculate Flow Adjustr	nents				
f_p	1.00		E_R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
Lane Width	12.0	ft	f _{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft			
Interchange Density	0.50	l/mi	f _{LC}		mi/h
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance	Measures		Design (N)		
Operational (LOC)			Design (N)		
Operational (LOS)	•		Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF \times N)$	х т _{НV} х 1762	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N \times N)$	fx	
f _p)		P 2	l r	. HV .	pc/h
S	56.0	mi/h	f _p) S		: <i>h</i> -
$D = v_p / S$	31.5	pc/mi/ln	1		mi/h
LOS	D		D = v _p / S		pc/mi/ln
Gloccom			Required Number of Lanes, N		
Glossary	C Ct		Factor Location		
N - Number of lanes	S - Speed		E _R - Exhibits23-8, 23-10		f _{I W} - Exhibit 23-4
V - Hourly volume	D - Density		E _T - Exhibits 23-8, 23-10, 23-1	1	f_{LC} - Exhibit 23-5
v _p - Flow rate	FFS - Free-flov	v speed	f _p - Page 23-12	•	f_N - Exhibit 23-6
LOS - Level of service	BFFS - Base fr	ee-flow speed	• •	2 22 2	
DDHV - Directional design ho	ur volume		LOS, S, FFS, v _p - Exhibits 23-	۷, ۷۵-۵	f _{ID} - Exhibit 23-7

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mith) FFS = 75 mids 70 mids F<u>roe-</u>Flow Spred 70 65 miih 60 midt 60 55 mith 40 30 400 800 1200 1600 2000 2400 Flow Rate (pc/h/lin)

Application	Input	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	v _p , S, D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _o , S, D

General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Southbo	und I-87
Agency or Company	CHA		From/To		to Exit 4 on
Date Performed	12/09/2011		Jurisdiction	NYSDO	Τ
Analysis Time Period	PM		Analysis Year	2009 - E	ixisting
Project Description Exit 4					
Oper.(LOS)		**************************************	Des.(N)	□ Pla	nning Data
Flow Inputs					
Volume, V	2700	veh/h	Peak-Hour Factor, PHF	0.92	
AADT		veh/day	%Trucks and Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
$DDHV = AADT \times K \times D$		veh/h	Grade % Length	mi	
Driver type adjustment	1.00		Up/Down %		
Calculate Flow Adjustm					
f_p	1.00		E_R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
Lane Width	12.0	ft	f_LW		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h
Interchange Density	0.50	l/mi	i e		
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance I	Measures		Design (N)		
		*****	Design (N)		
Operational (LOS)			Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF x N x)$	(f _{HV} x 988	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N)$	v f. v	
f_p)	900	ролин	1 '	, ,HA ,	pc/h
S	56.0	mi/h	f_p)		• 0
D = v _p / S	17.6	pc/mi/ln	S		mi/h
LOS	В	•	$D = v_p / S$		pc/mi/ln
			Required Number of Lanes, N	1	
Glossary			Factor Location		
N - Number of lanes	S - Speed		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
V - Hourly volume	D - Density		· ''	11	
v _p - Flow rate	FFS - Free-flov	v speed	E _T - Exhibits 23-8, 23-10, 23-	1 (f _{LC} - Exhibit 23-5
LOS - Level of service	BFFS - Base fr	ee-flow speed	f _p - Page 23-12 LOS, S, FFS, v _p - Exhibits 23-		f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7

Generated: 12/12/2011 3:53 PM

BASIC FREEWAY SEGMENTS WORKSHEET Application Operational (LOS) Design (N) Design (vp) Planning (LOS) Planning (N)
<u>Application</u>	Input	Output
Operational (LOS)	FFS, N, v _D	LOS, S, [
Design (N)	FFS, LOS, V _n	N, S, D
Design (v _p)	FFS, LOS, N	v _p . S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	Vp. S. D

General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Northbo	und I-87
Agency or Company	CHA		From/To	Exit 4 to	Exit 5
Date Performed	9/08/2011		Jurisdiction	NYSDO	Τ
Analysis Time Period	PM		Analysis Year	2009 - E	Existing
Project Description Exit 4					
Oper.(LOS)		瓣	Des.(N)	☐ Pla	inning Data
Flow Inputs					
Volume, V	5800	veh/h	Peak-Hour Factor, PHF	0.86	
AADT		veh/day	%Trucks and Buses, P_T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D	1.00	veh/h	Grade % Length	mi	
Driver type adjustment Calculate Flow Adjusti	1.00		Up/Down %		
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
ane Width	12.0	ft	f _{LW}	-	mi/h
Rt-Shoulder Lat. Clearance	6.0	ft			
nterchange Density	0.50	I/mi	f _{LC}		mi/h
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
OS and Performance	Measures		Design (N)		
			Design (N)		
Operational (LOS)			Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 2271	pc/h/ln		, f	
(p)	2211	рс/п/п	$V_p = (V \text{ or DDHV}) / (PHF x N x)$	' 'HV X	pc/h
<u> </u>		mi/h	f _p)		·
$D = v_p / S$		pc/mi/ln	S		mi/h
_OS	F	h 2000000	$D = v_p / S$		pc/mi/ln
	,		Required Number of Lanes, N		
Glossary			Factor Location		
l - Number of lanes	S - Speed		E Evhibita 22.0.02.40		£
/ - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
, - Flow rate	FFS - Free-flow	v speed	E _T - Exhibits 23-8, 23-10, 23-1	1	f _{LC} - Exhibit 23-5
OS - Level of service	BFFS - Base fr		f _p - Page 23-12		f _N - Exhibit 23-6
		ee-now speed	LOS, S, FFS, v _p - Exhibits 23-	2, 23-3	f _{ID} - Exhibit 23-7
DDHV - Directional design ho	our volume				

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 mith 70 mith 65 mith 65 mith 60 mi	B C C State of the	1600 200	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v FFS, LOS FFS, N, A FFS, LOS FFS, LOS	, v _p N, S, D , N v _p , S, D ADT LOS, S, D , AADT N, S, D
General Information	Flow Rate (pc/h/li	0)	Site Inforn	nation		
Analyst Agency or Company Date Performed	SEB CHA 9/08/2011			ction of Travel	Southbou Exit 5 to E NYSDOT	
Analysis Time Period	PM		Analysis Year	ſ	2009 - Ex	isting
Project Description Exit 4 Oper.(LOS)		Г	Des.(N)		☐ Plan	ning Data
Flow Inputs						9
Volume, V AADT Peak-Hr Prop. of AADT, K	2500	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R	•	0.92 2 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustr	nents					
f _p	1.00		E _R		1.2	
E _T	1.5			r - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs			Calc Speed	d Adj and FFS	<u> </u>	
Lane Width	12.0	ft	${\sf f}_{\sf LW}$			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft L/m;	f_LC			mi/h
Interchange Density	0.50	I/mi	f_ID			mi/h
Number of Lanes, N	3	:/-	f _N			mi/h
FFS (measured)	56.0	mi/h	FFS		56.0	mi/h
Base free-flow Speed, BFFS	Magazza	mi/h				
LOS and Performance Operational (LOS) v _p = (V or DDHV) / (PHF x N	x f _{in/} x	n a /la /la	Design (N) Design (N) Design LOS		£	
f _p)	^{HV} 915	pc/h/ln	1.5	HV) / (PHF x N x	I _{HV} X	pc/h
S D = v _p / S	56.0 16.3	mi/h pc/mi/ln	f _p) S			mi/h
LOS	В	•	$D = v_p / S$	mbor of Louis Al		pc/mi/ln
Glossary			Factor Loc	mber of Lanes, N		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fr		E _R - Exhibits2 E _T - Exhibits : f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1 12	1	f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6
DDHV - Directional design ho	our volume		, 5, 113,	v _p - Exhibits 23-2	_, _0-0	f _{ID} - Exhibit 23-7
Copyright © 2007 University of Florida,	All Rights Reserved		4400 TM	Version 5.3	Conor	ated: 12/16/2011 10:47

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 12/16/2011 10:47 AM

Application	Input	Output
Operational (LOS)	FFS, N, v _b	LOS, S, D
Design (N)	FFS, LOS, V _p	N, S, D
Design (v _p)	FFS, LOS, N	v _p . S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (N)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _p . S, D

	Flow Rate (pc/h/li	1)			
General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Northbo	und I-87
Agency or Company	CHA		From/To	Exit 5 to	Exit 6
Date Performed	9/08/2011		Jurisdiction	NYSDO	T
Analysis Time Period	PM		Analysis Year	2009 - E	existing
Project Description Exit 4					
☑ Oper.(LOS)		*****	Des.(N)	□ Pla	nning Data
Flow Inputs		*****			
Volume, V	6000	veh/h	Peak-Hour Factor, PHF	0.86	
AADT		veh/day	%Trucks and Buses, P_T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D		1. 11.	General Terrain:	Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade % Length Up/Down %	mi	
Calculate Flow Adjustr			ор/Down 78		
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs	7.0		Calc Speed Adj and FF		
Lane Width	12.0	ft	Calc Speed Auj and FF	<u> </u>	
			f_{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h
Interchange Density	0.50	l/mi	f_{ID}		mi/h
Number of Lanes, N	4		f _N		mi/h
FFS (measured)	56.0	mi/h		50.0	
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance	Measures		Design (N)		
Operational (LOS)			Design (N)		
	v f v		Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF x N)$	^ ' _{HV} ^ 1762	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N)$	(f _{HV} x	
f _p)			f_p)		pc/h
S	56.0	mi/h	S		mi/h
D = v _p / S	31.5	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	D		Required Number of Lanes, N	I	ροπιπ
Glossary			Factor Location		· · · · · · · · · · · · · · · · · · ·
N - Number of lanes	S - Speed				
V - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
v _p - Flow rate	FFS - Free-flov	/ speed	E _T - Exhibits 23-8, 23-10, 23-	11	f _{LC} - Exhibit 23-5
LOS - Level of service			f _p - Page 23-12		f _N - Exhibit 23-6
	BFFS - Base fr	ee-now speed	LOS, S, FFS, v _p - Exhibits 23-	2, 23-3	f _{ID} - Exhibit 23-7
DDHV - Directional design ho	our volume				

Application	Input	Output
Operational (LOS)	FFS, N, VD	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	Vp. S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _o . S. D

	Flow Rate (pc/h/	in)			
General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Southbo	ound I-87
Agency or Company	CHA		From/To	Exit 6 to	Exit 5
Date Performed	9/08/2011		Jurisdiction	NYSDC)T
Analysis Time Period	PM		Analysis Year	2009 - I	Existing
Project Description Exit 4					
Oper.(LOS))		Des.(N)	□ Pla	anning Data
Flow Inputs					
Volume, V	3300	veh/h	Peak-Hour Factor, PHF	0.92	
AADT		veh/day	%Trucks and Buses, P_T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		I- O-	General Terrain:	Level	
Oriver type adjustment	1.00	veh/h	Grade % Length Up/Down %	mi	
Calculate Flow Adjusti			Op/Down 78		
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF		
ane Width	12.0	ft			- 11
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}		mi/h
nterchange Density	0.50	l/mi	f _{LC}		mi/h
Number of Lanes, N	4		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
OS and Performance	Measures		Design (N)		
			Design (N)		
Operational (LOS)			Design LOS		
$y_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 906	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x N x)$	· f v	
_p)	900	ролин	. -	' 'HV ^	pc/h
3	56.0	mi/h	f _p)		
$0 = v_p / S$	16.2	pc/mi/ln	S		mi/h
os °	В	•	$D = v_p / S$		pc/mi/ln
			Required Number of Lanes, N		
Glossary			Factor Location		
I - Number of lanes	S - Speed		F - Evhibite 23 8 23 10		f Eyhihit 02 4
/ - Hourly volume	D - Density		E _R - Exhibits 23-8, 23-10	14	f _{LW} - Exhibit 23-4
_p - Flow rate	FFS - Free-flov	v speed	E _T - Exhibits 23-8, 23-10, 23-1	11	f _{LC} - Exhibit 23-5
OS - Level of service	BFFS - Base fr		f _p - Page 23-12		f _N - Exhibit 23-6
DDHV - Directional design ho		•	LOS, S, FFS, v _p - Exhibits 23-	2, 23-3	f _{ID} - Exhibit 23-7
	· - · - · · · · · ·				

	RA	MPS AND	KAMP JUN	STICING W	OKKSIIL	<u></u>					
General Infor	mation			Site Infor	mation						
Analyst	SEB		Fre	eeway/Dir of Tra		Northbound I-8	37				
gency or Company	CHA			nction	Exit 2W On-Ramp						
ate Performed		/2011	Ju	risdiction	NYSDOT						
nalysis Time Period	l PM		An	alysis Year	2009 Existing						
roject Description	Exit 4					<u> </u>					
nputs											
pstream Adj Ramp		Terrain: Level						Downstre Ramp	eam Adj		
▼ Yes ☐ On	ı							☐ Yes	□ On		
No ✓ Off	f							✓ No	☐ Off		
_{up} = 1100	ft		E4.0 mnh		<u> </u>	0 0 mph		L _{down} =	ft		
/ _u = 910 ve	eh/h	3	_{FF} = 56.0 mph Sketch (s	show lanes, L _A ,	$S_{FR} = 4$ $L_{D_t} V_{D_t} V_t$	u.u mpn		$V_D =$	veh/h		
Conversion to	o pc/h Un	der Base C		. A	D. K. I.						
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	fp	v = V/PH	F x f _{HV} x f _p		
reeway	4400	0.86	Level	2	0	0.990	1.00		5167		
Ramp	700	0.92	Level	2	0	0.990	1.00		768		
JpStream	910	0.92	Level	2	0	0.990	1.00		999		
DownStream	710	0.72	Level		Ů	0.770	1.00		777		
		Merge Areas					Diverge Are	eas			
stimation of		<u> </u>			Estimation of v ₁₂						
		/D \									
	$V_{12} = V_F$					V ₁₂	$= V_R + (V_F)$	- V _R)P _{FD}			
EQ =	1337.29	9 (Equation 2	25-2 or 25-3)		L _{EQ} =		(Equation	25-8 or 25-	9)		
FM =	0.586	using Equation	on (Exhibit 25-5)		P _{FD} =		using Equ	uation (Exhibit	25-12)		
12 =	3029	pc/h			V ₁₂ = pc/h						
₃ or V _{av34}	2138	pc/h (Equatio	n 25-4 or 25-		1		•	tion 25-15 or 2	5 14)		
	5)				V ₃ or V _{av34}	0.700//			0-10)		
s V_3 or $V_{av34} > 2,70$	0 pc/h?	s 🗹 No					? TYes T				
s V ₃ or V _{av34} > 1.5 *	V ₁₂ /2	s 🗹 No			Is V ₃ or V _{av3}	₃₄ > 1.5 * V ₁₂ /2	Yes T	No			
Yes,V _{12a} =		(Equation 25	-8)		If Yes,V _{12a} =		pc/h (Equ	ation 25-18)			
Capacity Che	•	(1	-,		Capacit	y Checks					
supuonty one	Actual	Ca	pacity	LOS F?	Capacity	Actu		Capacity	LOS F?		
	7 icidai	1 1	pacity	2031.	V _F	71010	Exhibit		2031.		
					<u> </u>				_		
V_{FO}	5935	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhibit	25-14			
					V _R		Exhibit	25-3			
low Entering	n Merge In	fluence A	rea		Flow En	tering Di	verge Infl	uence Are	<u></u>		
	Actual	1)esirable	Violation?		Actual	Max [Desirable	Violation?		
V _{R12}	3797	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-	14			
evel of Serv	ice Deterr	nination (in	f not F)			Service		ation (if n	ot F)		
		0.0078 V ₁₂ - 0.00			1		+ 0.0086 V ₁		- · · - /		
_R = 29.4 (pc	10	12 3.00	А		L	c/mi/ln)	3.0000 1	2 3.333 - D			
OS = D (Exhib						xhibit 25-4)					
Speed Detern	· ·					etermina	tion				
M _S = 0.427 (Exil					 	xhibit 25-19)					
-					3	oh (Exhibit 25-	19)				
$_{R}$ = 50.0 mph ((Exhibit 25-19)				.,						
					S_0 = mph (Exhibit 25-19) S = mph (Exhibit 25-15)						
₀ = 50.1 mph ((Exhibit 25-19)										

			RAMP	S AND RAM	P JUNCTI	ONS WO	RKS	HEET					
General	Inforn	nation		<u> </u>	Site Infor								
Analyst Agency or Co Date Perform Analysis Time	ompany ned e Period	SEB CHA 9/08/2 PM	2011	Ju Ju	reeway/Dir of Tr unction urisdiction nalysis Year	avel	Exit 4 NYSD	ound I-87 NB Off OT Existing					
Project Descr Inputs	ription E	EXIT 4											
Upstream Ad	i Damn		Terrain: Leve	el						Downstrea	m Adi		
										Ramp	·		
✓ No	☐ Off									✓ Yes	☑ On		
INO	II OII									□ No	☐ Off		
L _{up} =	ft			5 _{FF} = 56.0 mph		S _{FR} = 4	0 0 mi	nh		L _{down} =	2660 ft		
V _u =	veh/h			• •	show lanes, L _A ,		0.0 111	J11		V _D =	1330 veh/l		
Convers	ion to	pc/h Und	der Base	Conditions		D IC I							
(pc/h))	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p		
Freeway	ay 5100 0.86 Level 2					0	0	.990	1.00	59	90		
Ramp		600	0.86	Level	2	0	0	.990	1.00	7	05		
UpStream DownStream	,	1330	0.88	Level	1	0	1	.995	1.00	15	.10		
Downstican	<u>' </u>		Merge Areas	revei	, ,	Diverge Areas							
Estimati	on of		J			Estimati	ion d		<u> </u>				
		V ₁₂ = V _F	(P _{EM})			1			= V _R + (V _F - V _I)P _{ED}			
L _{EQ} =		12 1	ation 25-2 o	r 25-3)		L _{FO} =			Equation 25-8	`			
P _{FM} =			Equation (I			P _{FD} =			578 using Eq		nibit 25-12)		
V ₁₂ =		pc/h				V ₁₂ =		3	759 pc/h				
V ₃ or V _{av34}		pc/h ((Equation 25	5-4 or 25-5)		V_3 or V_{av34}		2	231 pc/h (Equ	ation 25-1	5 or 25-16)		
Is V ₃ or V _{av3}	4 > 2,700	pc/h? ☐ Yes	s 🗆 No			Is V ₃ or V _{av3}	34 > 2,	700 pc/h? [Tyes ✓ No				
	₄ > 1.5 * \	$V_{12}/2 \square \text{Yes}$							Yes Vo				
If Yes,V _{12a} =			(Equation 2	5-8)		If Yes,V _{12a} =		· ·	c/h (Equation	25-18)			
Capacity	/ Chec				,	Capacity	y Ch				_		
		Actual	C	Capacity	LOS F?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Actual	<u> </u>	pacity	LOS F?		
ν,						V _F	.,	5990	Exhibit 25-1		No		
V _{FO}			Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	5285	Exhibit 25-1	_	No		
						V _R		705	Exhibit 25-3		No		
Flow En	tering	Merge In	fluence A	Vrea Desirable	Violation?	Flow En	1	ng Dive Actual	rge Influen Max Desirat		Violation?		
V _{R12}		ACIUAI	Exhibit 25-7	Desirable	VIOIALIOIT?	V ₁₂	_	3759	Exhibit 25-14	4400:All	No		
l evel of	Servi	ce Detern	nination (if not F)					eterminatio				
			•	· 0.00627 L _A					.0086 V ₁₂ - 0.	•	,		
	pc/mi/lr	• • •	12	A				:/mi/ln)	12	U .			
,	Exhibit	•						bit 25-4)					
Speed D	`					Speed D	•		on				
	xibit 25					'		xhibit 25					
_		oit 25-19)				S _R = 50.0 mph (Exhibit 25-19)							
		oit 25-19)				S ₀ = 56.6 mph (Exhibit 25-19)							
-	•	oit 25-14)				S = 52.3 mph (Exhibit 25-15)							
Copyright © 20	07 Univer	sity of Florida, A	All Rights Reser	ved		HCS+TM \	√ersior	5.3	Gen	erated: 12/16	/2011 8:34		

		<u>RAMPS</u>	AND	RAMP JUNC	TIONS W	OKKSHE	<u> </u>				
General In	formation)			Site Infor	mation					
Analyst Agency or Comp Date Performed Analysis Time P	oany eriod	SEB CHA 9/08/2011 PM		Fre Jui Jui	eway/Dir of Tr nction isdiction alysis Year	Exit 4 NB On-Ramp NYSDOT					
Project Descript	ion Exit 4										
Inputs		Form	in: Level								
Jpstream Adj R ☐ Yes	amp On	Пена	IIII: Levei							Downstre Ramp	am Adj
										✓ Yes	□ On
	Off									□ No	✓ Off
_{-up} = f			S	FF = 56.0 mph		S _{FR} = 40	0.0 mph			L _{down} =	3500 ft
/ _u = ve	eh/h	how lanes, L _A ,	$L_{D'}V_{R'}V_{f}$				V _D =	440 veh/h			
Conversio	n to pc/h	Under E	Base C	Conditions		_					
(pc/h)	V (Veh/h	r) P	PHF	Terrain	%Truck	%Rv	f _H	V	f _p	v = V/PH	F x f _{HV} x f _p
Freeway	4500	0.	.86	Level	2	0	0.99	0	1.00		5285
Ramp	1330	0.	.88	Level	1	0	0.99	5	1.00		1519
UpStream	440		00	Lovel	2	0	0.00	_	1.00		405
DownStream	440		92 Areas	Level	3	0	0.98		1.00 Diverge Areas		485
Estimation	1 of V ₄₂	Wicigo	Aicas			Estimati	on of	V ₄₂	nverge Areas		
		= V _F (P _{FM})	١								
_				DE 0 ~~ DE 0\					V _R + (V _F - V		
-EQ =			-	25-2 or 25-3)		L _{EQ} =			Equation 25		
P _{FM} =		_	g Equati	on (Exhibit 25-5)		P _{FD} = using Equation (Exhibit 25-12)					
/ ₁₂ =		35 pc/h	·- ··	0.5.4.05		V ₁₂ =		ı	oc/h		
V_3 or V_{av34}	210 5))0 pc/h (Equatio	n 25-4 or 25-		V_3 or V_{av34}			pc/h (Equation	25-15 or 25	5-16)
Is V ₃ or V _{av34} >		Yes 🔽	No			Is V ₃ or V _{av3}	4 > 2,700) pc/h? [Yes No)	
	1.5 * V ₁₂ /2					Is V ₃ or V _{av3}	₄ > 1.5 *	V ₁₂ /2	Yes No)	
Yes,V _{12a} =	· -	c/h (Equa		-8)		If Yes,V _{12a} =		ı	oc/h (Equati	on 25-18)	
Capacity (\ I		,		Capacity	Che	cks			
- aparty	Actua	nl	Ca	pacity	LOS F?			Actual	C	apacity	LOS F?
		<u> </u>		, ,		V _F			Exhibit 25		
V_{FO}	6804	Exhi	bit 25-7		Yes	$V_{FO} = V_F$	· V ₅		Exhibit 25	_	
- FO			DIC 20 7		103	V _R	·ĸ		Exhibit 25		_
Flow Ento	ı ring Merg		<u> </u>			-	toring	Divo			
-iow Eine	Actua			Desirable	Violation?	FIOW EII	Act		rge Influe Max Des		Violation?
V _{R12}	4704		bit 25-7	4600:All	Yes	V ₁₂	AUI		Exhibit 25-14	ii dibilo	v iolation:
PVPL OF S	ervice Det				103		Servi		terminati	on (if n	ot F)
	75 + 0.00734 v								.0086 V ₁₂ -		,,,
	8 (pc/mi/ln)	R . 0.0070	12 0.0	0027 LA			c/mi/ln)		.0000 112	o.ooo <u>-</u> D	
IX.	Exhibit 25-4)						xhibit 2				
	erminatio	n				Speed D			<u> </u>		
•		11				' '	chibit 25-		<i>/</i> 11		
3	(Exibit 25-19)	40)				3					
	nph (Exhibit 25							it 25-19)			
E 0 2 P	nph (Exhibit 25	-19)				S ₀ = mph (Exhibit 25-19) S = mph (Exhibit 25-15)					
U	nph (Exhibit 25	-				· .	. /	05			

		KAIVIFS	AND RAM			itito						
General Infor	mation			Site Infor								
Analyst Agency or Company Date Performed Analysis Time Period		2011	Ju Ju	eeway/Dir of Tr Inction Irisdiction nalysis Year		Northbo Exit 5 N NYSDO 2009 E	T					
Project Description	Exit 4											
Inputs		Fr										
Upstream Adj Ramp		Terrain: Level							Downstrea Ramp	m Adj		
✓ Yes ✓ On									☐ Yes	□ On		
I NO I OII									✓ No	☐ Off		
L _{up} = 3500	ft		_{-F} = 56.0 mph						L _{down} =	ft		
$V_{u} = 1330 \text{ V}$	show lanes, L _a ,	$S_{FR} = 3$ L_{D}, V_{R}, V_{f}	35.0 mp	h		V _D =	veh/h					
Conversion to	pc/h Und	der Base C	Conditions									
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p		
Freeway	5800	0.86	Level	2	0	0.	990	1.00	681	12		
Ramp	440	0.92	Level	3	0	_	985	1.00	48	5		
UpStream	1330	0.88	Level	1	0	0.	995	1.00	151	19		
DownStream		Merge Areas						Diverge Areas				
Estimation of		viei ye Ai eas			Estimat	ion o		Diverge Areas				
L3timation of		/5)			LStimat	1011 0		., ., .,				
	$V_{12} = V_F$							= V _R + (V _F - V _F				
L _{EQ} =		ation 25-2 or			L _{EQ} =			960.55 (Equati				
P _{FM} =	_	Equation (Ex	khibit 25-5)		P _{FD} =			713 using Eq	uation (Exhi	bit 25-12)		
V ₁₂ =	pc/h				V ₁₂ =			999 pc/h				
V_3 or V_{av34}		(Equation 25-	4 or 25-5)		V_3 or V_{av34}			813 pc/h (Equ	ation 25-15	or 25-16		
Is V_3 or $V_{av34} > 2,70$								Tyes ✓ No				
Is V_3 or $V_{av34} > 1.5$	· -							Yes 🗹 No				
f Yes,V _{12a} =		(Equation 25-	·8)		If Yes,V _{12a} =			c/h (Equation	25-18)			
Capacity Che	cks				Capacit	y Ch	ecks					
	Actual	Ca	pacity	LOS F?			Actual		pacity	LOS F		
					V _F		6812	Exhibit 25-1	4 6780	Yes		
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	6327	Exhibit 25-1	4 6780	No		
					V _R		485	Exhibit 25-3	Exhibit 25-3 2000 No			
Flow Entering	Merge In	fluence A	rea		Flow Er	nterin	g Dive	rge Influen	ce Area			
	Actual		esirable	Violation?	ļ	-	Actual	Max Desirab		Violation		
V_{R12}		Exhibit 25-7		<u></u>	V ₁₂		1999	Exhibit 25-14	4400:All	Yes		
Level of Serv	ice Detern	nination (i	not F)		Level or	f Ser	vice De	terminatio	n (if not l	-)		
$D_R = 5.475 + 0.$	00734 v _R + (0.0078 V ₁₂ -	0.00627 L _A			$D_R = 4$	1.252 + 0	.0086 V ₁₂ - 0.	009 L _D			
D _R = (pc/mi/	n)				D _R = 45	5.0 (pc	/mi/ln)					
LOS = (Exhibi	t 25-4)				1		oit 25-4)					
Speed Detern	nination				Speed L			on				
$M_S = $ (Exibit 25)							xhibit 25					
o .	ibit 25-19)				S_R = 49.4 mph (Exhibit 25-19)							
	ibit 25-19)				S_0 = 58.3 mph (Exhibit 25-19)							
	•				S = 51.5 mph (Exhibit 25-15)							
S = mph (Exh	IDII 75-141											

			RAMP	S AND RAM	P JUNCTI	ONS WO	RKS	HEET					
Genera	I Inform	nation		<u> </u>	Site Infor								
Analyst Agency or C Date Perfori Analysis Tin	Company med me Period	SEB CHA 9/08/2 PM	2011	Ju Ju	reeway/Dir of Tr unction urisdiction nalysis Year	avel :	Southb Exit 2V NYSD 2009 E	V Off					
Project Des	cription I	EXIT 4											
Inputs	di Dania		Terrain: Leve	1						Downstrea	om Adi		
Upstream A										Ramp	•		
										Yes	☑ On		
✓ No	☐ Off									□ No	☐ Off		
L _{up} =	ft			F/ 0 mmh		0 4	0.0	- L		L _{down} =	1300 ft		
V _u =	veh/h		5	$_{\text{FF}}$ = 56.0 mph Sketch (show lanes, L _A ,	$S_{FR} = 4$ $L_{D'}V_{R'}V_{f}$	0.0 mj	on		V _D =	890 veh/h		
Conver	sion to	pc/h Und	der Base	Conditions									
(pc/	h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		\mathbf{f}_{HV}	f _p	v = V/PHF	x f _{HV} x f _p		
Freeway	eway 3750 0.92 Level 2					0	0	.990	1.00	41	17		
Ramp		430	0.92	Level	2	0	0	.990	1.00	4	72		
UpStream DownStrea	ım	890	0.92	Level	2	0		.990	1.00	9	 77		
Bownouda			Merge Areas	LCVCI		Diverge Areas							
Estimat	tion of	v ₁₂	-			Estimati	ion d	of v ₁₂	-				
		V ₁₂ = V _F	(P _{FM})					V ₁₂ =	= V _R + (V _F - V _F	P _{FD}			
L _{EQ} =		(Equa	ation 25-2 or	25-3)		L _{FO} =		(Equation 25-8	or 25-9)			
P _{FM} =		using	Equation (Exhibit 25-5)		P _{FD} =		0	.635 using Eq	uation (Ext	nibit 25-12)		
V ₁₂ =		pc/h				V ₁₂ =		2	788 pc/h				
V ₃ or V _{av34}			Equation 25	5-4 or 25-5)		V_3 or V_{av34}			329 pc/h (Equ	ation 25-1	5 or 25-16		
		pc/h? ☐ Yes							TYes ✓ No				
		$V_{12}/2 \square Yes$							☐ Yes ☑ No				
If Yes,V _{12a} =			Equation 25	5-8)		If Yes,V _{12a} =			oc/h (Equation	25-18)			
Capacit	ty Chec				1	Capacity	y Ch	1	1 .		1.00.5		
		Actual		apacity	LOS F?	\ \		Actual	_	pacity	LOS F		
			Fbibit 2F 7			V _F	\/	4117	Exhibit 25-1	+	No		
V _F	0		Exhibit 25-7			$V_{FO} = V_{F}$	- v _R	3645	Exhibit 25-1	_	No No		
<u> </u>			<u> </u>			V _R 472 Exhibit 25-3 2100 Flow Entering Diverge Influence Area							
riow Er	ntering I	Actual	fluence A	A rea Desirable	Violation?	riow En	1	<i>ng Dive</i> Actual	rge Influen Max Desirab		Violation		
V _{R1}	12	, iciual	Exhibit 25-7	D O SII UDIO	violation:	V ₁₂	_	2788	Exhibit 25-14	4400:All	No		
Level o	f Servi	ce Detern	nination (if not F)	ı	4			eterminatio		1		
				0.00627 L _A					0.0086 V ₁₂ - 0.	•	- /		
D _R =	(pc/mi/lr	• • • • • • • • • • • • • • • • • • • •	12	A				c/mi/ln)	12	Ь			
LOS =	 (Exhibit	25-4)						bit 25-4)					
Speed I	•					Speed D	•		on				
_	Exibit 25					'		xhibit 25					
_		oit 25-19)				S _R = 50.3 mph (Exhibit 25-19)							
		oit 25-19)				S ₀ = 60.1 mph (Exhibit 25-19)							
-		oit 25-14)				S = 53.1 mph (Exhibit 25-15)							
Copyright © 2	2007 Univer	sity of Florida, A	All Rights Reser	ved		HCS+ [™] \	√ersior	n 5.3	Gen	erated: 12/16	5/2011 8:35		

			RAMP	S AND RAM	P JUNCTI	ONS WO	RKSI	HEET					
Genera	al Infor	nation			Site Infor								
Analyst Agency or (Date Perfoi Analysis Ti	Company rmed me Period	SEB CHA 9/08/: PM	2011	Ju Ju	eeway/Dir of Tranction Inction Irisdiction Inalysis Year	avel S E N	Southbo Exit 4 S NYSDO 2009 Ex	T					
Project Des Inputs	SCHPHOH	EXIL 4											
Upstream A	Adi Damn		Terrain: Leve	l						Downstrea	m Adi		
☐ Yes	- Con III On									Ramp			
✓ No	□ Off									✓ Yes	☑ On		
I INO										□ No	☐ Off		
L _{up} =	ft		S	_{FF} = 56.0 mph		S _{FR} = 40	0.0 mpl	h		down	3100 ft		
$V_u =$	veh/h			Sketch (show lanes, L _A ,	L_{D}, V_{R}, V_{f}				V _D =	490 veh/h		
Conver	rsion to	pc/h Und	der Base (Conditions									
(pc	:/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	1	f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p		
Freeway		2900	0.92	Level	2	0	_	990	1.00	318			
Ramp		730	0.92	Level	2	0	0.9	990	1.00	80	1		
UpStream DownStrea		490	0.87	Level	1	0	0.0	995	1.00	56	.6		
			Merge Areas	20101		Diverge Areas							
Estima	tion of	v ₁₂	-			Estimati	on o	f v ₁₂	_				
		V ₁₂ = V _F	(P _{EM})					V ₁₂ =	= V _R + (V _F - V	_R)P _{ED}			
L _{EQ} =		12 1	ation 25-2 or	25-3)		L _{FO} =			Equation 25-8				
P _{FM} =		using	Equation (E	Exhibit 25-5)		P _{FD} =		0	.644 using Ed	uation (Exh	ibit 25-12)		
V ₁₂ =		pc/h				V ₁₂ =		2	335 pc/h				
V ₃ or V _{av34}		pc/h ((Equation 25	-4 or 25-5)		V_3 or V_{av34}		8-	49 pc/h (Equa	ation 25-15	or 25-16)		
Is V ₃ or V _a	av34 > 2,700	pc/h? 🗌 Yes	s 🗆 No			Is V ₃ or V _{av3}	4 > 2,70	00 pc/h? [TYes ✓ No				
Is V ₃ or V _a	av34 > 1.5 *	V ₁₂ /2	s 🗆 No			Is V ₃ or V _{av3}	₄ > 1.5	* V ₁₂ /2	Tyes ✓ No				
If Yes,V _{12a}	=	pc/h ((Equation 25	i-8)		If Yes,V _{12a} = pc/h (Equation 25-18)							
Capaci	ty Che	cks				Capacity	/ Che	ecks					
		Actual	C	apacity	LOS F?		\Box	Actual		pacity	LOS F?		
						V _F		3184	Exhibit 25-1	4 6780	No		
V _F	- O		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2383	Exhibit 25-1	4 6780	No		
						V _R		801	Exhibit 25-3	3 2100	No		
Flow E	ntering		fluence A			Flow En			rge Influen				
.,		Actual	1	Desirable	Violation?	.,	_	Actual	Max Desiral	ſ	Violation?		
V _R		D-1	Exhibit 25-7	'f no.(5)		V ₁₂		335	Exhibit 25-14	4400:All	No		
			nination (i						terminatio	•	-)		
		• • • • • • • • • • • • • • • • • • • •	0.0078 V ₁₂ -	0.00627 L _A			1.		0.0086 V ₁₂ - 0.	.009 L _D			
D _R =	(pc/mi/l	,						mi/ln)					
LOS =	(Exhibit						•	oit 25-4)					
_		ination				Speed D							
	(Exibit 25					$D_s = 0.435$ (Exhibit 25-19)							
l ''		bit 25-19)				$S_R^{=}$ 49.9 mph (Exhibit 25-19) $S_0^{=}$ 61.4 mph (Exhibit 25-19)							
0		bit 25-19)				1 -	-						
<u> </u>		bit 25-14)	VII D'ALC D			1		(Exhibit	· · · · · · · · · · · · · · · · · · ·		20044 2 2 2		
opyright ©	∠007 Unive	rsity of Florida, A	All Rights Reserv	/ed		HCS+ [™] V	ersion (5.3	Ger	nerated: 12/16/	2011 8:35		

	RAI	MPS AND	RAMP JUNG	CTIONS W	<u> /ORKSHE</u>	<u>EET</u>				
General Info	rmation			Site Infor	mation					
Analyst Agency or Company Date Performed Analysis Time Perio	9/08/		Jui Jui	eeway/Dir of Tr nction risdiction alysis Year				mp		
Project Description				. .						
Inputs										
Jpstream Adj Ramp		Terrain: Level							Downstrea Ramp	am Adj
Yes O									☐ Yes	☐ On
□ No □ Ot	f							™ No	☐ Off	
- _{up} = 2035	ft			10.0	L		L _{down} =	ft		
$S_{FF} = 56.0 \text{ mph}$ $V_u = 490 \text{ veh/h}$ Sketch (show lanes, L _A			$S_{FR} = 4$ $L_{D'}V_{R'}V_{f}$	ю.о тр	n		V _D =	veh/h		
Conversion t	o pc/h Und	der Base C	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f	: HV	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	2700	0.92	Level	2	0	0.9	990	1.00	2	964
Ramp	1030	0.93	Level	4	0	0.9	980	1.00		130
UpStream	490	0.87	Level	1	0	0.9	95	1.00	!	566
DownStream		Merge Areas			-			Diverge Areas		
Estimation o		werge Areas			Estimati	ion o		Diverge Areas	•	
	V ₁₂ = V _F	(P _{EM})			1			\/ . (\/ \	/ \D	
L _{EQ} = (Equation 25-2 or 25-3)							$V_R + (V_F - V_F)$		`	
) FM =			on (Exhibit 25-5)		L _{EQ} =			(Equation 2		
¹ 12 =	1786		on (Exhibit 25-5)		P _{FD} =			using Equat	ion (Exhibit i	25-12)
			n 25-4 or 25-		V ₁₂ =			pc/h		
or V _{av34}	5)	- o, (= quao			V ₃ or V _{av34} pc/h (Equation 25-15 or 25-16)					
s V_3 or $V_{av34} > 2,70$	00 pc/h? Ye	s 🗹 No			Is V_3 or $V_{av34} > 2,700$ pc/h? Yes No Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No					
s V_3 or $V_{av34} > 1.5$	* V ₁₂ /2	s 🗹 No								
Yes,V _{12a} =	pc/h	(Equation 25	·8)		If Yes,V _{12a} = pc/h (Equation 25-18)					
Capacity Che	ecks				Capacity Checks					
	Actual	Ca	pacity	LOS F?			Actual	C	apacity	LOS F
					V_{F}			Exhibit 25	-14	
V_{FO}	4094	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		Exhibit 25	-14	
					V_R			Exhibit 25	5-3	
low Enterin	a Merae In	fluence A	rea			terin	a Dive	erge Influe	nce Are	'
,	Actual		esirable	Violation?		_	ctual	Max Des		Violation?
V_{R12}	2916	Exhibit 25-7	4600:All	No	V ₁₂			Exhibit 25-14		
evel of Serv	ice Detern	nination (i	not F)			Serv	ice D	eterminati	on (if no	t F)
	0.00734 v _R + 0							0.0086 V ₁₂ -	_	-
D _R = 22.1 (pc/mi/ln)				$D_R = (pc/mi/ln)$						
	bit 25-4)					xhibit	,			
Speed Deteri					Speed D			on		
$M_{\rm S} = 0.321 (Ex$					 	xhibit 2				
-	(Exhibit 25-19)				1		, ibit 25-19)		
							ibit 25-19			
I "										
				IS = mi	nn≀⊩⊻n	ibit 25-15)			

			MPS AND	RAMP JUNG			<u>:= </u>				
General	Inform	ation			Site Infor	mation					
Analyst Agency or Co Date Perform Analysis Time	ed	SEB CHA 9/08/2 PM	2011	Fre Jui Jui An	E N			mp			
Project Descr	iption E	xit 4						_			
nputs											
Jpstream Adj	•		Terrain: Level							Downstre Ramp	eam Adj
	☐ On									✓ Yes	✓ On
™ No	☐ Off									□ No	☐ Off
-up =	ft veh/h		S	$S_{FF} = 56.0 \text{ mph}$ $S_{FR} = 40.0 \text{ mph}$				L _{down} = V _D =	2035 ft 1030 veh/h		
<u>u</u>					show lanes, L _A ,	${A'}$ $L_{D'}$ $V_{R'}$ V_f				, p	1030 VEII/I
<u>Convers</u>	ion to		der Base C	Conditions		,					
(pc/h)		V (Veh/hr)	PHF	Terrain	%Truck	%Rv	1	f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p
Freeway		2500	0.92	Level	2	0	0.9	990	1.00		2745
Ramp		490	0.87	Level	1	0	0.9	995	1.00	 	566
UpStream	\dashv	1000	0.00	1 1				200	1.00	-	1100
DownStream		1030	0.93 Merge Areas	Level	4	0	0.9	980	1.00 Diverge Area		1130
Estimatio	on of v		vierge Areas			Estimati	on o		Diverge Area	15	
			<u> </u>			Lotimati	011 0	12			
		$V_{12} = V_F$						V ₁₂ =	$V_R + (V_F -$	$V_R)P_{FD}$	
-EQ =		(Equa	ation 25-2 or	25-3)		L _{EQ} =			(Equation 2	25-8 or 25-	9)
P _{FM} =		0.603	using Equati	on (Exhibit 25-5)		P _{FD} = using Equation (Exhibit 25-12)					
/ ₁₂ =		1654 p	oc/h			V ₁₂ =			pc/h		
V ₃ or V _{av34}			oc/h (Equatio	n 25-4 or 25-		V ₃ or V _{av34} pc/h (Equation 25-15 or 25-16)				5-16)	
	. 2.700	5)				Is V ₃ or V _{av34} > 2,700 pc/h? Yes No					
		oc/h? ☐ Yes				Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No					
	₁ > 1.5 * V	₁₂ /2				If Yes, $V_{12a} = pc/h$ (Equation 25-18)					
Yes,V _{12a} =			(Equation 25	-8)		120					
Capacity	Chec	ks			-	Capacity	/ Ch	ecks			
		Actual	Ca	pacity	LOS F?	ļ		Actual	_	Capacity	LOS F?
						V _F			Exhibit 2	5-14	
V_{FO}		3311	Exhibit 25-7		No	$V_{FO} = V_{F}$	V_{R}		Exhibit 2	5-14	
						V_R			Exhibit 2	25-3	
Flow Ent	erina	Merge In	fluence A	rea			terin	a Dive	erge Influ	ence Are	<u>'</u> ea
		Actual		Desirable	Violation?	1		ctual	Max De		Violation?
V _{R12}		2220	Exhibit 25-7	4600:All	No	V ₁₂			Exhibit 25-14	_	
Level of	Servic	e Detern	nination (i	f not F)			Ser	vice D	etermina		ot F)
			0.0078 V ₁₂ - 0.0								,
.,	6.9 (pc/m		12	A		$D_R = 4.252 + 0.0086 V_{12} - 0.009 L_D$ $D_R = (pc/mi/ln)$					
LOS = B (Exhibit 25-4)						25-4)					
Speed D	-	•				Speed D			on		
•						 ' 	khibit 2		<u> </u>		
3	85 (Exibit	-							١		
	-	thibit 25-19)				''		nibit 25-19			
$s_0 = 53.$	9 mph (E)	hibit 25-19)				$S_0 = mp$	-	nibit 25-19)		
S_0 = 53.9 mph (Exhibit 25-19) S = 52.6 mph (Exhibit 25-14)				S = mr		nibit 25-15					

			FREEWA	Y WEAV	ING WOF	RKSHEE	Τ		
General	Informat	ion			Site Info	rmation			
Analyst Agency/Con Date Perforr Analysis Tin	med	SEB CHA 9/08/2 PM	011		Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	g Location	Exit 2 NYSE	Northbound E on to 2W of DOT Existing	ff
Inputs									
Weaving nu	e-flow speed, S mber of lanes, g length, L (ft)		56 4 815 Levi		Weaving type Volume ratio Weaving ratio	, VR		A 0.: 0.:	
Convers	sions to p	c/h Unde	r Base C	ondition	ıs				
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f_{HV}	fp	V
V_{o1}	3930	0.86	2	0	1.5	1.2	0.990	1.00	4615
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0
V _{w1}	910	0.92	2	0	1.5	1.2	0.990	1.00	999
V _{w2}	470	0.92	2	0	1.5	1.2	0.990	1.00	515
V _w	1			1514	V _{nw}				4615
V	1				I HW	J			6129
Weaving	g and Noi	n-Weavin	g Speeds	 S					
			Unconstr					strained	
<u></u>		Weaving			ving (i = nw)	Weavir	ng (i = w)	Non-Wea	ving (= nw)
a (Exhibit 24		0.15 2.20			035				
b (Exhibit 24 c (Exhibit 24		0.97			30	 		 	
d (Exhibit 24		0.97			75	 		 	
Weaving intensi	,	1.41			77	1		1	
Weaving and no speeds, Si (mi/h		34.1	2	41	.02				
Number of la	anes required t	for unconstrair	ned operation,	Nw	1.36				
1	umber of lanes	. ,			1.40	= :cn	<i>(</i>)		
-	If Nw < Nw	` '					v (max) const	rained operati	on
			Density,	39.07	f Service,	anu Cap	acity		
Weaving segment speed, S (mi/h) Weaving segment density, D (pc/mi/ln)			39.22						
Level of serv		D (pomini)		E					
	base condition	, c _k (pc/h)		6482					
	a 15-minute fl	<u> </u>	n/h)	6418					
<u> </u>	a full-hour vol			5620					
Notes		. 11	•	1					

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 1/9/2012 11:47 AM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

			FREEWA	Y WEA	/ING WOR	KSHEE	Т			
Genera	l Informat	ion			Site Information					
Analyst SEB Agency/Company CHA Date Performed 6/22/2011 Analysis Time Period PM			Freeway/Dir of Travel Weaving Seg Location Jurisdiction Analysis Year		I-87 Southbound Exit 2W on to 2E off NYSDOT 2009 Existing		f			
Inputs					•					
Weaving nu	ee-flow speed, umber of lanes, eg length, L (ft)		56 4 810 Lev		Weaving type Volume ratio, Weaving ratio	VR		A 0.3 0.3		
Conver	sions to p	oc/h Unde	er Base C	ondition						
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f_{HV}	fp	V	
V_{o1}	2900	0.92	2	0	1.5	1.2	0.990	1.00	3183	
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0	
V _{w1}	890	0.92	2	0	1.5	1.2	0.990	1.00	977	
V_{w2}	400	0.92	2	0	1.5	1.2	0.990	1.00	439	
V _w	1		,	1416	V_{nw}			•	3183	
V	7								4599	
Weavin	g and No	n-Weavin	g Speeds	3						
			Unconstr					trained		
- /5 - 1:1:1:0	4.()	Weaving	J (i = w)	Non-Wea	ving (i = nw)		ng (i = w)	1	ving (= nw)	
a (Exhibit 2 b (Exhibit 2							35 20	}	020 00	
c (Exhibit 2		† 		 			97		30	
d (Exhibit 2		†		†			80		75	
Weaving intens	sity factor, Wi	1				2.	77	0.	37	
Weaving and n speeds, Si (mi/						27	.20	48	.65	
Number of I Maximum n	lanes required number of lanes	s, Nw (max)	·		1.51 1.40	if Nw > No	w (max) const	rained onerati	on	
		· · ·			f Service,			ranica operati	011	
	egment speed,			39.15			-			
	egment density,			29.37						
Level of ser				D						
Capacity of	base condition	n, c _b (pc/h)		6136						
Capacity as	a 15-minute fl	ow rate, c (ve	h/h)	6075						
Capacity as	a full-hour vol	ume, c _h (veh/l	n)	5589						
Notes				•						

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 1/9/2012 11:48 AM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

Application	_Input_	Output
Operational (LOS)	FFS, N, v _b	LOS, S, D
Design (N)	FFS, LOS, v _n	N, S, D
Design (v _p)	FFS, LOS, N	Vp. S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N. S. D
Planning (v _p)	FFS, LOS, N	v _p , S, D

	riow kate (pc/n/i	n)			
General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Northb	ound I-87
Agency or Company	CHA		From/To		o Exit 4
Date Performed	6/22/2011		Jurisdiction	NYSDO	
Analysis Time Period	AM		Analysis Year	2016 N	lo-Build
Project Description Exit 4					
☑ Oper.(LOS)		Des.(N)	□PI	anning Data
Flow Inputs					
Volume, V	3000	veh/h	Peak-Hour Factor, PHF	0.92	
AADT		veh/day	%Trucks and Buses, P_{T}	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade % Length	mi	
Calculate Flow Adjust			Up/Down %		
	1.00		-		
f _p			E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
_ane Width	12.0	ft	f _{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	1 -		
nterchange Density	0.50	l/mi	f _{LC}		mi/h
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
OS and Performance			Design (N)		
			Design (N)		
Operational (LOS)			Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 1098	pc/h/ln		£	
(p)	1030	ролин	$V_p = (V \text{ or DDHV}) / (PHF x N x)$	T _{HV} X	pc/h
3	56.0	mi/h	f_p)		•
$D = v_p / S$	19.6	pc/mi/ln	S		mi/h
.os [*]	С	,	$D = v_p / S$		pc/mi/ln
			Required Number of Lanes, N		
Glossary			Factor Location		
I - Number of lanes	S - Speed		E	····	
/ - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
- Flow rate	FFS - Free-flow	speed	E _T - Exhibits 23-8, 23-10, 23-1	1	f _{LC} - Exhibit 23-5
.OS - Level of service	BFFS - Base fre	•	f _p - Page 23-12		f _N - Exhibit 23-6
		opood	LOS, S, FFS, v _p - Exhibits 23-2	2, 23-3	f _{ID} - Exhibit 23-7
DHV - Directional design ho	ur volume		р р	, == •	ID EXHIBIT 20 /

Generated: 12/12/2011 3:56 PM

Speed (mith) Free-Flow Speed FFS = 75 midt Application Input Output 70 miih 70 Operational (LOS) FFS, N, vn LOS, S, D 65 miih 60 miih Design (N) FFS, LOS, V. N, S, D 60 Average Passenger-Car 55 mith Design (v_p) FFS, LOS, N Vp. S. D 50 Planning (LOS) FFS, N, AADT LOS, S, D Planning (M) FFS, LOS, AADT N, S, D 40 Planning (v_n) FFS, LOS, N v_p, S, D 30 400 008 1200 1600 2000 2400 Flow Rate (pc/h/lin) General Information Site Information Highway/Direction of Travel Analyst Southbound I-87 SEB Agency or Company From/To Exit 4 to Exit 2 CHA Date Performed Jurisdiction NYSDOT 6/22/2011 Analysis Time Period Analysis Year 2016 No-Build AM Project Description Exit 4 Oper.(LOS) □ Des.(N) □ Planning Data Flow Inputs Volume, V 5200 veh/h Peak-Hour Factor, PHF 0.92 AADT veh/day %Trucks and Buses, P_⊤ 2 Peak-Hr Prop. of AADT, K %RVs, P_R 0 Peak-Hr Direction Prop. D General Terrain: Level $DDHV = AADT \times K \times D$ veh/h Grade % Length mi Driver type adjustment 1.00 Up/Down % Calculate Flow Adjustments E_R 1.00 1.2 E_T 1.5 0.990 $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$ Speed Inputs Calc Speed Adj and FFS Lane Width 12.0 ft f_{LW} mi/h ft Rt-Shoulder Lat. Clearance 6.0 f_{LC} mi/h 0.50 I/mi Interchange Density f_{ID} mi/h 3 Number of Lanes, N f_N mi/h FFS (measured) 56.0 mi/h **FFS** 56.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ 1903 pc/h/ln v_n = (V or DDHV) / (PHF x N x f_{HV} x f_p) pc/h $f_p)$ 55.7 mi/h mi/h $D = v_p / S$ 34.2 pc/mi/ln $D = v_n / S$ pc/mi/ln LOS D Required Number of Lanes, N Factor Location Glossary - Number of lanes S - Speed E_p - Exhibits23-8, 23-10 f_{IW} - Exhibit 23-4 V - Hourly volume D - Density E_{τ} - Exhibits 23-8, 23-10, 23-11 f_{IC} - Exhibit 23-5 - Flow rate FFS - Free-flow speed f_p - Page 23-12 f_N - Exhibit 23-6 LOS - Level of service BFFS - Base free-flow speed f_{ID} - Exhibit 23-7 LOS, S, FFS, v_p - Exhibits 23-2, 23-3 DDHV - Directional design hour volume

BASIC FREEWAY SEGMENTS WORKSHEET

<u>Application</u>	Input	Output
Operational (LOS)	FFS, N, v _p	LOS, S, D
Design (N)	FFS, LOS, v _n	N, S, D
Design (v _p)	FFS, LOS, N	vp. S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (N)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	V _o , S, D

General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Northb	ound I-87
Agency or Company	CHA		From/To		off to Exit 4 on
Date Performed	9/09/2011		Jurisdiction	NYSDO	
Analysis Time Period	AM		Analysis Year	2016 N	lo-Build
Project Description Exit 4					
☑ Oper.(LOS))	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Des.(N)	□PI	anning Data
Flow Inputs					
Volume, V	2250	veh/h	Peak-Hour Factor, PHF	0.92	
AADT		veh/day	%Trucks and Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
$DDHV = AADT \times K \times D$		veh/h	Grade % Length	mi	
Driver type adjustment	1.00		Up/Down %		
Calculate Flow Adjusti					
f_p	1.00		E _R	1.2	···-
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
Lane Width	12.0	ft	f _{LW}		:/h
Rt-Shoulder Lat. Clearance	6.0	ft			mi/h
Interchange Density	0.50	I/mi	f _{LC}		mi/h
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance	Measures		Design (N)		
			Design (N)		
Operational (LOS)			Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 823	n a /l- /l	ľ		
f _p)	823	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x N x)$	τ _{HV} x	pc/h
5	56.0	mi/h	f _p)		po
$D = v_p / S$	14.7	pc/mi/ln	S		mi/h
LOS	В	Pommi	$D = v_p / S$		pc/mi/ln
	<i>-</i>		Required Number of Lanes, N		
Glossary			Factor Location		
N - Number of lanes	S - Speed		F 5-1-1-00 0 00 10		
√ - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
, - Flow rate	FFS - Free-flow	speed	E _T - Exhibits 23-8, 23-10, 23-1	1	f _{LC} - Exhibit 23-5
OS - Level of service	BFFS - Base fre		f _p - Page 23-12		f _N - Exhibit 23-6
DDHV - Directional design ho		opood	LOS, S, FFS, v _p - Exhibits 23-2	2, 23-3	f _{ID} - Exhibit 23-7
טאטע - Directional design ho	ur volume		p		ID =

Generated: 12/12/2011 3:56 PM

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mith) <u>FFS = 75 midt</u> 70 midt F<u>ree-</u>Fl<u>ow Spred</u> 70 65 miih 60 mith 60 55 min 30 400 200 1200 1600 2000 2400 Flow Rate (pc/h/lin)

Application	<u>Input</u>	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	Vp. S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _o , S, D

		Site Information		
		one intermation		
SEB		Highway/Direction of Travel	Southbo	ound I-87
CHA		From/To	Exit 5 or	n to Exit 4 on
12/09/2011		Jurisdiction	NYSDO	T
AM		Analysis Year	2016 No	o-Build
		Des.(N)	□ Pla	anning Data
4650		·		
	veh/day	•	2	
		• • • • • • • • • • • • • • • • • • • •	0	
			Level	
1.00	ven/n		mı	
		Ор/ДОЖП 78		
		F_	12	
		_		
1.3				
		Calc Speed Adj and FF	<u>s</u>	
	ft	f _{LW}		mi/h
6.0	ft			mi/h
0.50	l/mi	1.		mi/h
3				
56.0	mi/h			mi/h
	mi/h	FFS	56.0	mi/h
leasures		Design (N)		
				<u>*************************************</u>
_		Design LOS		
^f HV X 1702	pc/h/ln		: f x	
,,,,,	po//////	· ·	'HV ^	pc/h
56.0	mi/h			! В
30.4	pc/mi/ln			mi/h
D		l F		pc/mi/ln
		Factor Location		
S - Speed		F Exhibits 23-8 23-10		f _ Evhibit 22.4
D - Density		' '	14	f _{LW} - Exhibit 23-4
		E _T - Exhibits 23-8, 23-10, 23-1	: I	f _{LC} - Exhibit 23-5
FFS - Free-flow	/ speea			
FFS - Free-flow BFFS - Base fro	•	f _p - Page 23-12 LOS, S, FFS, v _p - Exhibits 23-		f _N - Exhibit 23-6 f _{ID} - Exhibit 23-7
f	12/09/2011 AM 4650 1.00 ents 1.00 1.5 12.0 6.0 0.50 3 56.0 leasures f _{HV} X 1702 56.0 30.4 D S - Speed	12/09/2011 AM 4650 veh/h veh/day veh/h 1.00 ents 1.00 1.5 12.0 ft 6.0 ft 0.50 l/mi 3 56.0 mi/h mi/h leasures fHv X 1702 pc/h/ln 56.0 mi/h 30.4 pc/mi/ln D	12/09/2011	12/09/2011

Generated: 12/12/2011 3:57 PM

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mi/h) FFS = <u>75 mith</u> 70 mith F<u>roe-</u>Flow Speed 70 65 miih 60 miih 60 55 milh 50 30 400 800 0 1200 1600 2000 2400 Flow Rate (pc/h/lin)

<u>Application</u>	<u>Input</u>	Output
Operational (LOS)	FFS, N, v _B	LOS, S, D
Design (N)	FFS, LOS, v _n	N, S, D
Design (v _p)	FFS, LOS, N	Vp. S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (N)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _o , S, D

General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Northbo	ound I-87
Agency or Company	CHA		From/To	Exit 4 to	Exit 5
Date Performed	6/22/2011		Jurisdiction	NYSDC)T
Analysis Time Period	AM	***************************************	Analysis Year	2016 N	o-Build
Project Description Exit 4					
ি Oper.(LOS))		Des.(N)	□ Pla	anning Data
Flow Inputs					
Volume, V	2750	veh/h	Peak-Hour Factor, PHF	0.92	
AADT		veh/day	%Trucks and Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D	4.00	veh/h	Grade % Length	mi	
Driver type adjustment	1.00		Up/Down %		
Calculate Flow Adjusti					
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
Lane Width	12.0	ft	f _{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft			
Interchange Density	0.50	I/mi	f _{LC}		mi/h
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance	Measures	111711	Dosign (N)		
LOO and I citofinance	Weasures		Design (N)		
Operational (LOS)			Design (N)		
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x		Design LOS		
f _p)	1006	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N \times N)$	cf _{HV} x	pc/h
ρ' S	56.0	mi/h	f _p)		μο/π
	18.0	pc/mi/ln	s		mi/h
$D = v_p / S$		ροπιλιπ	$D = v_p / S$		pc/mi/ln
LOS	В		Required Number of Lanes, N		<u>[</u> -
Glossary			Factor Location		
N - Number of lanes	S - Speed				
√ - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
· ·	FFS - Free-flow	, speed	E _T - Exhibits 23-8, 23-10, 23-1	11	f _{LC} - Exhibit 23-5
P		•	f _p - Page 23-12		f _N - Exhibit 23-6
OS - Level of service	BFFS - Base from	ee-flow speed	LOS, S, FFS, v _p - Exhibits 23-	2. 23-3	f _{ID} - Exhibit 23-7
DDHV - Directional design ho	ur volume		, , , , р	, •	10 =

Generated: 12/12/2011 3:57 PM

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (milh) Free-Flow Spred FFS = 75 minh Application Input Output 70 mich 70 Operational (LOS) FFS, N, v_D 65 mid LOS, S, D 60 mich Design (N) FFS, LOS, V_D 60 N, S, D 55 miih Design (v_o) FFS, LOS, N v_p. S. D 50 Planning (LOS) FFS, N, AADT LOS, S, D Planning (M) FFS, LOS, AADT N, S, D 40 -Planning (kg) FFS, LOS, N v_p. S, D 30 008 1200 1600 2000 2400 Flow Rate (pc/h/lin) General Information Site Information Analyst SEB Highway/Direction of Travel Southbound I-87 Agency or Company CHA From/To Exit 5 to Exit 4 Date Performed 6/22/2011 Jurisdiction NYSDOT Analysis Time Period AM Analysis Year 2016 No-Build Project Description Exit 4 Oper.(LOS) Des.(N) Planning Data Flow Inputs Volume, V 4400 veh/h Peak-Hour Factor, PHF 0.92 AADT veh/day %Trucks and Buses, P₊ 2 Peak-Hr Prop. of AADT, K %RVs, P_R 0 Peak-Hr Direction Prop, D General Terrain: Level $DDHV = AADT \times K \times D$ veh/h Grade % Length mi Driver type adjustment 1.00 Up/Down % Calculate Flow Adjustments 1.00 f_p ER 1.2 E_{T} 1.5 $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$ 0.990 Speed Inputs Calc Speed Adj and FFS ane Width 12.0 ft f_{LW} mi/h

Rt-Shoulder Lat. Clearance	6.0	ft	LVV	******
Interchange Density	0.50	l/mi	f _{LC}	mi/h
Number of Lanes, N	3		f _{ID}	mi/h
FFS (measured)	56.0	mi/h	f _N	mi/h
Base free-flow Speed, BFFS	;	mi/h	FFS 56.0	mi/h
LOS and Performance	Measures		Design (N)	
Operational (LOS) v _p = (V or DDHV) / (PHF x N f_)	x f _{HV} x 1610	pc/h/ln	<u>Design (N)</u> Design LOS v _p = (V or DDHV) / (PHF x N x f _{HV} x	nc/h
r _p / S D = v _p / S LOS	56.0 28.8 D	mi/h pc/mi/ln	f _p) S D = v _p / S Required Number of Lanes, N	pc/h mi/h pc/mi/ln
Glossary			Factor Location	
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre	•	E _R - Exhibits23-8, 23-10 E _T - Exhibits 23-8, 23-10, 23-11 f _p - Page 23-12	f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6

BFFS - Base free-flow speed

DDHV - Directional design hour volume

LOS - Level of service

LOS, S, FFS, v_p - Exhibits 23-2, 23-3

f_{ID} - Exhibit 23-7

BASIC FREEWAY SEGMENTS WORKSHEET Average Passengos-Car Speed (mith) FFS = 75 mith 70 mith Free-Flow Speed 70 65 mid 60 mish 55 min 50 30 | 400 200 1600 1200 2000 2400 Flow Rate (pc/h/lin)

Application	<u>Input</u>	Output
Operational (LOS)	FFS, N, v _D	LOS, S, [
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	v _p . S. D
Planning (LOS)	FFS, N, AADT	LOS, S. C
Planning (M)	FFS, LOS, AADT	N. S. D
Planning (v _p)	FFS, LOS, N	v _p . S, D

	How Rate (pc/h/	ln)			
General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Northbo	ound I-87
Agency or Company	CHA		From/To	Exit 5 to	
Date Performed	6/22/2011		Jurisdiction	NYSDC)T
Analysis Time Period	AM		Analysis Year	2016 N	o-Build
Project Description Exit 4					
Oper.(LOS))		Des.(N)	□ PI	anning Data
Flow Inputs					
Volume, V	2500	veh/h	Peak-Hour Factor, PHF	0.92	
AADT		veh/day	%Trucks and Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D	1.00	veh/h	Grade % Length	mi	
Oriver type adjustment Calculate Flow Adjusti	1.00		Up/Down %		
f _p	1.00		E_R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
ane Width	12.0	ft	f_{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft			
nterchange Density	0.50	I/mi	f _{LC}		mi/h
Number of Lanes, N	4		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
OS and Performance	Measures		Design (N)		
			Design (N)		
Operational (LOS)			Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 686	pc/h/ln	_	f v	
p)	000	рс/п/п	$v_p = (V \text{ or DDHV}) / (PHF x N x)$	I _{HV} X	pc/h
8	56.0	mi/h	f _p)		·
$0 = v_p / S$	12.3	pc/mi/ln	S		mi/h
os °	В	i	$D = v_p / S$		pc/mi/ln
			Required Number of Lanes, N		
Glossary			Factor Location		
I - Number of lanes	S - Speed		E Evhibita 22.0.00.40		f = 1.11.100 +
/ - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
- Flow rate	FFS - Free-flow	/ speed	E _T - Exhibits 23-8, 23-10, 23-1	1	f _{LC} - Exhibit 23-5
.OS - Level of service	BFFS - Base from	•	f _p - Page 23-12		f _N - Exhibit 23-6
		opoou	LOS, S, FFS, v _p - Exhibits 23-2	2, 23-3	f _{ID} - Exhibit 23-7
DHV - Directional design ho	ur volume			_,	ID - EXHIBIT 23-7

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mith) FFS = 75 mish 70 mish Free-Flow Speed 70 65 milh 60 miih 60 55 mith 50 30 400 800 1200 1600 2000 2400 Flow Rate (pc/h/lin)

Application	<u>Input</u>	Output
Operational (LOS)	FFS, N, v _D	LOS, S, I
Design (N)	FFS, LOS, v _n	N, S, D
Design (v _p)	FFS, LOS, N	Vp. S. D
Planning (LOS)	FFS, N, AADT	LOS, S, I
Planning (N)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _p , S, D

General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Southb	ound I-87
Agency or Company	CHA		From/To	Exit 6 to	
Date Performed	6/22/2011		Jurisdiction	NYSDC	
Analysis Time Period	AM		Analysis Year	2016 No	o-Build
Project Description Exit 4					
Oper.(LOS)		a	Des.(N)	□Pla	anning Data
Flow Inputs					
Volume, V	6100	veh/h	Peak-Hour Factor, PHF	0.92	
AADT		veh/day	%Trucks and Buses, P_T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D	4.00	veh/h	Grade % Length	mi	
Driver type adjustment	1.00		Up/Down %		
Calculate Flow Adjustn					
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
Lane Width	12.0	ft	f _{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	i i		
Interchange Density	0.50	l/mi	f _{LC}		mi/h
Number of Lanes, N	4		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance I	Measures		Design (N)		
		*****	Design (N)		
Operational (LOS)			Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF x N x)$: f _{HV} x 1674	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N \times N)$	fv	
(p)	1014	ролин		'HV X	pc/h
3	56.0	mi/h	f_p)		
$D = v_p / S$	29.9	pc/mi/ln	S		mi/h
_os [°]	D	•	$D = v_p / S$		pc/mi/ln
			Required Number of Lanes, N		
Glossary			Factor Location		
N - Number of lanes	S - Speed		F Fyhihite23-8 23-10		f Evhibit 22.4
/ - Hourly volume	D - Density		E _R - Exhibits 23-8, 23-10		f _{LW} - Exhibit 23-4
∕ _p - Flow rate	FFS - Free-flow	speed	E _T - Exhibits 23-8, 23-10, 23-1	1	f _{LC} - Exhibit 23-5
OS Lovel of coming	BFFS - Base fre	o flow and	f _p - Page 23-12		f _N - Exhibit 23-6
OS - Level of service	DI I 3 - Dase II e	se-now speed	LOS, S, FFS, v _p - Exhibits 23-2		f _{ID} - Exhibit 23-7

	<u>RAI</u>	MPS AND	RAMP JUNG	CTIONS W	<u>ORKSHE</u>	EET				
General Info	rmation			Site Infor	mation					
Analyst Agency or Company Date Performed Analysis Time Perio	9/08/		Jui Jui	eeway/Dir of Tr nction risdiction alysis Year	f Travel Northbound I-87 Exit 2W On-Ramp NYSDOT 2016 No-Build					
Project Description			All	aiysis i cai		2010 N	J-Dullu			
nputs	LAIL I									
Jpstream Adj Ramp)	Terrain: Level							Downstrea Ramp	am Adj
Yes O	n								☐ Yes	□ On
□ No □ O	ff								™ No	☐ Off
- _{up} = 1100	ft								L _{down} =	ft
/ _u = 620 v	reh/h	S	$_{FF} = 56.0 \text{ mph}$ Sketch (s	show lanes, L _A ,	$S_{FR} = 4$ $L_{D'}V_{R'}V_{f}$	0.0 mpl	h		V _D =	veh/h
Conversion	to pc/h Und	der Base C	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f	HV	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	2650	0.92	Level	2	0	0.9	90	1.00	2	909
Ramp	350	0.92	Level	2	0	0.9	90	1.00		384
UpStream	620	0.92	Level	2	0	0.9	90	1.00		581
DownStream	<u> </u>	Merge Areas						Divorgo Arono	<u> </u>	
Estimation o		Estimati	ion o		Diverge Areas	•				
		(D)								
	$V_{12} = V_F$	• • • • • • • • • • • • • • • • • • • •	5 0 05 0\				V ₁₂ =	V _R + (V _F - V	/ _R)P _{FD}	
·EQ =		(Equation 2			L _{EQ} =			(Equation 2	5-8 or 25-9)
P _{FM} =			on (Exhibit 25-5)		P _{FD} =			using Equat	ion (Exhibit	25-12)
12 =	1749				V ₁₂ =			pc/h		
₃ or V _{av34}	1160 p	pc/h (Equatio	n 25-4 or 25-		V_3 or V_{av34}			pc/h (Equation	1 25-15 or 25	16)
s V ₃ or V _{av34} > 2,7	,	s 🗹 No			Is V ₃ or V _{av3}	34 > 2,70	00 pc/h?	☐ Yes ☐ N	0	
s V ₃ or V _{av34} > 1.5					Is V ₃ or V _{av3}	₃₄ > 1.5	* V ₁₂ /2	☐ Yes ☐ N	0	
Yes,V _{12a} =	· -	(Equation 25	-8)		If Yes,V _{12a} =	:		pc/h (Equati	ion 25-18)	
Capacity Ch		· ·	,		Capacity Checks					
	Actual	Ca	pacity	LOS F?	10.17.11013		Actual	С	apacity	LOS F
					V _F			Exhibit 25		
V_{FO}	3293	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _D		Exhibit 25	-14	
го					V _R			Exhibit 25		
Flow Enterin	ng Merge In	fluence A		<u> </u>		torin	a Dive	erge Influe		<u> </u>
IOW LINGIIII	Actual		Desirable	Violation?	I IOW EII		ctual	Max Des		Violation?
V _{R12}	2133	Exhibit 25-7	4600:All	No	V ₁₂	1 		Exhibit 25-14		
Level of Serv						Serv	rice D	eterminati	on (if no	t F)
	+ 0.00734 v _R + 0							0.0086 V ₁₂ -		 ,
11	c/mi/ln)	12	М			c/mi/lr		12	U	
	ibit 25-4)					xhibit	,			
Speed Deter					Speed D			on		
					 	xhibit 2				
3	(ibit 25-19) (Eybibit 25-10)				1		ibit 25-19)		
	(Exhibit 25-19)						ibit 25-19			
$S_0 = 53.6 \text{ mph}$	(Exhibit 25-19)							•		
	(Exhibit 25-14)				S = mi	nh /Evh	ibit 25-15	1		

		IVAIAIL	S AND RAM				· · ·					
General Info				Site Infor								
Analyst Agency or Compar Date Performed Analysis Time Peri	9/08		J	reeway/Dir of Tr unction urisdiction .nalysis Year	Exit 4 NB Off NYSDOT							
Project Description				inalysis i cai		20101	io-builu					
Inputs	LAIL											
Upstream Adj Ram	р	Terrain: Leve							Downstrea	m Adj		
□ Yes □ C) n								Ramp	✓ On		
™ No □ C	Off								□ No	☐ Off		
L _{up} = ft		S _{FR} = 4	0.0 mr	oh		L _{down} =	2660 ft					
V _u = veh				show lanes, L _A					V _D =	670 veh/		
Conversion		der Base (Conditions			,						
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f_{HV}	f _p	v = V/PHF	x f _{HV} x f _p		
Freeway	3000	0.92	Level	2	0	0	.990	1.00	329	93		
Ramp	740	0.82	Level	2	0	0	.990	1.00	91	1		
UpStream		1				┿			72/			
DownStream	670	0.92 Merge Areas	Level	2	0	0	.990	1.00	73	6		
Estimation		Fotimet	ion		Diverge Areas							
Estimation of	or v ₁₂				Estimati	ion c) V 12					
	$V_{12} = V_{F}$	(P _{FM})					V ₁₂ =	= V _R + (V _F - V	_R)P _{FD}			
L _{EQ} =	(Equ	ation 25-2 or	25-3)		L _{EQ} =		(Equation 25-8	3 or 25-9)			
P _{FM} =	using	Equation (E	xhibit 25-5)		P _{FD} =		0	.636 using Ed	uation (Exh	bit 25-12)		
V ₁₂ =	pc/h				V ₁₂ =			425 pc/h	•			
V ₃ or V _{av34}	•	(Equation 25	-4 or 25-5)		V ₃ or V _{av34}			68 pc/h (Equa	ation 25-15	or 25-16		
Is V_3 or $V_{av34} > 2,7$,			> 2.7		Yes 🗹 No		0. 20 .0,		
Is V ₃ or V _{av34} > 1.5								Yes ✓ No				
If Yes,V _{12a} =	· =	(Equation 25	-8)		If Yes, V _{12a} =	, ,	12		25-18)			
Capacity Ch		(Equation 20	- 0)									
Сараспу Сп	Actual	1 0	apacity	LOS F?	Capacity Checks Actual Capacity							
	Actual		арасну	LUSF?	\/	Actual		Exhibit 25-1	1	LOS F		
,,					V _F		3293			No		
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2382	Exhibit 25-1	4 6780	No		
					V _R		911	Exhibit 25-3	3 2100	No		
Flow Enterin	ng Merge Ir	ıfluence A	rea		Flow En	terir	ng Dive	rge Influen	ce Area			
	Actual	1	Desirable	Violation?		1	Actual	Max Desiral		Violation		
V_{R12}		Exhibit 25-7			V ₁₂		2425	Exhibit 25-14	4400:All	No		
Level of Ser	vice Deterr	mination (i	f not F)	-	Level of	Ser	vice De	terminatio	n (if not l			
$D_R = 5.475 + 0$		•			[[D _R = 4	4.252 + 0	.0086 V ₁₂ - 0.	009 L _D			
$D_R = (pc/m)$		12	^				:/mi/ln)	12	D			
LOS = (Exhi	bit 25-4)				LOS = C	(Exhi	bit 25-4)					
Speed Deter					Speed D	•		on				
•							xhibit 25					
M _S = (Exibit						,	n (Exhibit	*				
	thibit 25-19)				**	-						
S ₀ = mph (Ex	thibit 25-19)				1.	-	n (Exhibit					
S = mph (Exhibit 25-14)								25-15)				

		MPS AND	RAMP JUNG			<u> </u>					
General Infor	mation			Site Infor	mation						
Analyst Agency or Company Date Performed Analysis Time Period	9/08/		Ju Ju	eeway/Dir of Tr nction risdiction nalysis Year		Northbound I-8 Exit 4 NB On-F NYSDOT 2016 No-Build					
Project Description			All	iaiysis i cai	•	2010 NO-Dullu					
Inputs	LAIT 1										
Upstream Adj Ramp		Terrain: Leve	I					Downstre Ramp	eam Adj		
☐ Yes ☐ Or	ו							✓ Yes	□ On		
☑ No ☐ Of	f							□ No	✓ Off		
- _{up} = ft		S	_{FF} = 56.0 mph		S _{FR} = 4	0.0 mph		L _{down} =	3500 ft		
$V_{\rm u} = {\rm veh/h}$	1		Sketch (s	show lanes, L _A ,	$L_{D'}V_{R'}V_{f}$			V _D =	460 veh/h		
Conversion t	o pc/h Und	der Base (Conditions								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p		
Freeway	2250	0.92	Level	2	0	0.990	1.00		2470		
Ramp	670	0.92	Level	2	0	0.990	1.00	736			
UpStream		 					 				
DownStream	460	0.96	Level	2	0	0.990	1.00		484		
		Merge Areas			F - 1 : 1 :		Diverge Are	as			
Estimation o	1 V 12				∟stimati	ion of v ₁₂					
	$V_{12} = V_{F}$	(P _{FM})				V ₁₂	= V _R + (V _F -	V _R)P _{FD}			
-EQ =	2350.66	(Equation	25-2 or 25-3)		L _{EQ} =		(Equation	25-8 or 25-	9)		
P _{FM} =	0.603	using Equat	ion (Exhibit 25-5)		P _{FD} =		using Equ	ation (Exhibi	t 25-12)		
/ ₁₂ =	1489		,		V ₁₂ =		pc/h				
/ ₃ or V _{av34}		•	n 25-4 or 25-5)		V ₃ or V _{av34}		•	on 25-15 or 2	5-16)		
3 av34 Is V ₃ or V _{av34} > 2,70						> 2 700 pc/h	? TYes		,		
Is V ₃ or V _{av34} > 2,70						•	☐ Yes ☐				
			. 0/		0 0.0						
f Yes,V _{12a} =		(Equation 25	9-8)		If Yes, V _{12a} = pc/h (Equation 25-18)						
Capacity Che	,	1 0		1	Capacity Checks						
	Actual		apacity	LOS F?	<u> </u>	Actu	<u></u>	Capacity	LOS F		
					V _F	_	Exhibit :	_			
V_{FO}	3206	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhibit :	25-14			
					V_R		Exhibit	25-3			
Flow Entering	g Merae In	fluence A	rea	-	Flow En	terina Div	/erge Influ	ience Are			
	Actual		Desirable	Violation?		Actual		esirable	Violation?		
V _{R12}	2225	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-1	4			
Level of Serv	<u> </u>			1		Service	Determina		ot F)		
	0.00734 v _R + 0	•			+		- 0.0086 V ₁₂		,		
$D_{R} = 3.473$			A			c/mi/ln)	12	D			
.OS = B (Exhi	•					xhibit 25-4)					
Speed Deteri					<u>`</u>	etermina	tion				
•					` '						
$M_{S} = 0.285 (Exi$	-				_ ·	xhibit 25-19)	10)				
	(Exhibit 25-19)					oh (Exhibit 25-					
$S_0 = 54.3 \text{ mph}$	(Exhibit 25-19)				$S_0 = m_i$	oh (Exhibit 25-	19)				
	(Exhibit 25-14)			S = mr	oh (Exhibit 25-						

		RAMP	S AND RAM	IP JUNCTI	ONS WO	RKS	HEET					
General Info	rmation			Site Infor								
Analyst Agency or Company Date Performed Analysis Time Perio	SEB CHA 9/08/ d AM	2011	Ju Ju	reeway/Dir of Tranction Inction Irisdiction Inalysis Year		Northbo Exit 5 N NYSDC 2016 N	T					
Project Description Inputs	EXII 4											
Upstream Adj Ramp	<u> </u>	Terrain: Leve							Downstrea	m Adj		
✓ Yes ✓ Oi									Ramp	-		
□No □ Ot	ff								Yes No No	☐ On ☐ Off		
_									L _{down} =	ft		
$L_{up} = 3500$ $V_{u} = 670 \text{ V}$	show lanes, L _A ,	S _{FR} = 3	35.0 mp	h		V _D =	veh/h					
Conversion t	SHOW Idires, EA	-D' R' f'										
(pc/h)	V	PHF	Terrain	%Truck	%Rv		f _{HV}	fp	v = V/PHF	x f _{uv} x f _n		
Freeway	(Veh/hr) 2750	0.92	Level	2	0	+-	990	1.00	30^	<u> </u>		
Ramp	460	0.96	Level	2	0	0.	990	1.00	48	4		
UpStream	670	0.92	Level	2	0	0.	990	1.00	736			
DownStream		Merge Areas										
<u> </u>					Diverge Areas							
Estimation o	t v ₁₂				Estimat	ion o	of V ₁₂					
	$V_{12} = V_F$	(P _{FM})					V ₁₂ =	= V _R + (V _F - V	_R)P _{FD}			
L _{EQ} =	(Equ	ation 25-2 or	25-3)		L _{EQ} =		7	100.61 (Equat	ion 25-8 or	25-9)		
P _{FM} =	using	Equation (E	xhibit 25-5)		P _{FD} =		0	.726 using Ed	uation (Exhi	bit 25-12)		
V ₁₂ =	pc/h				V ₁₂ =		2	325 pc/h				
V ₃ or V _{av34}	pc/h	(Equation 25	-4 or 25-5)		V ₃ or V _{av34}		6	94 pc/h (Equa	ation 25-15	or 25-16)		
Is V_3 or $V_{av34} > 2,70$						₃₄ > 2,7		TYes ✓ No				
Is V_3 or $V_{av34} > 1.5$					Is V ₃ or V _{av}	3 ₁ > 1.5	* V ₁₂ /2	Tyes ✓ No				
1637	· -	(Equation 25	-8)		If Yes, V _{12a} = pc/h (Equation 25-18)							
Capacity Che					Capacity Checks							
	Actual	C	apacity	LOS F?	<u> </u>	Actu		Ca	pacity	LOS F		
					V _F		3019	Exhibit 25-1	4 6780	No		
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2535	Exhibit 25-1	4 6780	No		
					V _R		484	Exhibit 25-3	3 2000	No		
Flow Enterin	a Merae In	fluence A	rea		Flow En	iterin	a Dive	rge Influen	ce Area			
	Actual	ľ	Desirable	Violation?		1	Actual	Max Desiral		Violation		
V _{R12}		Exhibit 25-7			V ₁₂	2	2325	Exhibit 25-14	4400:All	No		
Level of Serv	rice Detern	nination (i	f not F)	•		Ser	vice De	terminatio	n (if not l	=)		
$D_R = 5.475 + 0$.00734 v _R +	0.0078 V ₁₂ -	0.00627 L _∆					.0086 V ₁₂ - 0	•	-		
D _R = (pc/mi		12	,,			• • •	/mi/ln)	12	5			
	it 25-4)						oit 25-4)					
Speed Deteri					Speed L	•		on				
$M_S = $ (Exibit 2							xhibit 25					
	nibit 25-19)						(Exhibit					
						-	(Exhibit					
C /		1 0	ווין דיי	ו (באוווטונ	20 10)							
$S_0 = mph (Ext)$ S = mph (Ext)	nibit 25-14)				S = 51	17 mnh	(Exhibit	25 15)				

		IVAINI (S AND RAM			1110						
General Info	mation			Site Infor								
Analyst Agency or Company Date Performed Analysis Time Perio	9/08/		J	reeway/Dir of Tr unction urisdiction .nalysis Year	<u> </u>	Southb Exit 2W NYSDC 2016 N	/ Off					
Project Description				,								
Inputs												
Upstream Adj Ramp		Terrain: Leve							Downstrea Ramp	m Adj		
☐ Yes ☐ Oi									✓ Yes	☑ On		
✓ No ☐ Of	f								□ No	☐ Off		
L _{up} = ft		S _{FR} = 4	0 0 mn	h		L _{down} =	1300 ft					
$V_u = veh/h$	show lanes, L _A		0.0 1110			V _D =	370 veh/					
Conversion t	o pc/h Un	der Base (Conditions									
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p		
Freeway	5200	0.92	Level	2	0	_	990	1.00	570			
Ramp	780	0.92	Level	2	0	0.	990	1.00	85	6		
UpStream DownStream	370	0.92	Level	2	0	0	990	1.00	406			
Downstream		Merge Areas	Level	2	0	0.		Diverge Areas	40	0		
Estimation of v ₁₂						on o	of v ₁₂	<u> </u>				
	V ₁₂ = V _F	(P.,,)			1			= V _R + (V _F - V	_)P			
L _{EQ} =		ation 25-2 or	25-3)		L _{EQ} =			Equation 25-8				
P _{FM} =		Equation (E			P _{FD} =			.578 using Ed		bit 25-12)		
V ₁₂ =	pc/h	(V ₁₂ =			661 pc/h	juanori (Emi	DI 20 12)		
V ₃ or V _{av34}	•	(Equation 25	-4 or 25-5)		V ₃ or V _{av34}			048 pc/h (Equ	ation 25-15	or 25-16		
Is V_3 or $V_{av34} > 2,70$,			, > 2,7		Yes 🗹 No	0.0011 20 10	0. 20 .		
Is V_3 or $V_{av34} > 1.5$								Yes ✓ No				
If Yes,V _{12a} =	· -	(Equation 25	-8)		If Yes, V _{12a} =	•		oc/h (Equation	25-18)			
Capacity Che			,		Capacity Checks							
	Actual	С	apacity	LOS F?	1		Actual	Ca	pacity	LOS F		
		1			V _F	T	5709	Exhibit 25-1	4 6780	No		
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R			4 6780	No		
					V _R		856	Exhibit 25-3	3 2100	No		
Flow Enterin	a Merae In	fluence Δ	 rea		- ``	terin		rge Influen				
	Actual	1	Desirable	Violation?			Actual	Max Desiral		Violation		
V _{R12}		Exhibit 25-7			V ₁₂	3	3661	Exhibit 25-14	4400:All	No		
Level of Serv	ice Deterr	nination (i	f not F)			Ser	vice De	terminatio	n (if not l	5)		
$D_R = 5.475 + 0$	00734 v _R +	0.0078 V ₁₂ -	0.00627 L _A			$O_R = 4$	1.252 + 0	.0086 V ₁₂ - 0.	009 L _D			
D _R = (pc/mi	ľn)				D _R = 33	.0 (pc	/mi/ln)					
LOS = (Exhib	it 25-4)				LOS = D	(Exhil	oit 25-4)					
Speed Deteri	nination				Speed D	eter)	minati	on				
$M_S = $ (Exibit 2		$D_{s} = 0.4$	140 (E	xhibit 25	-19)							
· ·	ibit 25-19)				S _R = 49	.8 mph	(Exhibit	25-19)				
						3 mnh	(Exhibit	25-19)				
$S_0 = mph (Exh$	IIDIL 25-19)				$S_0 = 57$.o mpi		20 10)				

		KAIVIF	S AND RAM			KNOI					
General Infor	mation			Site Infor							
Analyst Agency or Company Date Performed Analysis Time Perioc	9/08/ i AM		Ju Ju	eeway/Dir of Tr nction risdiction nalysis Year		Southbo Exit 4 S NYSDO 2016 No	T				
Project Description	EXII 4										
Inputs		Terrain: Level							D	A .l:	
Upstream Adj Ramp									Downstrea Ramp	m Auj	
										✓ On	
Mo ☐ Of	Ī									Off	
L_up = ft V_u = veh/h		S	FF = 56.0 mph		S _{FR} = 4	10.0 mph	1			3100 ft 370 veh/ł	
				show lanes, L _A	, L _D , V _R , V _f)						
Conversion to	o pc/n Und I ∨	der Base C	conditions		1	1		1			
(pc/h)	v (Veh/hr)	PHF	Terrain	%Truck	%Rv	f	HV	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	5400	0.92	Level	2	0 0.990 1.0			1.00	592		
Ramp	1020	0.92	Level	2	0	0.9	990	1.00	112	20	
UpStream DownStream	370	0.93	Level	3	0	0.9	985	1.00	40	4	
		Merge Areas	2070.	,		<u> </u>		Diverge Areas			
Estimation of	F V ₁₂				Estimati	ion o	f v ₁₂				
	V ₁₂ = V _F	(P _{EM})					V ₁₂ =	V _R + (V _F - V _F	P _{ED}		
L _{EQ} =		ation 25-2 or	25-3)		L _{EQ} =			Equation 25-8			
P _{FM} =	using	Equation (E	xhibit 25-5)		P _{FD} =		0.	560 using Eq	uation (Exhi	ibit 25-12)	
V ₁₂ =	pc/h				V ₁₂ =			314 pc/h	•		
V ₃ or V _{av34}	pc/h	(Equation 25	-4 or 25-5)		V ₃ or V _{av34}		21	14 pc/h (Equ	ation 25-15	or 25-16	
Is V_3 or $V_{av34} > 2,70$	00 pc/h?	s 🗆 No			Is V ₃ or V _{av3}	34 > 2,70		Yes ☑ No			
Is V_3 or $V_{av34} > 1.5$	* V ₁₂ /2	s 🗆 No			Is V ₃ or V _{av3}	₃₄ > 1.5	* V ₁₂ /2	Yes ☑ No			
If Yes,V _{12a} =	pc/h	(Equation 25	-8)		If Yes,V _{12a} = pc/h (Equation 25-18)						
Capacity Che	cks				Capacit	y Che	ecks				
	Actual	Ca	pacity	LOS F?		Actua		Ca	oacity	LOS F	
					V _F		5928	Exhibit 25-1	4 6780	No	
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	4808	Exhibit 25-1	4 6780	No	
					V _R		1120	Exhibit 25-3	2100	No	
Flow Entering		ı			Flow En			rge Influen			
	Actual	î r	Desirable	Violation?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_	ctual	Max Desirab		Violation	
V _{R12}	loo Data:	Exhibit 25-7	f mat []		V ₁₂		814 D	Exhibit 25-14	4400:All	No	
Level of Serv		•						terminatio	•	<u>-) </u>	
$D_R = 5.475 + 0.$		0.0078 V ₁₂ -	0.00627 L _A					.0086 V ₁₂ - 0.	009 L _D		
$D_R = (pc/mi/s)$						2.8 (pc/	,				
,						•	it 25-4)	n e			
Speed Deterr					Speed E						
•	5-19)				-		chibit 25- (Exhibit				
M _S = (Exibit 2											
$M_S = $ (Exibit 2: $S_R = $ mph (Exh	ibit 25-19)					-					
$M_S = $ (Exibit 2: $S_R = $ mph (Exh $S_0 = $ mph (Exh					$S_0 = 57$	7.1 mph	(Exhibit (Exhibit	25-19)			

	<u>R</u> AI	MPS AND	RAMP JUNG	<u>2110N2 W</u>	OKNORE	<u> </u>			
General Info	rmation			Site Infor	mation				
Analyst Agency or Company Date Performed Analysis Time Perio	9/08/	2011	Ju Ju	eeway/Dir of Tranction risdiction alysis Year	E N	Southbound I- Exit 4 SB On-I NYSDOT 2016 No-Build	Ramp		
Project Description				. ,					
Inputs									
Jpstream Adj Ramp		Terrain: Level						Downstr Ramp	eam Adj
Yes O								☐ Yes	□ On
□ No □ O								M No	☐ Off
- _{up} = 2035		S _{FF} = 56.0 mph				0.0 mph		L _{down} =	ft
$J_{\rm u} = 370 \text{ v}$				show lanes, L _A ,	$L_{D'}V_{R'}V_{f}$			V _D =	veh/h
Conversion t	to pc/h Und	der Base C	Conditions						
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	IF x f _{HV} x f _p
Freeway	4650	0.92	Level	2	0	0.990	1.00		5105
Ramp	530	0.93	Level	5	0	0.976	1.00		584
UpStream	370	0.93	Level	3	0	0.985	1.00		404
DownStream		Merge Areas		<u> </u>	1	ļ	Diverge A	\roas	
Estimation o		ivier ge Areas			Estimati	on of v ₁₂		11603	
		/D)							
	$V_{12} = V_F$	• • • • • • • • • • • • • • • • • • • •	05.0\			V ₁₂	$_{2} = V_{R} + (V_{R})$	F - V _R)P _{FD}	
·EQ =		ation 25-2 or			L _{EQ} =		(Equation	on 25-8 or 25	-9)
P _{FM} =			on (Exhibit 25-5)		P _{FD} =		using E	quation (Exhib	it 25-12)
12 =	3077		V ₁₂ = pc/h						
V_3 or V_{av34}	2028 _[5)	pc/h (Equatio	n 25-4 or 25-		V_3 or V_{av34}		pc/h (Equ	uation 25-15 or 2	25-16)
Is V ₃ or V _{av34} > 2,7	,	s 🗹 No			Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No				
Is V ₃ or V _{av34} > 1.5					Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No				
Yes,V _{12a} =		(Equation 25	-8)		If Yes,V _{12a} = pc/h (Equation 25-18)				
Capacity Che		(- 100	-,		Capacity	/ Checks			
capacity circ	Actual	Ca	pacity	LOS F?	Cupacity	Actu	1	Capacity	LOS F?
		Ì			V _F			bit 25-14	
V_{FO}	5689	Exhibit 25-7		No	$V_{FO} = V_F$	- V_	_	bit 25-14	
*FO	3007	EXHIBIT 25-7		110		*R		bit 25-14 bit 25-3	
Tlave Fratarin	a Maras Is	fluores A		<u></u>	V _R	tarina Di			
Flow Enterin	Actual		r ea Desirable	Violation?	FIOW En	Actual		fluence Are x Desirable	Violation?
V	3661	Exhibit 25-7	4600:All	No No	V ₁₂	Actual	Exhibit 2		violation?
V _{R12} Level of Serv				INO		Sorvice		nation (if n	ot F)
	+ 0.00734 v _R + 0							1 <u>12 -</u> 0.009 L _D	or r)
	• • • • • • • • • • • • • • • • • • • •	7.0070 v ₁₂ - 0.0	OOZ/ LA				T U.UUOD V	12 - 0.009 L _D	
D _R = 28.1 (pc/mi/ln) LOS = D (Exhibit 25-4)				$D_{R} = (pc/mi/ln)$					
	-					xhibit 25-4)			
Speed Deter						etermina	ιτιοπ		
	ibit 25-19)				3	xhibit 25-19)	10)		
S_R = 50.4 mph (Exhibit 25-19)					$S_R = mp$	oh (Exhibit 25-	19)		
C									
$S_0 = 50.5 \text{ mph}$	(Exhibit 25-19) (Exhibit 25-14)] ° .	oh (Exhibit 25- oh (Exhibit 25-	•		

	RAI	MPS AND	RAMP JUNG	TIONS W	<u>/ORKSHE</u>	<u>:E I</u>				
General Info	rmation			Site Infor	mation					
Analyst Agency or Company Date Performed Analysis Time Perio	9/08/		Jui Jui	eeway/Dir of Tr nction isdiction alysis Year				mp		
Project Description			7.1.	arysis rour		201011	Dana			
nputs										
Jpstream Adj Ramp		Terrain: Level							Downstre Ramp	am Adj
Yes O	า								✓ Yes	✓ On
No O	ff								□ No	☐ Off
_{-up} = ft									L _{down} =	2035 ft
/ _u = veh/ł	1	S	$_{FF} = 56.0 \text{ mph}$ Sketch (s	show lanes, L _A ,	$S_{FR} = 4$ $L_{D'}V_{R'}V_{f}$	0.0 mpl	1		V _D =	530 veh/h
Conversion t	o pc/h Und	der Base C	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f	HV	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	4400	0.92	Level	2	0	0.9	90	1.00	,	1830
Ramp	370	0.93	Level	3	0	0.9	85	1.00		404
UpStream						₩				
DownStream	530	0.93	Level	5	0	0.9		1.00		584
Estimation o		Merge Areas			Estimati	ion o		Diverge Areas	<u> </u>	
		/D)			Lotimati	-	12			
	$V_{12} = V_F$		05.0)				V ₁₂ =	$V_R + (V_F - V_F)$	$/_{R})P_{FD}$	
·EQ =		ation 25-2 or			L _{EQ} =			(Equation 2	5-8 or 25-9	9)
P _{FM} =			on (Exhibit 25-5)		P _{FD} =			using Equa	tion (Exhibit	25-12)
/ ₁₂ =	2911				V ₁₂ =			pc/h		
₃ or V _{av34}	1919 5)	pc/h (Equatio	n 25-4 or 25-		V_3 or V_{av34}			pc/h (Equation	n 25-15 or 25	-16)
s V ₃ or V _{av34} > 2,70	,	s 🔽 No			Is V ₃ or V _{av3}	₃₄ > 2,70	00 pc/h?	☐ Yes ☐ N	lo	
$^{3} \text{ s V}_{3} \text{ or V}_{av34} > 1.5$					Is V ₃ or V _{av3}	₃₄ > 1.5	* V ₁₂ /2	□ Yes □ N	lo	
Yes,V _{12a} =	· -	(Equation 25	-8)		If Yes,V _{12a} =			pc/h (Equat	ion 25-18)	
Capacity Che	<u>.</u>	(= qualion = 0			Capacit	v Che	ecks			
capacity circ	Actual	Ca	npacity	LOS F?		<i> </i>	Actual		Capacity	LOS F
			, ,		V _F			Exhibit 25		
V_{FO}	5234	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _D		Exhibit 25		1
- FO	0201	EXHIBIT 20 7			V _R	·R		Exhibit 2		+
Jou Entorin	a Maraa In	fluonos			-	torin	a Dive			
Flow Enterin	Actual		Desirable	Violation?	FIOW EII	_	g <i>Dive</i> ctual	erge Influe Max De		Violation?
V _{R12}	3315	Exhibit 25-7	4600:All	No	V ₁₂		, aui	Exhibit 25-14	Sil dibito	v ioiation:
Level of Serv	1			140		Son	rice D	eterminat	ion (if pe	t F 1
									<u> </u>	,
$D_R = 5.475 + 0.00734 \text{ v}_R + 0.0078 \text{ V}_{12} - 0.00627 \text{ L}_A$ $D_R = 25.5 \text{ (pc/mi/ln)}$				$D_R = 4.252 + 0.0086 V_{12} - 0.009 L_D$ $D_R = (pc/mi/ln)$						
D _R = 25.5 (pc/mi/ln) LOS = C (Exhibit 25-4)					xhibit	•				
Speed Deteri					Speed L			<u> </u>		
						xhibit 2!		OH .		
$M_{\rm S} = 0.356 ({\rm Ex})$					3		-	١		
	(Exhibit 25-19)				L''		ibit 25-19			
$S_0 = 50.9 \text{ mph (Exhibit 25-19)}$ $S_0 = \text{mph (Exhibit 25-19)}$										
	(Exhibit 25-14)				I *		ibit 25-15			

			FREEWA	Y WEAV	ING WOR	KSHEE	Τ		
Genera	Informat	ion			Site Info	rmation			
Analyst SEB Agency/Company CHA Date Performed 9/08/2011 Analysis Time Period AM				Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	Location	Exit 2 NYSD	lorthbound E on to 2W o OOT No-Build	îf	
Inputs					1				
Weaving nu Weaving se Terrain	e-flow speed, and mber of lanes, g length, L (ft)	N	56 4 815 Lev	el	Weaving type Volume ratio, Weaving ratio	, VR			29 30
Conver	sions to p	c/h Unde	er Base C	ondition				•	
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f _{HV}	fp	V
V_{o1}	2360	0.92	2	0	1.5	1.2	0.990	1.00	2590
V_{02}	0	0.92	2	0	1.5	1.2	0.990	1.00	0
V_{w1}	670	0.92	2	0	1.5	1.2	0.990	1.00	735
V_{w2}	290	0.92	2	0	1.5	1.2	0.990	1.00	318
V _w			•	1053	V _{nw}		•	•	2590
V						l			3643
Weavin	g and No	n-Weavin	g Speeds	5					'
			Unconstr	4				trained	
a (Eyhihit 1	1 ()	Weaving	(i = w)	Non-Wea	ving (i = nw)		ng (i = w)	1	ving (= nw)
a (Exhibit 2) b (Exhibit 2)						0.	35 20	\	.00
c (Exhibit 2							97	}	.30
d (Exhibit 2	1-6)					0.	80	0.	.75
Weaving intens	•					2.	13	0.	.25
Weaving and no speeds, Si (mi/l						29	.70	51	.66
Maximum n	anes required umber of lanes If Nw < Nw	s, Nw (max)	·		1.40 1.40	if Nw > Nv	v (max) constr	rained operati	ion
					f Service,	and Cap	acity		
Weaving se	gment speed,	S (mi/h)		42.56					
	gment density,	, D (pc/mi/ln)		21.40					
Level of ser				С					
Capacity of	base condition	n, c _b (pc/h)		6249					
Capacity as	a 15-minute fl	ow rate, c (vel	n/h)	6187					
Capacity as	a full-hour vol	ume, c _h (veh/l	1)	5692					
Notes									

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 1/9/2012 12:53 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

			FREEWA	Y WEAV	ING WOF	RKSHEE	Γ		
General	Informat	ion			Site Info	rmation			
Analyst SEB Agency/Company CGA Date Performed 9/08/2011 Analysis Time Period AM				Weaving Seg Jurisdiction	Freeway/Dir of Travel Weaving Seg Location Jurisdiction Analysis Year I-87 Southbound Exit 2W on to 2E NYSDOT 2016 No-Build		W on to 2E o	ff	
Inputs									
Weaving nur	e-flow speed, and the speed of lanes, greatly length, L (ft)	11	56 4 810 Lev		Weaving type Volume ratio Weaving rati	, VR			22 35
Convers	sions to p	c/h Unde	r Base C	ondition	าร				_
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f_{HV}	fp	V
V_{o1}	3700	0.92	2	0	1.5	1.2	0.990	1.00	4061
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0
V _{w1}	700	0.92	2	0	1.5	1.2	0.990	1.00	768
V_{w2}	370	0.92	2	0	1.5	1.2	0.990	1.00	406
V _w	1	•		1174	V_{nw}			ļ	4061
V	1					J			5235
Weaving	g and No	n-Weavin	g Speeds	 S					
			Unconstr					trained	
- /F. I. II. II. O. 4	()	Weaving			ving (i = nw)	Weavir	ng (i = w)	Non-Wea	ving (= nw)
a (Exhibit 24 b (Exhibit 24		0.15 2.20			.00				
c (Exhibit 24		0.9		!	.30				
d (Exhibit 24		0.80			.75				
Weaving intensit		1.16		<u> </u>	.58	†			
Weaving and no speeds, Si (mi/h)	n-weaving	36.2			1.05				
Number of la	anes required	for unconstrai	ned operation,	Nw	1.25			Į.	
1	umber of lanes				1.40	= :c.			i
		(max) uncons					v (max) consti	rained operat	ion
Weaving sec	ment sneed	S (mi/h)	Density,	42.02	f Service,	anu Cap	acity		
	gment speed, gment density,			31.14					
Level of serv		- (po///////)		D					
	pase condition	, c _h (pc/h)		6601					
		ow rate, c (vel	n/h)	6536					
		ume, c _h (veh/h		6013					
Notes		- 11							

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 1/9/2012 12:53 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (milh) Frœ-Flow Spred FFS = 75 minh 70 minh 70 65 midt 60 miih 60 55 mith 50 30 400 200 1200 1600 2000 2400 Flow Rate (pc/h/lin)

Application	Input	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	Vp. S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _{or} S, D

General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Northbo	und I-87
Agency or Company	CHA		From/To	Exit 2 to	Exit 4
Date Performed	6/22/2011		Jurisdiction	NYSDO	Τ
Analysis Time Period	AM		Analysis Year	2026 No	-Build
Project Description Exit 4					
✓ Oper.(LOS)			Des.(N)	□ Pla	nning Data
Flow Inputs					
Volume, V	3000	veh/h	Peak-Hour Factor, PHF	0.92	
AADT		veh/day	%Trucks and Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		a la /la	General Terrain:	Level	
Driver type adjustment	1.00	veh/h	Grade % Length Up/Down %	mi	
Calculate Flow Adjustn			Op/Down 78		
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	<u> </u>	
Lane Width	12.0	ft	f_{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h
nterchange Density	0.50	I/mi			
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
OS and Performance	Measures		Design (N)		
O			Design (N)		
Operational (LOS)			Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF \times N)$	x t _{HV} x 1098	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N \times N)$	cfx	
(p)		P	f)	HV	pc/h
6	56.0	mi/h	'p'		mi/h
$D = v_p / S$	19.6	pc/mi/ln	D = v / S		mi/h
LOS	С		D = v _p / S		pc/mi/ln
01			Required Number of Lanes, N		
Glossary			Factor Location		
N - Number of lanes	S - Speed		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
√ - Hourly volume	D - Density		E_{T} - Exhibits 23-8, 23-10, 23-1	11	f _{LC} - Exhibit 23-5
				1 1	ILC - EXHIDIT 40-0
v _p - Flow rate	FFS - Free-flow	/ speed	i '		
•	FFS - Free-flow BFFS - Base fr		f _p - Page 23-12 LOS, S, FFS, v _p - Exhibits 23-		f _N - Exhibit 23-6 f _{ID} - Exhibit 23-7

Generated: 12/12/2011 4:01 PM

BASIC FREEWAY SEGMENTS WORKSHEET Average Passanger-Car Speed (mith) Froe-Flow Speed FFS = 75 minh 70 miih 65 miih 60 miih 60 55 mith 30 200 1200 400 1600 2000 2400 Flow Rate (pc/h/lin)

Application	<u>Input</u>	Output
Operational (LOS)	FFS, N, v _p	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	Vp. S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _o . S. D

General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Southbou	und I-87
Agency or Company	CHA		From/To	Exit 4 to	Exit 2
Date Performed	6/22/2011		Jurisdiction	NYSD07	-
Analysis Time Period	AM		Analysis Year	2026 N o-	-Build
Project Description Exit 4					
☑ Oper.(LOS)			Des.(N)	Plar	nning Data
Flow Inputs					
Volume, V	5250	veh/h	Peak-Hour Factor, PHF	0.92	
AADT		veh/day	%Trucks and Buses, P_{T}	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D		veh/h	Grade % Length	mi	
Driver type adjustment	1.00		Up/Down %		
Calculate Flow Adjustr				-	
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
_ane Width	12.0	ft	f _{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft			
Interchange Density	0.50	I/mi	f _{LC}		mi/h
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance	Measures		Design (N)		
			Design (N)		
Operational (LOS)			Design LOS		
$V_p = (V \text{ or DDHV}) / (PHF x N x)$	x f _{HV} x 1921	no/h/ln		v f v	
; p)	1921	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N)$	K IHV X	pc/h
3	55.6	mi/h	f _p)		
$D = v_p / S$	34.6	pc/mi/ln	S		mi/h
_OS	D	p 0,,,,,,,	$D = v_p / S$		pc/mi/ln
_03	Б		Required Number of Lanes, N	1	
Glossary			Factor Location		
N - Number of lanes	S - Speed		E Evhibita 22 0 22 40		f
√ - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
v _p - Flow rate	FFS - Free-flov	v speed	E _T - Exhibits 23-8, 23-10, 23-	11	f _{LC} - Exhibit 23-5
OS - Level of service	BFFS - Base fr		f _p - Page 23-12		f _N - Exhibit 23-6
DDHV - Directional design ho		opood	LOS, S, FFS, v _p - Exhibits 23-	-2, 23-3	f _{ID} - Exhibit 23-7
PITTY DIFFCHOIM GOSIGN NO	ar voidillo				

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (milth) Free-Flow Speed FFS = 75 mith 70 midt 70 65 mish 60 miih 60 55 min 400 200 1200 1600 2000 2400 Flow Rate (pc/h/lin) Site Information General Information

Application	Input	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, V _D	N, S, D
Design (v _p)	FFS, LOS, N	Vp. S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	V _D , S, D

General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Northbo	ound I-87
Agency or Company	CHA		From/To	Exit 4 o	ff to Exit 4 on
Date Performed	9/09/2011		Jurisdiction	NYSDC)T
Analysis Time Period	AM		Analysis Year	2026 No	o-Build
Project Description Exit 4					
Oper.(LOS)		goognam's .	Des.(N)	□ Pla	anning Data
Flow Inputs					
Volume, V	2250	veh/h	Peak-Hour Factor, PHF	0.92	
AADT		veh/day	%Trucks and Buses, P_{T}	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D		veh/h	Grade % Length	mi	
Driver type adjustment	1.00		Up/Down %		
Calculate Flow Adjustr					
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
_ane Width	12.0	ft	f _{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft			
Interchange Density	0.50	I/mi	f _{LC}		mi/h
Number of Lanes, N	3		f_{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance	Measures		Design (N)		
			Design (N)		
Operational (LOS)	_		Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 823	pc/h/ln	$v_n = (V \text{ or DDHV}) / (PHF \times N)$	c f x	
· _p)	020	po//////	-5	HV	pc/h
3	56.0	mi/h	f _p)		! R.
$D = v_p / S$	14.7	pc/mi/ln	5		mi/h
_os [°]	В		$D = v_p / S$		pc/mi/ln
			Required Number of Lanes, N	<u> </u>	
Glossary			Factor Location		
N - Number of lanes	S - Speed		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
V - Hourly volume	D - Density		i '`	11	
v _p - Flow rate	FFS - Free-flow	w speed	E _T - Exhibits 23-8, 23-10, 23-	1 }	f _{LC} - Exhibit 23-5
OS - Level of service	BFFS - Base fr	ree-flow speed	f _p - Page 23-12	0.000	f _N - Exhibit 23-6
DDHV - Directional design ho	our volume		LOS, S, FFS, v _p - Exhibits 23-	-2, 23-3	f _{ID} - Exhibit 23-7

BASIC FREEWAY SEGMENTS WORKSHEET Free-Flow Speed FFS = 75 min 70 min Average Passenger-Car Speed (mith) 70 65 midt 60 midh 60 55 mith 50 30 400 200 1200 1600 2000 2400 Flow Rate (pc/h/lin)

Application	Input	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	Vp. S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _p , S, D

General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Southbo	ound I-87
Agency or Company	CHA		From/To	Exit 5 o	n to Exit 4 on
Date Performed	12/09/2011		Jurisdiction	NYSDO)T
Analysis Time Period	AM		Analysis Year	2026 No	o-Build
Project Description Exit 4					
✓ Oper.(LOS)	j		Des.(N)	□ Pla	anning Data
Flow Inputs					
Volume, V	4750	veh/h	Peak-Hour Factor, PHF	0.92	
AADT		veh/day	%Trucks and Buses, P_T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D	1.00	veh/h	Grade % Length	mi	
Oriver type adjustment Calculate Flow Adjustr	1.00		Up/Down %		
			F-	4.0	
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	<u>S</u>	
ane Width	12.0	ft	f_{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h
nterchange Density	0.50	I/mi			
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance	Measures		Design (N)		
			Design (N)		
Operational (LOS)			Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 1738	pc/h/ln		rf v	
(p)	1730	рслілії	$V_p = (V \text{ or DDHV}) / (PHF \times N)$	'HV ^	pc/h
5	56.0	mi/h	p)		
$D = v_p / S$	31.0	pc/mi/ln	S		mi/h
_OS	D	t	$D = v_p / S$		pc/mi/ln
			Required Number of Lanes, N		
Glossary	,		Factor Location		
N - Number of lanes	S - Speed		E - Evhibite 22 9 22 10		f Eyhihit 92 4
/ - Hourly volume	D - Density		E _R - Exhibits 23-8, 23-10		f _{LW} - Exhibit 23-4
v _p - Flow rate	FFS - Free-flov	v speed	E _T - Exhibits 23-8, 23-10, 23-	17	f _{LC} - Exhibit 23-5
OS - Level of service	BFFS - Base fr		f _p - Page 23-12		f _N - Exhibit 23-6
DDHV - Directional design ho		opood	LOS, S, FFS, v _p - Exhibits 23-	2, 23-3	f _{ID} - Exhibit 23-7
- Directional design fit	Jui Volume				

Application	Input	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	v _p , S, D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	V _B , S, D

General Information			Site Information						
Analyst	SEB		Highway/Direction of Travel	Northbou	ınd I-87				
Agency or Company	CHA		From/To	Exit 4 to	Exit 5				
Date Performed	6/22/2011		Jurisdiction	NYSDOT					
Analysis Time Period	AM		Analysis Year	2026 No-	-Build				
Project Description Exit 4									
✓ Oper.(LOS)			Des.(N)	Pla	nning Data				
Flow Inputs									
Volume, V	2750	veh/h	Peak-Hour Factor, PHF	0.92					
AADT		veh/day	%Trucks and Buses, P_T	2					
Peak-Hr Prop. of AADT, K			%RVs, P _R	0					
Peak-Hr Direction Prop, D			General Terrain:	Level					
DDHV = AADT x K x D	4.00	veh/h	Grade % Length	mi					
Driver type adjustment	1.00		Up/Down %						
Calculate Flow Adjustr			_						
f _p	1.00		E _R	1.2					
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990					
Speed Inputs			Calc Speed Adj and FF	S					
Lane Width	12.0	ft	f _{LW}		mi/h				
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h				
Interchange Density	0.50	l/mi	i _						
Number of Lanes, N	3		f _{ID}		mi/h				
FFS (measured)	56.0	mi/h	f _N		mi/h				
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h				
LOS and Performance	Measures		Design (N)						
			Design (N)						
Operational (LOS)			Design LOS						
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x t _{HV} x 1006	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N)$	x f _{in} , x					
f _p)	,000	p 0/1//	f)	HV	pc/h				
s	56.0	mi/h	'p'		:/le				
$D = v_p / S$	18.0	pc/mi/ln	S		mi/h				
Los	В		$D = v_p / S$		pc/mi/ln				
			Required Number of Lanes, N	1					
Glossary			Factor Location						
N - Number of lanes	S - Speed		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4				
V - Hourly volume	D - Density		E_{T} - Exhibits 23-8, 23-10, 23-	11	f _{LC} - Exhibit 23-5				
v _p - Flow rate	FFS - Free-flov	v speed	1 ·	1 1					
LOS - Level of service	BFFS - Base fr	ee-flow speed	f _p - Page 23-12	0.000	f _N - Exhibit 23-6				
DDHV - Directional design ho		•	LOS, S, FFS, v _p - Exhibits 23	-2, 23-3	f _{ID} - Exhibit 23-7				

Generated: 12/12/2011 4:01 PM

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mi/h) Free-Flow Speed FFS = 75 mith Application Output Input 70 mid 70 Operational (LOS) FFS, N, v_D LOS, S, D 65 milh FFS, LOS, Vn N, S, D 60 midr Design (N) 60 55 mish Design (v_n) FFS, LOS, N Vp. S. D 50 FFS, N, AADT LOS, S, D Planning (LOS) Planning (M) FFS. LOS. AADT N, S, D Planning (v_n) FFS, LOS, N v_p, S, D 30 2000 2400 200 1200 1600 400 Flow Rate (pc/h/lin) General Information Site Information Highway/Direction of Travel Analyst Southbound I-87 SEB Agency or Company CHA From/To Exit 5 to Exit 4 Jurisdiction NYSDOT Date Performed 6/22/2011 2026 No-Build Analysis Time Period AM Analysis Year Project Description Exit 4 Des.(N) □ Planning Data Flow Inputs Volume, V 4450 veh/h Peak-Hour Factor, PHF 0.92 %Trucks and Buses, P_⊤ 2 AADT veh/day 0 %RVs, P_R Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D General Terrain: Level $DDHV = AADT \times K \times D$ veh/h Grade Length mi Up/Down % 1.00 Driver type adjustment Calculate Flow Adjustments E_R 1.00 1.2 E_{T} 0.990 1.5 $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$ Speed Inputs Calc Speed Adj and FFS ft Lane Width 12.0 \mathbf{f}_{LW} mi/h Rt-Shoulder Lat. Clearance 6.0 ft mi/h f_{LC} 0.50 I/mi Interchange Density f_{ID} mi/h 3 Number of Lanes, N f_N mi/h FFS (measured) 56.0 mi/h **FFS** 56.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ 1628 pc/h/ln pc/h $f_p)$ $f_p)$ 56.0 mi/h mi/h $D = v_D / S$ 29.1 pc/mi/ln $D = v_n / S$ pc/mi/ln LOS D Required Number of Lanes, N Factor Location Glossary S - Speed N - Number of lanes E_R - Exhibits23-8, 23-10 f_{LW} - Exhibit 23-4 - Hourly volume D - Density E_T - Exhibits 23-8, 23-10, 23-11 f_{IC} - Exhibit 23-5 Flow rate FFS - Free-flow speed f_p - Page 23-12 f_N - Exhibit 23-6 BFFS - Base free-flow speed LOS - Level of service LOS, S, FFS, v_n - Exhibits 23-2, 23-3 f_{ID} - Exhibit 23-7 DDHV - Directional design hour volume

Generated: 12/12/2011 4:01 PM

Average Passenger-Car Speed (milh) Free-Flow Speed FFS = 75 minh Application Input Output 70 mish 70 Operational (LOS) FFS, N, VD LOS, S, D 65 midt 60 miih Design (N) FFS, LOS, Vn N, S, D 60 55 milh FFS, LOS, N Design (v_o) Vp. S. D 50 Planning (LOS) FFS, N, AADT LOS, S, D Planning (M) FFS, LOS, AADT N, S, D 40 Planning (v_n) FFS, LOS, N v_p, S, D 30 400 200 1200 1600 2000 2400 Flow Rate (pc/h/lin) General Information Site Information Analyst Highway/Direction of Travel Northbound I-87 SEB Agency or Company CHA From/To Exit 5 to Exit 6 Date Performed Jurisdiction NYSDOT 6/22/2011 Analysis Time Period AMAnalysis Year 2026 No-Build Project Description Exit 4 Oper.(LOS) ☐ Des.(N) Planning Data Flow Inputs Volume, V 2550 Peak-Hour Factor, PHF 0.92 veh/h AADT veh/day %Trucks and Buses, P_T 2 0 Peak-Hr Prop. of AADT, K %RVs, P_R Peak-Hr Direction Prop, D General Terrain: Level $DDHV = AADT \times K \times D$ veh/h Grade % Length mi Driver type adjustment 1.00 Up/Down % Calculate Flow Adjustments 1.00 E_R 1.2 E_{T} 1.5 $f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$ 0.990 Speed Inputs Calc Speed Adj and FFS Lane Width 12.0 ft f_{LW} mi/h Rt-Shoulder Lat. Clearance 6.0 ft f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h 4 Number of Lanes, N f_N mi/h FFS (measured) 56.0 mi/h **FFS** 56.0 mi/h Base free-flow Speed, BFFS mi/h Design (N LOS and Performance Measures Design (N) Operational (LOS) Design LOS $v_n = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times I)$ 700 $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ pc/h/ln f_p) pc/h 56.0 mi/h mi/h $D = v_{D} / S$ 12.5 pc/mi/ln $D = v_n / S$ pc/mi/ln LOS В Required Number of Lanes, N Glossary Factor Location N - Number of lanes S - Speed E_R - Exhibits23-8, 23-10 f_{LW} - Exhibit 23-4 V - Hourly volume D - Density E_T - Exhibits 23-8, 23-10, 23-11 f_{IC} - Exhibit 23-5 - Flow rate FFS - Free-flow speed f_p - Page 23-12 f_N - Exhibit 23-6 BFFS - Base free-flow speed LOS - Level of service LOS, S, FFS, v_p - Exhibits 23-2, 23-3 f_{ID} - Exhibit 23-7 DDHV - Directional design hour volume Generated: 12/12/2011 4:02 PM

BASIC FREEWAY SEGMENTS WORKSHEET

Average Passenger-Car Speed (mith) Frce-Flow Spred FFS = 75 mid Application Input Output 70 miih 70 Operational (LOS) FFS, N, v_D LOS, S, D 65 midt 60 midt Design (N) FFS, LOS, Vo N, S, D 60 55 milh FFS, LOS, N Design (v_p) v_p, S, D 50 Planning (LOS) FFS, N, AADT LOS, S, D Planning (N) FFS, LOS, AADT N, S, D 40 v_p, S, D Planning (v_n) FFS, LOS, N 30 200 1200 400 1600 2000 2400 Flow Rate (pc/h/lin) General Information Site Information Analyst SEB Highway/Direction of Travel Southbound I-87 Agency or Company CHA From/To Exit 6 to Exit 5 Date Performed Jurisdiction NYSDOT 6/22/2011 Analysis Time Period AM Analysis Year 2026 No-Build Project Description Exit 4 Oper.(LOS) □ Des.(N) □ Planning Data Flow Inputs Volume, V 6050 Peak-Hour Factor, PHF veh/h 0.92 AADT %Trucks and Buses, P_T veh/day 2 0 Peak-Hr Prop. of AADT, K %RVs, P_R Peak-Hr Direction Prop, D General Terrain: Level $DDHV = AADT \times K \times D$ veh/h Grade % Length mi Driver type adjustment 1.00 Up/Down % Calculate Flow Adjustments 1.00 E_R 1.2 E_T 1.5 $f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$ 0.990 Speed Inputs Calc Speed Adj and FFS Lane Width 12.0 ft f_{LW} mi/h Rt-Shoulder Lat. Clearance 6.0 ft f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 4 f_N mi/h FFS (measured) 56.0 mi/h **FFS** 56.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_{\rm p} = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ 1660 pc/h/ln $v_0 = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ $f_p)$ pc/h 56.0 mi/h mi/h $D = v_{p} / S$ 29.6 pc/mi/ln $D = v_n / S$ pc/mi/ln LOS D Required Number of Lanes, N Glossary **Factor Location** N - Number of lanes S - Speed E_R - Exhibits23-8, 23-10 f_{IW} - Exhibit 23-4 - Hourly volume D - Density E_T - Exhibits 23-8, 23-10, 23-11 f_{LC} - Exhibit 23-5 Flow rate FFS - Free-flow speed _p - Page 23-12 f_N - Exhibit 23-6 LOS - Level of service BFFS - Base free-flow speed f_{ID} - Exhibit 23-7 LOS, S, FFS, v_n - Exhibits 23-2, 23-3 DDHV - Directional design hour volume

BASIC FREEWAY SEGMENTS WORKSHEET

	<u>R</u> AI	MPS AND	KAMP JUNG	<u>STIONS W</u>	OKKSHE	<u> </u>						
General Infor	mation			Site Infor	mation							
Analyst SEB Freeway/Dir of Tra						Northbound I-8	7					
Agency or Company	CHA		Ju	nction	1	Exit 2W On-Ra	mp					
Date Performed	9/08/	2011	Ju	risdiction	NYSDOT							
nalysis Time Period	AM		An	alysis Year	2026 No-Build							
Project Description	Exit 4											
nputs												
lpstream Adj Ramp		Terrain: Level						Downstre Ramp	eam Adj			
▼ Yes ☐ On								☐ Yes	□ On			
No ✓ Off	:							™ No	☐ Off			
_ _{up} = 1100 ft								L _{down} =	ft			
/ /00	. I. /I.	S	$_{\rm F} = 56.0 {\rm mph}$		$S_{FR} = 4$	0.0 mph		V _D =	veh/h			
u' = 680 ve				show lanes, L _A ,	$L_{D'}V_{R'}V_{f}$			VD -	VCII/II			
Conversion to	pc/h Und	der Base C	onditions									
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	Fxf _{HV} xf _p			
reeway	2650	0.92	Level	2	0	0.990	1.00		2909			
Ramp	360	0.92	Level	2	0	0.990	1.00		395			
JpStream	680	0.92	Level	2	0	0.990	1.00		747			
DownStream		1 1		ĺ								
		Merge Areas					Diverge Are	eas				
stimation of	V ₁₂				Estimation of v ₁₂							
	V ₁₂ = V _F	(P)										
_	12 1		5 0 or 05 0\			V ₁₂	$= V_R + (V_F)$					
EQ =		(Equation 2			L _{EQ} = (Equation 25-8 or 25-9)							
FM =	0.601	using Equation	on (Exhibit 25-5)		P _{FD} = using Equation (Exhibit 25-12)							
12 =	1749				V ₁₂ = pc/h							
or V _{av34}		pc/h (Equatio	n 25-4 or 25-		V ₃ or V _{av34} pc/h (Equation 25-15 or 25-16)							
	5)				Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No							
s V_3 or $V_{av34} > 2,70$												
s V_3 or $V_{av34} > 1.5$ *	$V_{12}/2 \square Ye$	s 🗹 No			Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No If Yes, $V_{12a} =$ pc/h (Equation 25-18)							
Yes,V _{12a} =	pc/h	(Equation 25-	8)		If Yes,V _{12a} =		pc/n (Equ	ation 25-18)				
Capacity Che	cks				Capacity	y Checks						
	Actual	Ca	pacity	LOS F?		Actu	al	Capacity	LOS F?			
				1	V _F		Exhibit	25-14				
V_{FO}	3304	Exhibit 25-7		No	$V_{FO} = V_{F}$	- \/	Exhibit					
* FO	3304	LAHIDIC 25-7		INO		^v R						
					V _R		Exhibit					
low Entering	Merge In	T .			Flow En	tering Div						
	Actual	1	esirable	Violation?		Actual		Desirable	Violation?			
V _{R12}	2144	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-	14				
evel of Serv	ice Detern	nination (i	not F)		Level of	Service I	Determina	ation (if n	ot F)			
		0.0078 V ₁₂ - 0.00				D _R = 4.252 +	- 0.0086 V ₁	, - 0.009 L _D				
_R = 16.7 (pc.	- 1	12	,,			c/mi/ln)	12					
LOS = B (Exhibit 25-4)						LOS = (Exhibit 25-4)						
Speed Detern					`	etermina	tion					
POUR PEIEIII												
	oit 25-19)				3	xhibit 25-19)	10)					
-	S _R = 52.0 mph (Exhibit 25-19)						S _R = mph (Exhibit 25-19)					
9	Exhibit 25-19)				., .							
_R = 52.0 mph (Exhibit 25-19) Exhibit 25-19)				., .	oh (Exhibit 25-						

		IVAINIL	S AND RAM								
General Inf				Site Infor							
Analyst SEB Freeway/Dir of Agency or Company CHA Junction Date Performed 9/08/2011 Jurisdiction Analysis Time Period AM Analysis Year						Exit 4 NYSD	ound I-87 NB Off OT Io-Build				
Project Descriptio				,							
Inputs											
Upstream Adj Rar	np	Terrain: Leve	I						Downstrea Ramp	m Adj	
☐ Yes ☐	On								✓ Yes	✓ On	
✓ No ☐	Off								□ No	☐ Off	
L _{up} = ft		S	FF = 56.0 mph		S _{FR} = 4	10.0 mj	oh		down	2660 ft	
V _u = vel	n/h		Sketch (show lanes, $L_{A'}$	$L_{D'}V_{R'}V_{f}$				V _D =	650 veh/	
Conversion	to pc/h Un	der Base (Conditions								
(pc/h) V PHF Terrain %Truck					%Rv		f_{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	3000	0.92	Level	2	0	0	.990	1.00	329	93	
Ramp	770	0.82	Level	2	0	0	.990	1.00	948		
UpStream	/50	0.00	1 1			+	000	1.00	74	4	
DownStream	650	0.92 Merge Areas	Level	2	0	0	.990	1.00 Diverge Areas	71	4	
Estimation	of v	iviei ge Ai eas			Estimation of v ₁₂						
		(D.)			Lotimati			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\D		
	$V_{12} = V_F$				$V_{12} = V_R + (V_F - V_R)P_{FD}$						
L _{EQ} =		ation 25-2 or			L _{EQ} = (Equation 25-8 or 25-9)						
P _{FM} =	_	g Equation (E	Exhibit 25-5)		P _{FD} = 0.634 using Equation (Exhibit 25-12)						
V ₁₂ =	pc/h				V ₁₂ =			435 pc/h			
V_{3} or V_{av34}		(Equation 25	5-4 or 25-5)		V_3 or V_{av34} 858 pc/h (Equation 25-15 or 25-16) Is V_3 or $V_{av34} > 2,700$ pc/h? \bigvee Yes \bigvee No						
	,700 pc/h?										
Is V_3 or $V_{av34} > 1$	·=				0 0.0			TYes ✓ No			
If Yes,V _{12a} =	pc/h	(Equation 25	5-8)		If Yes,V _{12a} =	:	ŗ	oc/h (Equation	25-18)		
Capacity C	hecks				Capacity	y Ch	ecks				
	Actual (apacity	LOS F?			Actual		pacity	LOS F	
					V _F		3293	Exhibit 25-1	4 6780	No	
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V_R	2345	Exhibit 25-1	4 6780	No	
					V _R		948	Exhibit 25-3	3 2100	No	
Flow Enteri	ing Merge lı	nfluence A	rea	<u> </u>	Flow En	terii	na Dive	rge Influen	ce Area	<u> </u>	
	Actual		Desirable	Violation?		- 1	Actual	Max Desiral		Violation	
V _{R12}		Exhibit 25-7			V ₁₂		2435	Exhibit 25-14	4400:All	No	
	rvice Deteri	mination (f not F)	-	Level of	Ser	vice De	terminatio	n (if not l		
	0.00734 v _R +							.0086 V ₁₂ - 0	_	•	
	mi/ln)	12	n			• • •	:/mi/ln)	12			
LOS = (Exhibit 25-4)						LOS = C (Exhibit 25-4)					
Speed Dete					Speed D	•		on			
	25-19)						xhibit 25				
· ·	Exhibit 25-19)					•	n (Exhibit	*			
					1 "	-	n (Exhibit				
	xhibit 25-19)				l. *		n (Exhibit				
S = mph (Exhibit 25-14)						- 5 HHD		Z. 1= 1:11			

		MIPS AND	RAMP JUNG							
General Info	ormation			Site Infor	mation					
Analyst SEB Freeway/Dir of Tagency or Company CHA Junction Date Performed 9/08/2011 Jurisdiction Analysis Time Period AM Analysis Year					Travel Northbound I-87 Exit 4 NB On-Ramp NYSDOT 2026 No-Build					
Project Description	n Exit 4									
Inputs		l 						1		
Jpstream Adj Ran		Terrain: Leve	el .					Downstre Ramp	eam Adj	
Yes C								✓ Yes	☐ On	
™ No □	Jπ							□ No	✓ Off	
- _{up} = ft		S	_{FF} = 56.0 mph		S _{FR} = 4	0.0 mph		L _{down} =	3500 ft	
/ _u = veh			Sketch (show lanes, L _A ,				$V_D =$	470 veh/h	
Conversion	to pc/h Ur	nder Base	Conditions		_	_				
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p	
Freeway	2250	0.92	Level	2	0	0.990	1.00		2470	
Ramp	650	0.92	Level	2	0	0.990	1.00		714	
UpStream										
DownStream	470	0.96	Level	2	0	0.990	1.00		494	
Estimation	of w	Merge Areas			Fotimoti	ion of v	Diverge Are	as		
Estimation					ESuman	ion of v ₁₂				
	$V_{12} = V$	_F (P _{FM})				V ₁₂	$= V_R + (V_F -$	$V_R)P_{FD}$		
-EQ =	2399.2	22 (Equation	25-2 or 25-3)		L _{EQ} = (Equation 25-8 or 25-9)					
P _{FM} =	0.603	using Equat	ion (Exhibit 25-5)		P _{FD} = using Equation (Exhibit 25-12)					
/ ₁₂ =	1489	pc/h			V ₁₂ =		pc/h			
V_3 or V_{av34}	981	pc/h (Equatio	n 25-4 or 25-5)		V ₃ or V _{av34} pc/h (Equation 25-15 or 25-16)					
Is V ₃ or V _{av34} > 2						, > 2,700 pc/h	? ☐ Yes ☐	No		
Is V ₃ or V _{av34} > 1.						•	□ Yes □			
f Yes,V _{12a} =		(Equation 25	5-8)		If Yes,V _{12a} =		pc/h (Equa			
Capacity Cl		. (=900.00.1				y Checks	P 0/ (= q a.c		<u>'</u>	
Supacity Of	Actual		Capacity	LOS F?	Joapach	Actu	al	Capacity	LOS F	
	notaai		ариску	2031.	V _F	71010	Exhibit 2	1	2001	
M	2104	F.,L!L!4 0F 7		N-		\/	_		_	
V_{FO}	3184	Exhibit 25-7		No	$V_{FO} = V_{F}$	- v _R	Exhibit 2		_	
					V _R		Exhibit 2			
low Enteri		_			Flow En	1	erge Influ			
	Actual		Desirable	Violation?		Actual	_	esirable	Violation?	
V _{R12}	2203	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-1			
Level of Se							Determina		ot F)	
$D_{R} = 5.475$	+ 0.00734 v _R +	- 0.0078 V ₁₂ - 0.0	00627 L _A			$O_{R} = 4.252 + 10^{-1}$	- 0.0086 V ₁₂	- 0.009 L _D		
O _R = 16.7	pc/mi/ln)				$D_R = (p$	c/mi/ln)				
LOS = B (Exhibit 25-4)						xhibit 25-4)				
Speed Dete	rmination				Speed D	etermina	tion			
•	Exibit 25-19)					xhibit 25-19)				
•	h (Exhibit 25-19)	١				oh (Exhibit 25-	19)			
						oh (Exhibit 25-				
	h (Exhibit 25-19)				1	on (Exhibit 25-				
S = 52.7 mph (Exhibit 25-14)										

		- IVAIIII (S AND RAM									
General Infor				Site Infor								
Analyst SEB Freeway/Dir of Agency or Company CHA Junction Date Performed 9/08/2011 Jurisdiction Analysis Time Period AM Analysis Year						Exit 5 N NYSD(
Project Description				<u> </u>								
Inputs												
Upstream Adj Ramp		Terrain: Level							Downstrea Ramp	m Adj		
Yes Or									☐ Yes	□ On		
□ No □ Of	f								✓ No	☐ Off		
L _{up} = 3500	ft				_				L _{down} =	ft		
$V_u = 650 \text{ ve}$	eh/h	S	FF = 56.0 mph Sketch (show lanes, L _A ,	$S_{FR} = 3$ $L_{D'}V_{R'}V_{f}$	85.0 mp	h		V _D =	veh/h		
Conversion to	o pc/h Und	der Base C	Conditions									
(pc/h) V PHF Terrain %Truck					%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p		
Freeway	2750	0.92	Level	2	0	0.	990	1.00	301	9		
Ramp	470	0.96	Level	2	0	0.	990	1.00	49	4		
UpStream	650	0.92	Level	2	0	0.	990	1.00	71	4		
DownStream		Morgo Arono						Diverge Areas				
Estimation of		Merge Areas			Estimation of V ₁₂							
L3timation of					LStillati	1011						
	$V_{12} = V_F$							= V _R + (V _F - V				
L _{EQ} = (Equation 25-2 or 25-3)						L _{EQ} = 6939.25 (Equation 25-8 or 25-9)						
P _{FM} =	_	Equation (E	xhibit 25-5)		P_{FD} = 0.722 using Equation (Exhibit 25-12)							
V ₁₂ =	pc/h				$V_{12} = 2318 \text{ pc/h}$							
V ₃ or V _{av34}		(Equation 25	-4 or 25-5)		V_3 or V_{av34} 701 pc/h (Equation 25-15 or 25-16) Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No							
Is V_3 or $V_{av34} > 2,70$												
Is V_3 or $V_{av34} > 1.5$	· -							TYes ✓ No				
If Yes,V _{12a} =	pc/h	(Equation 25	-8)		If Yes, V _{12a} = pc/h (Equation 25-18)							
Capacity Che	cks				Capacity	y Ch	ecks					
	Actual	Ca	apacity	LOS F?			Actual	ì	pacity	LOS F		
					V _F		3019	Exhibit 25-1	4 6780	No		
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2525	Exhibit 25-1	4 6780	No		
					V _R		494	Exhibit 25-3	3 2000	No		
Flow Entering	Merge In	fluence A	rea	<u>'</u>	Flow En	terir	g Dive	rge Influen	ce Area	•		
	Actual		Desirable	Violation?		_	Actual	Max Desiral		Violation		
V _{R12}		Exhibit 25-7			V ₁₂		2318	Exhibit 25-14	4400:All	No		
Level of Serv	ice Detern	nination (i	f not F)		Level of	Ser	vice De	terminatio	n (if not l	5)		
$D_R = 5.475 + 0.$	00734 v _R +	0.0078 V ₁₂ -	0.00627 L _A			D _R = 4	1.252 + 0	0.0086 V ₁₂ - 0.	009 L _D			
D _R = (pc/mi/			,,		L	•••	/mi/ln)	12	_			
LOS = (Exhibit 25-4)						LOS = C (Exhibit 25-4)						
Speed Determ					Speed D	•		on				
$M_S = $ (Exibit 25)							xhibit 25					
o .	ibit 25-19)					•	(Exhibit	*				
						-	(Exhibit					
S_0 mph (Exhibit 25-19)							(Exhibit					
S = mph (Exhibit 25-14)												

		13731911	S AND RAM							
General Ir	nformation			Site Infor	mation					
Analyst Agency or Com Date Performed Analysis Time F	d 9/0	IA 8/2011	Jı Jı	reeway/Dir of Tr unction urisdiction nalysis Year]]	Southb Exit 2V NYSD 2026 N	V Off			
Project Descrip										
Inputs										
Upstream Adj F	·	Terrain: Leve	I						Downstrea Ramp	m Adj
	On								✓ Yes	✓ On
✓ No	Off								□ No	☐ Off
L _{up} = 1	ft		_{FF} = 56.0 mph		S _{FR} = 4	ΛΛ mr	h.		L _{down} =	1300 ft
	eh/h		Sketch (show lanes, L _A		0.0 111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		V _D =	360 veh/l
Conversion	on to pc/h Ui	nder Base	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f_{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	5250	0.92	Level	2	0	_	.990	1.00	57 <i>6</i>	
Ramp	770	0.92	Level	2	0	0	.990	1.00	84	5
UpStream DownStream	360	0.92	Level	2	0		.990	1.00	39	5
Downstream	300	Merge Areas	Level		0			Diverge Areas	37	<u> </u>
Estimation of v ₁₂					Estimati	ion c		<u> </u>		
		/ _F (P _{EM})			1			= V _R + (V _F - V _I	s)P=s	
L _{EQ} =		uation 25-2 or	25-3)		L _{EQ} =			Equation 25-8		
P _{FM} = using Equation (Exhibit 25-5)					P _{FD} =			.577 using Ed		bit 25-12)
V ₁₂ =	pc/ł		,		V ₁₂ =			683 pc/h	,	
V ₃ or V _{av34}	pc/l	h (Equation 25	i-4 or 25-5)		V ₃ or V _{av34}			081 pc/h (Equ	ation 25-15	or 25-16
	> 2,700 pc/h? Y		•			₈₄ > 2,7		TYes ☑ No		
0 4101	> 1.5 * V ₁₂ /2							Tyes ✓ No		
If Yes,V _{12a} =	pc/l	n (Equation 25	5-8)		If Yes,V _{12a} =		 F	c/h (Equation	25-18)	
Capacity	Checks				Capacity		ecks			
	Actual	С	apacity	LOS F?			Actual	Ca	pacity	LOS F
					V _F		5764	Exhibit 25-1	4 6780	No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	4919	Exhibit 25-1	4 6780	No
					V _R		845	Exhibit 25-3	3 2100	No
Flow Ente	ering Merge l	Influence A	rea		<u> </u>	terir	ng Dive	rge Influen	ce Area	
	Actual	1	Desirable	Violation?		_	Actual	Max Desiral		Violation
V_{R12}		Exhibit 25-7			V ₁₂		3683	Exhibit 25-14	4400:All	No
	Service Deter	rmination (if not F)			Ser	vice De	terminatio	n (if not l	-)
$D_{R} = 5.475$	+ 0.00734 v _R -	+ 0.0078 V ₁₂ -	0.00627 L _A			$O_R = 4$	4.252 + 0	.0086 V ₁₂ - 0.	.009 L _D	
D _R = (pc/mi/ln)					D _R = 33	.2 (pc	:/mi/ln)			
LOS = (E	xhibit 25-4)				LOS = D	(Exhi	bit 25-4)			
Speed De	termination				Speed D	eter	minatio	on		
M _S = (Exi	bit 25-19)				$D_s = 0.2$	439 (E	xhibit 25	-19)		
ľ	(Exhibit 25-19)				S _R = 49	.9 mpl	n (Exhibit	25-19)		
	(Exhibit 25-19)				$S_0 = 57$	'.2 mpl	ı (Exhibit	25-19)		
	(Exhibit 25-14)				S = 52	.3 mpl	n (Exhibit	25-15)		
	' University of Florida				HCS+ [™] \					

0-:	f	IVAIIII	S AND RAN				···			
	nformation			Site Infor						
Analyst Agency or Con Date Performe Analysis Time	d 9/0	HA 08/2011	Ji Ji	reeway/Dir of Tr unction urisdiction nalysis Year]]	Exit 4 S NYSD(
Project Descrip				narjoio i oui	•	20201	o Bana			
Inputs										
Upstream Adj I	Ramp	Terrain: Leve	el .						Downstrea Ramp	m Adj
☐ Yes	On								· '	✓ On
☑ No I	Off								□ No	☐ Off
ир	ft	S	_{FF} = 56.0 mph		S _{FR} = 4	0.0 mp	h		dom	3100 ft
$V_u = V_u$	veh/h		Sketch (show lanes, L _A	$L_{D'}V_{R'}V_{f}$				V _D =	370 veh /
Conversi	on to pc/h U	nder Base	Conditions		_					
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	5400	0.92	Level	2	0	0.	.990	1.00	592	28
Ramp	1010	0.92	Level	2	0	0	.990	1.00	110)9
UpStream	270	0.00	11		0	+	005	1.00	40	
DownStream	370	0.93 Merge Areas	Level	3	0	0	985	1.00 Diverge Areas	40	4
Estimation of v ₁₂					Estimati	ion c		Diverge Areas		
LStillatio					LStillati	011				
		$I_{\rm F}(P_{\rm FM})$						= V _R + (V _F - V		
L _{EQ} =		juation 25-2 or			L _{EQ} =		(Equation 25-8	3 or 25-9)	
P _{FM} = using Equation (Exhibit 25-5)				P _{FD} =		0	561 using Ed	μation (Exhi	bit 25-12)	
V ₁₂ =	pc/	h			V ₁₂ =		3	811 pc/h		
V_3 or V_{av34}	pc/	h (Equation 25	5-4 or 25-5)		V_3 or V_{av34}		2	117 pc/h (Equ	ation 25-15	or 25-16
Is V ₃ or V _{av34}	> 2,700 pc/h? 🔲 Ŋ	′es □ No			Is V ₃ or V _{av3}	34 > 2,7	'00 pc/h?	Tyes ✓ No		
Is V ₃ or V _{av34}	> 1.5 * V ₁₂ /2	′es □ No			Is V ₃ or V _{av3}	3 ₄ > 1.5	5 * V ₁₂ /2	Tyes ✓ No		
If Yes,V _{12a} =	: -	h (Equation 25	5-8)		If Yes,V _{12a} =			c/h (Equation	25-18)	
Capacity			,		Capacity			· '	,	
	Actual	C	apacity	LOS F?		,	Actual	Ca	pacity	LOS F
			<u> </u>		V _F		5928	Exhibit 25-1		No
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V-	4819	Exhibit 25-1	_	No
* FO		EXHIBIT 25-7				*R		_	-	
<u> </u>		<u> </u>			V _R		1109	Exhibit 25-3		No
Flow Ente	ering Merge			1 1/1 1/2 2	Flow En	1		rge Influen		17. 1
17	Actual	_	Desirable	Violation?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_	Actual	Max Desiral		Violation
V _{R12}	<u></u>	Exhibit 25-7			V ₁₂		3811	Exhibit 25-14	4400:All	No No
	Service Dete	•			+			terminatio		-)
	5 + 0.00734 v _R	+ 0.0078 V ₁₂ -	0.00627 L _A					.0086 V ₁₂ - 0.	009 L _D	
	c/mi/ln)						/mi/ln)			
•	xhibit 25-4)					•	bit 25-4)			
Speed De	etermination				Speed D	Deter	minati	on		
M _s = (Ex	ibit 25-19)				$D_S = 0.2$	463 (E	xhibit 25	-19)		
ľ	(Exhibit 25-19)				S _R = 49).5 mpł	ı (Exhibit	25-19)		
	(Exhibit 25-19)					'.1 mph	(Exhibit	25-19)		
	(Exhibit 25-14)				1.	-	` ı (Exhibit			
					1	pi	,	,		

	RA	MPS AND	RAMP JUNG	CHONS W	OKKSHE	<u> </u>				
General Infor	mation			Site Infor	mation					
Analyst	SEB		Fr	eeway/Dir of Tra	avel :	Southbound I-8	37			
gency or Company	CHA		Ju	nction	1	Exit 4 SB On-R	amp			
ate Performed	9/08/	/2011	Ju	risdiction	I	NYSDOT	•			
nalysis Time Period	AM		Ar	nalysis Year	:	2026 No-Build				
Project Description	Exit 4									
nputs										
lpstream Adj Ramp		Terrain: Level						Downstre Ramp	eam Adj	
Yes On								☐ Yes	□ On	
No ☐ Off	:							✓ No	☐ Off	
_{up} = 2035 1	ft							L _{down} =	ft	
		S	$_{\rm F} = 56.0 {\rm mph}$		$S_{FR} = 4$	0.0 mph			1.71	
$v_{u} = 370 \text{ ve}$	eh/h		Sketch (show lanes, L _A ,	$L_{D'}V_{R'}V_{f}$			$V_D =$	veh/h	
Conversion to	pc/h Un	der Base C			5 K I					
(pc/h)	V	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p	
, ,	(Veh/hr)	0.00					-		т	
reeway	4750	0.92	Level	2	0	0.990	1.00	-	5215	
Ramp	510	0.93	Level	5	0	0.976	1.00		562	
JpStream	370	0.93	Level	3	0	0.985	1.00		404	
DownStream		<u> </u>								
		Merge Areas			-		Diverge Are	as		
stimation of	V ₁₂				Estimati	ion of v ₁₂				
	$V_{12} = V_{F}$	(P _{FM})				٧	= V _R + (V _F	· V_)P		
EQ =	(Equ	ation 25-2 or	25-3)		_	* 12			0)	
			on (Exhibit 25-5)		L _{EQ} =		25-8 or 25-			
FM =			on (Exhibit 25-5)		P _{FD} =			ation (Exhibit	25-12)	
12 =	3143	•	05.4.05		V ₁₂ =		pc/h			
' ₃ or V _{av34}	2072 5)	pc/h (Equatio	n 25-4 or 25-		V_3 or V_{av34}		pc/h (Equat	ion 25-15 or 2	5-16)	
s V ₃ or V _{av34} > 2,70	,	o 🗵 No			Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No					
0 4101					Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No					
s V_3 or $V_{av34} > 1.5$ *					If Yes, V_{12a} = pc/h (Equation 25-18)					
Yes,V _{12a} =		(Equation 25-	·8)		120		pc/ii (Lqu	ation 25-10)		
Capacity Che	cks				Capacity	/ Checks				
	Actual	Ca	pacity	LOS F?	<u> </u>	Actu	al	Capacity	LOS F	
					V _F		Exhibit	25-14		
V_{FO}	5777	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _D	Exhibit	25-14		
FO	0					K	Exhibit		_	
		<u></u>			V _R					
low Entering		1			Flow En	tering Div				
	Actual)esirable	Violation?	 	Actual	1	esirable	Violation?	
V _{R12}	3705	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-1			
evel of Serv	ice Deterr	nination (i	not F)		Level of	Service L	<u>Determina</u>	tion (if n	ot F)	
$D_R = 5.475 +$	0.00734 v _R + 0	0.0078 V ₁₂ - 0.00)627 L _A			O _R = 4.252 +	0.0086 V ₁₂	- 0.009 L _D		
D _R = 28.5 (pc/mi/ln)					$D_R = (p)$	c/mi/ln)		_		
OS = D (Exhib						xhibit 25-4)				
Speed Detern	*				`	etermina	tion			
						xhibit 25-19)				
	$M_{\rm S} = 0.408 \text{ (Exibit 25-19)}$				3		10)			
1 _S = 0.408 (Exit					S _R = mph (Exhibit 25-19)					
1 _S = 0.408 (Exit	Exhibit 25-19)				., .					
$I_{S} = 0.408 \text{ (Exit)}$ $I_{R} = 50.3 \text{ mph (}$	Exhibit 25-19) Exhibit 25-19)				., .	oh (Exhibit 25-				

	RAI	MPS AND	RAMP JUNG	<u>CTIONS W</u>	ORKSHE	EET						
General Info	rmation			Site Infor	mation							
Analyst	SEB		Fre	eeway/Dir of Tr	avel :	Southb	ound I-87					
Agency or Company				nction	İ	Exit 5	SB On-Ra	mp				
Date Performed	9/08/	2011		risdiction		NYSD						
Analysis Time Perio			An	alysis Year	-	2026 N	lo-Build					
Project Description	Exit 4											
nputs		IT a marker of a const	1									
Jpstream Adj Ramp		Terrain: Leve							Downstre Ramp	am Adj		
□ Yes □ O	n								✓ Yes	✓ On		
™ No □ O	ff								□ No	☐ Off		
- _{up} = ft			L _{down} = 2035 ft						2035 ft			
	h	S	FF = 56.0 mph		$S_{FR} = 4$	0.0 mp	h		V _D =	510 veh/h		
u .				show lanes, L _A ,	$L_{A'}L_{D'}V_{R'}V_{f}$				I. p	310 Ve 11/11		
Conversion	7	der Base (Conditions	ı	1	_						
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	$x f_{HV} x f_{p}$		
Freeway	4450	0.92	Level	2	0	0.	990	1.00		885		
Ramp	370	0.93	Level	3	0	0.	985	1.00		404		
UpStream						-						
DownStream	510	0.93	Level	5	0	0.	976	1.00		562		
Estimation o		Merge Areas			Estimati	ion c	of v	Diverge Areas	<u> </u>			
					LSuman	OII C	12					
	$V_{12} = V_F$	(P _{FM})					V ₁₂ =	: V _R + (V _F - \	/ _R)P _{FD}			
-EQ =	(Equa	ation 25-2 or	25-3)		L _{EQ} =			(Equation 2))		
P _{FM} =	0.603	using Equati	on (Exhibit 25-5)		P _{FD} =			using Equa				
/ ₁₂ =	2944	pc/h						pc/h	tion (Exhibit	20 12)		
			on 25-4 or 25-		V ₁₂ =			•	05.4505	1()		
V_3 or V_{av34}	5)	(1			V ₃ or V _{av34}		"	pc/h (Equation		- 16)		
Is V_3 or $V_{av34} > 2.7$	00 pc/h?	s 🗹 No						☐ Yes ☐ N				
Is V ₃ or V _{av34} > 1.5	* V ₁₂ /2	s 🗹 No			Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No							
Yes,V _{12a} =		(Equation 25	-8)		If Yes,V _{12a} = pc/h (Equation 25-18)							
Capacity Ch	ecks				Capacity	y Ch	ecks					
•	Actual	C	apacity	LOS F?			Actual		Capacity	LOS F		
					V _F			Exhibit 25	5-14			
V_{FO}	5289	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _D		Exhibit 25	5-14			
го					V _R			Exhibit 2		_		
Flow Enterin	Morgo In	l l	roa		,	torir	na Div	erge Influe		<u></u>		
TOW LINEIIII	Actual)r	Desirable	Violation?	FIOW EII		Actual	Max De:		Violation?		
V _{R12}	3348	Exhibit 25-7	4600:AII	No	V ₁₂			Exhibit 25-14	1			
Level of Serv	vice Detern	nination (i	f not F)	!		Ser	vice D	eterminati	ion (if no	<i>t F</i>)		
										(1)		
$D_R = 5.475 + 0.00734 \text{ v}_R + 0.0078 \text{ V}_{12} - 0.00627 \text{ L}_A$ $D_R = 25.8 \text{ (pc/mi/ln)}$				$D_R = 4.252 + 0.0086 V_{12} - 0.009 L_D$ $D_R = (pc/mi/ln)$								
K 4	ibit 25-4)				$D_R = (pc/mi/ln)$ LOS = (Exhibit 25-4)							
Speed Deter	•				Speed D			ion				
						xhibit 2						
M _S = 0.360 (Exibit 25-19)))				
o .	S _R = 51.0 mph (Exhibit 25-19)							S _R = mph (Exhibit 25-19)				
$S_R = 51.0 \text{ mph}$., .		nihit 25 10))				
$S_{R} = 51.0 \text{ mph}$ $S_{0} = 50.8 \text{ mph}$	(Exhibit 25-19) (Exhibit 25-19) (Exhibit 25-14)				$S_0 = m_F$	ph (Exl	nibit 25-19 nibit 25-15	•				

			FREEWA	Y WEAV	ING WOR	KSHEE	Τ			
Genera	l Informat	ion			Site Info	rmation				
Date Perfor	Agency/Company CHA Date Performed 9/08/2011 Analysis Time Period AM				Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	Location	Exit 2 NYSE	I-87 Northbound Exit 2E on to 2W off NYSDOT 2026 No-Build		
Inputs					•					
Weaving nu Weaving se Terrain	eeway free-flow speed, S _{FF} (mi/h) 56 leaving number of lanes, N 4 leaving seg length, L (ft) 815 errain Lev		IVVEAVIIIO IAIIO. K		, VR	A 0.29 0.31				
Conver	sions to p	c/h Unde	er Base C	ondition	1 -			1		
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f _{HV}	fp	V	
V_{o1}	2350	0.92	2	0	1.5	1.2	0.990	1.00	2579	
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0	
V_{w1}	680	0.92	2	0	1.5	1.2	0.990	1.00	746	
V_{w2}	300	0.92	2	0	1.5	1.2	0.990	1.00	329	
$V_{_{\mathrm{W}}}$	1		•	1075	V_{nw}		•	,	2579	
V	1					l			3654	
Weavin	g and No	n-Weavin	g Speeds	3						
			Unconstr					trained		
- /F.,h;h;h;	4 ()	Weaving	(i = w)	Non-Wea	ving (i = nw)		ng (i = w)	 	ving (= nw)	
a (Exhibit 24 b (Exhibit 24		 		 		0.			020	
c (Exhibit 24		†					97		30	
d (Exhibit 2		1					80	}	75	
Weaving intens						2.	15	0.	26	
Weaving and no speeds, Si (mi/h						29	.58	51	.51	
Maximum n	anes required umber of lanes	s, Nw (max)	·		1.42 1.40	_				
	If Nw < Nw	<u> </u>					v (max) const	rained operati	ion	
Weavin	g Segmei	nt Speed,			f Service,	and Cap	acity			
	gment speed,			42.29						
Weaving segment density, D (pc/mi/ln)				21.60 C						
	Level of service, LOS Capacity of base condition, c _h (pc/h)									
	a 15-minute fl		2/b)	6221 6159						
	a full-hour vol			1						
Notes	a iuli-iluui VUI	unic, ch (veil/i	'/	5666						
hanre2										

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 1/9/2012 1:18 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

			FREEWA	Y WEAV	ING WOR	KSHEE	Τ		
General	Informat	ion			Site Info	rmation			
Date Perforn Analysis Tim	Agency/Company CHA Date Performed 9/08/2011 Analysis Time Period AM				Freeway/Dir of Weaving Seg Jurisdiction Analysis Yea	Location	I-87 Southbound Exit 2W on to 2E off NYSDOT 2026 No-Build		
Inputs									
Weaving nur Weaving seg Terrain	reeway free-flow speed, S _{FF} (mi/h) 56 Yeaving number of lanes, N 4 Yeaving seg length, L (ft) 810 Perrain Lev		el	Weaving type Volume ratio, VR Weaving ratio, R			A 0.23 0.32		
Convers	ions to p	oc/h Unde	r Base C	ondition				,	_
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f _{HV}	fp	V
V_{o1}	3750	0.92	2	0	1.5	1.2	0.990	1.00	4116
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0
V _{w1}	750	0.92	2	0	1.5	1.2	0.990	1.00	823
V_{w2}	360	0.92	2	0	1.5	1.2	0.990	1.00	395
V _w				1218	V _{nw}				4116
V	1				11W				5334
Weaving	and No	n-Weavin	g Speeds	<u> </u>					
			Unconstr					trained	
/F 1 11 11 0 4	()	Weaving	<u> </u>		ving (i = nw)	Weavir	ng (i = w)	Non-Wea	ving (= nw)
a (Exhibit 24 b (Exhibit 24		0.15 2.20		0.0035 4.00					
c (Exhibit 24		0.97			.30				
d (Exhibit 24		0.80		1	.75				
Weaving intensit		1.19		0.	.61				
Weaving and nor speeds, Si (mi/h)		35.9	7	43	3.64				
Number of la Maximum nu	nes required Imber of lanes				1.27 1.40		, , ,		
		(max) unconst					v (max) consti	rained operati	on
Weaving	J Segmei	S (mi/h)	Density,	41.61	f Service,	and Cap	acity		
				32.04					
Weaving segment density, D (pc/mi/ln) Level of service, LOS				D					
	Capacity of base condition, c _h (pc/h)								
		ow rate, c (veh	/h)	6578 6513					
		ume, c _h (veh/h		5992					
Notes		11.	-	<u> </u>					

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 1/9/2012 1:18 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

Application	<u>Input</u>	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	Vp. S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	V _D , S, D

	,				
General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Northbou	und I-87
Agency or Company	CHA		From/To	Exit 2 to	
Date Performed	6/22/2011		Jurisdiction	NYSDO	
Analysis Time Period	AM		Analysis Year	2036 No	-Build
Project Description Exit 4					
			Des.(N)	□ Pla	nning Data
Flow Inputs					
Volume, V	3000	veh/h	Peak-Hour Factor, PHF	0.92	
AADT		veh/day	%Trucks and Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D	4.00	veh/h	Grade % Length	mi	
Driver type adjustment	1.00		Up/Down %		
Calculate Flow Adjustr			_	4.0	
f_p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
Lane Width	12.0	ft	f _{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h
Interchange Density	0.50	l/mi	\$		
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance	Measures	<u> </u>	Design (N)		
			Design (N)		
Operational (LOS)			Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 1098	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N)$	κ f x	
f _p)	,,,,,	ролли	· ·	· ·HV	pc/h
S	56.0	mi/h	f _p)		: //-
D = v _p / S	19.6	pc/mi/ln	S		mi/h
Los	С		$D = v_p / S$		pc/mi/ln
			Required Number of Lanes, N	Į.	
Glossary			Factor Location		
N - Number of lanes	S - Speed		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
V - Hourly volume	D - Density		E _T - Exhibits 23-8, 23-10, 23-	11	f _{LC} - Exhibit 23-5
v _p - Flow rate	FFS - Free-flov	v speed			
LOS - Level of service	BFFS - Base fr	ee-flow speed	f _p - Page 23-12	2 22 2	f _N - Exhibit 23-6
DDHV - Directional design ho	our volume.		LOS, S, FFS, v _p - Exhibits 23-	-2, 23-3	f _{ID} - Exhibit 23-7
					

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (milh) Frce-Flow Speed FFS = 75 mith 70 mith 70 65 mids 60 miih 60 55 mish 30 200 1600 2000 400 1200 2400 Flow Rate (pc/h/lin)

Application	<u>Input</u>	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	Vp. S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _o)	FFS, LOS, N	v_{n} , S, D

General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Southbo	ound I-87
Agency or Company	CHA		From/To	Exit 4 to	Exit 2
Date Performed	6/22/2011		Jurisdiction	NYSDO	T
Analysis Time Period	AM		Analysis Year	2036 No	o-Build
Project Description Exit 4					
Oper.(LOS)	, , , , , , , , , , , , , , , , , , , ,		Des.(N)	Pla	nning Data
Flow Inputs			**************************************		
Volume, V	5300	veh/h	Peak-Hour Factor, PHF	0.92	
AADT		veh/day	%Trucks and Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D	1.00	veh/h	Grade % Length	mi	
Driver type adjustment Calculate Flow Adjustr			Up/Down %		
	1.00			1.2	
f _p			E _R		
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	<u>S</u>	
ane Width	12.0	ft	f_{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h
Interchange Density	0.50	I/mi	1		
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance	Measures		Design (N)		
			Design (N)		
Operational (LOS)			Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 1939	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x N)$	rf v	
f _p)	1939	ролли	l ^r	` 'HV ^	pc/h
S	55.4	mi/h	f_p)		
$D = v_p / S$	35.0	pc/mi/ln	S		mi/h
LOS	D	,	$D = v_p / S$		pc/mi/ln
			Required Number of Lanes, N	<u> </u>	
Glossary			Factor Location		
N - Number of lanes	S - Speed		E Evhibita 22 9 22 40		f = Evbibit 00 4
V - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10	4.4	f _{LW} - Exhibit 23-4
v _n - Flow rate	FFS - Free-flov	v speed	E _T - Exhibits 23-8, 23-10, 23-7	11	f _{LC} - Exhibit 23-5
LOS - Level of service	BFFS - Base fr		f _p - Page 23-12		f _N - Exhibit 23-6
DDHV - Directional design ho		oo non opeea	LOS, S, FFS, v _p - Exhibits 23-	-2, 23-3	f _{ID} - Exhibit 23-7
טריער - Directional design no	our volunie				

Generated: 12/12/2011 4:04 PM

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (milh) Free-Flow Speed FFS = 75 midt Application Output Input 70 mida 70 Operational (LOS) 65 milh FFS, N, v_D LOS, S, D 60 midu Design (N) FFS, LOS, V, N, S, D 60 55 mich Design (v_o) FFS, LOS, N Vp. S. D 50 Planning (LOS) FFS, N, AADT LOS, S, D Planning (M) FFS, LOS, AADT N, S, D Planning (v_p) FFS, LOS, N v_p. S. D 30 400 800 1200 1600 2000 2400 Flow Rate (pc/h/lin) General Information Site Information Highway/Direction of Travel Analyst SEB Northbound I-87 Agency or Company CHA From/To Exit 4 off to Exit 4 on Date Performed 9/09/2011 Jurisdiction NYSDOT Analysis Time Period Analysis Year 2036 No-Build AM Project Description Exit 4 □ Des.(N) Oper.(LOS) Planning Data Flow Inputs Volume, V 2200 veh/h Peak-Hour Factor, PHF 0.92 **AADT** veh/day %Trucks and Buses, P_⊤ 2 $%RVs, P_R$ Peak-Hr Prop. of AADT, K 0 Peak-Hr Direction Prop. D General Terrain: Level $DDHV = AADT \times K \times D$ veh/h Grade % Length mi Driver type adjustment 1.00 Up/Down % Calculate Flow Adjustments ER 1.00 1.2 E_{T} 1.5 0.990 $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$ Speed Inputs Calc Speed Adj and FFS Lane Width 12.0 ft f_{LW} mi/h Rt-Shoulder Lat. Clearance ft 6.0 f_{LC} mi/h 0.50 Interchange Density I/mi f_{ID} mi/h 3 Number of Lanes, N f_N mi/h FFS (measured) 56.0 mi/h **FFS** 56.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ 805 pc/h/ln $f_p)$ pc/h 56.0 mi/h mi/h $D = v_n / S$ 14.4 pc/mi/ln $D = v_n / S$ pc/mi/ln LOS В Required Number of Lanes, N Glossary **Factor Location** N - Number of lanes S - Speed E_R - Exhibits23-8, 23-10 f_{IW} - Exhibit 23-4 - Hourly volume D - Density E_{T} - Exhibits 23-8, 23-10, 23-11 f_{IC} - Exhibit 23-5 - Flow rate FFS - Free-flow speed f_p - Page 23-12 f_N - Exhibit 23-6 LOS - Level of service BFFS - Base free-flow speed LOS, S, FFS, v_n - Exhibits 23-2, 23-3 f_{ID} - Exhibit 23-7 DDHV - Directional design hour volume

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mith) Free-Flow Speed FFS = 75 minh 70 miih 70 65 min 60 midn 6Ò 55 miih 50 30 400 0081200 1600 2000 2400 Flow Rate (pc/h/lin)

Application	Input	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, v _o	N, S, D
Design (v _p)	FFS, LOS, N	v _p , S, D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v_{nr} S, D

	rava nos (benum	·*			
General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Southbo	ound I-87
Agency or Company	CHA		From/To	Exit 5 or	n to Exit 4 on
Date Performed	12/09/2011		Jurisdiction	NYSDO	T
Analysis Time Period	AM		Analysis Year	2036 No	p-Build
Project Description Exit 4					
⊠ Oper.(LOS)			Des.(N)	□ Pla	nning Data
Flow Inputs					
Volume, V	4800	veh/h	Peak-Hour Factor, PHF	0.92	
AADT		veh/day	%Trucks and Buses, P_T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D	1.00	veh/h	Grade % Length Up/Down %	mi	
Driver type adjustment Calculate Flow Adjustr			Ор/Домп %		
	1.00			1.2	
f _p			E _R		
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
Lane Width	12.0	ft	f_LW		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h
Interchange Density	0.50	I/mi			
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance	Measures		Design (N)		
			Design (N)		
Operational (LOS)			Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 1757	no/h/ln		v f v	
f_p)	1757	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N)$	' HV X	pc/h
S	56.0	mi/h	f _p)		
D = v _p / S	31.4	pc/mi/ln	S		mi/h
LOS	D	,	$D = v_p / S$		pc/mi/ln
			Required Number of Lanes, N	1	
Glossary			Factor Location		
N - Number of lanes	S - Speed		E Evhibite22 9 22 10		f Evhibit 22.4
V - Hourly volume	D - Density		E _R - Exhibits 23-8, 23-10	4.4	f _{LW} - Exhibit 23-4
v _o - Flow rate	FFS - Free-flow	v speed	E _T - Exhibits 23-8, 23-10, 23-	17	f _{LC} - Exhibit 23-5
LOS - Level of service	BFFS - Base fr		f _p - Page 23-12		f _N - Exhibit 23-6
DDHV - Directional design ho		opood	LOS, S, FFS, v _p - Exhibits 23	-2, 23-3	f _{ID} - Exhibit 23-7
DD11V - Directional design no	ou volume				

Generated: 12/12/2011 4:05 PM

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mi/h) Free-Flow Spred FFS = 75 minh 70 mish 70 65 midt 60 midt 60 55 mish 50 30 800 2000 400 1200 1600 2400 0 Flow Rate (pc/h/lin)

Application	Input	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	Vp. S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (N)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _p . S, D

General Information			Site Information			
Analyst	SEB		Highway/Direction of Travel	Northbou	und I-87	
Agency or Company	CHA		From/To	Exit 4 to	Exit 5	
Date Performed	6/22/2011		Jurisdiction	NYSDO	Τ	
Analysis Time Period	AM	`	Analysis Year	2036 No	-Build	
Project Description Exit 4						
☑ Oper.(LOS))		Des.(N)	Pla	nning Data	
Flow Inputs						
Volume, V	2800	veh/h	Peak-Hour Factor, PHF	0.92		
AADT		veh/day	%Trucks and Buses, P_T	2		
Peak-Hr Prop. of AADT, K			%RVs, P _R	0		
Peak-Hr Direction Prop, D			General Terrain:	Level		
DDHV = AADT x K x D	4.00	veh/h	Grade % Length	mi		
Driver type adjustment Calculate Flow Adjusti	1.00		Up/Down %			
						
f _p	1.00		E_R	1.2		
E _T	1.5		$f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$	0.990		
Speed Inputs			Calc Speed Adj and FF	S		
Lane Width	12.0	ft	f _{LW}		mi/h	
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h	
Interchange Density	0.50	l/mi				
Number of Lanes, N	3		f _{ID}		mi/h	
FFS (measured)	56.0	mi/h	f _N		mi/h	
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h	
LOS and Performance	Measures		Design (N)			
			Design (N)			
Operational (LOS)			Design LOS			
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 1025	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x N)$	v f v		
f _p)	1025	ролин		' 'HV ^	pc/h	
S	56.0	mi/h	f _p)			
D = v _p / S	18.3	pc/mi/ln	S		mi/h	
LOS	С	P C	$D = v_p / S$		pc/mi/ln	
			Required Number of Lanes, N	1		
Glossary			Factor Location			
N - Number of lanes	S - Speed		E Evhibito 22 0 22 10		f Eubibit 00 4	
V - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4	
v Flow rate	FFS - Free-flov	v speed	E _T - Exhibits 23-8, 23-10, 23-	11	f _{LC} - Exhibit 23-5	
LOS - Level of service	BFFS - Base fr		f _p - Page 23-12			
DDHV - Directional design ho		oo non opood	LOS, S, FFS, v _p - Exhibits 23-	-2, 23-3	f _{ID} - Exhibit 23-7	
DDITY - Directional design no	Jui voluitie	· · · · · · · · · · · · · · · · · · ·	<u> </u>			

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (milh) Free-Flow Speed FFS = 75 mith 70 mith 70 65 mish 60 miih 60 50 40 30 400 800 1200 1600 2000 2400 0 Flow Rate (pc/h/lin)

Application	Input	Output
Operational (LOS)	FFS, N, vp	LOS, S, D
Design (N)	FFS, LOS, V _B	N, S, D
Design (v _D)	FFS, LOS, N	Vp. S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _{or} S, D

General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Southbo	ound I-87
Agency or Company	CHA		From/To	Exit 5 to	Exit 4
Date Performed	6/22/2011		Jurisdiction	NYSDO	T
Analysis Time Period	AM		Analysis Year	2036 No	o-Build
Project Description Exit 4					
✓ Oper.(LOS)			Des.(N)	□ Pla	nning Data
Flow Inputs					
Volume, V	4550	veh/h	Peak-Hour Factor, PHF	0.92	
AADT		veh/day	%Trucks and Buses, P_T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D	1.00	veh/h	Grade % Length	mi	
Driver type adjustment Calculate Flow Adjustr	1.00		Up/Down %		
f _p	1.00		E_R	1.2	
E _T	1.5		$f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
Lane Width	12.0	ft	f_{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h
Interchange Density	0.50	l/mi	1		
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f_N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance	Measures		Design (N)		
			Design (N)		***************************************
Operational (LOS)			Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 1665	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N)$	/f v	
f _p)	7000	родили		, ,HA ,	pc/h
S	56.0	mi/h	f _p)		.,,
D = v _p / S	29.7	pc/mi/ln	S		mi/h
Los	D		$D = v_p / S$		pc/mi/ln
			Required Number of Lanes, N	l	
Glossary			Factor Location		
N - Number of lanes	S - Speed		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
V - Hourly volume	D - Density		 '`	1 1	
v _n - Flow rate	FFS - Free-flow	v speed	E _T - Exhibits 23-8, 23-10, 23-	ł I	f _{LC} - Exhibit 23-5
LOS - Level of service	BFFS - Base fr	ee-flow speed	f _p - Page 23-12		f _N - Exhibit 23-6
DDHV - Directional design ho		•	LOS, S, FFS, v _p - Exhibits 23-	-2, 23-3	f _{ID} - Exhibit 23-7

Application	Input	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	v _p . S, D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _o , S, D

	,								
General Information			Site Information						
Analyst	SEB		Highway/Direction of Travel	Northbou	ınd I-87				
Agency or Company	CHA		From/To	Exit 5 to					
Date Performed	6/22/2011		Jurisdiction	NYSD01					
Analysis Time Period	AM		Analysis Year	2036 No-	-Build				
Project Description Exit 4									
☑ Oper.(LOS)			Des.(N)	Plar	nning Data				
Flow Inputs									
Volume, V	2600	veh/h	Peak-Hour Factor, PHF	0.92					
AADT		veh/day	%Trucks and Buses, P _T	2					
Peak-Hr Prop. of AADT, K			%RVs, P _R	0					
Peak-Hr Direction Prop, D			General Terrain:	Level					
DDHV = AADT x K x D	4.00	veh/h	Grade % Length	mi					
Oriver type adjustment	1.00		Up/Down %						
Calculate Flow Adjustr				4.0					
f _p	1.00		E_R	1.2					
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990					
Speed Inputs			Calc Speed Adj and FF	S					
ane Width	12.0	ft	f{LW}		mi/h				
Rt-Shoulder Lat. Clearance	6.0	ft			mi/h				
nterchange Density	0.50	I/mi	f _{LC}						
Number of Lanes, N	4		f _{ID}		mi/h				
FFS (measured)	56.0	mi/h	f _N		mi/h				
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h				
LOS and Performance	Measures		Design (N)						
			Design (N)						
Operational (LOS)			Design LOS						
$v_p = (V \text{ or DDHV}) / (PHF \times N)$	x f _{HV} x 714	20/2/12		ef v					
f _p)	714	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N)$	HV X	pc/h				
5	56.0	mi/h	f_p)						
$D = v_p / S$	12.8	pc/mi/ln	S		mi/h				
LOS	72.0 B	Pomini	$D = v_p / S$		pc/mi/ln				
LUS	D		Required Number of Lanes, N	I					
Glossary			Factor Location						
N - Number of lanes	S - Speed		F		f = F.4.3.3.00 4				
V - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4				
, - Flow rate			E_{T} - Exhibits 23-8, 23-10, 23-11 f_{LC} - Exhib						
r		f _p - Page 23-12 f _N - Exhibit 23-6							
LOS - Level of service		ee-now speed	LOS, S, FFS, v _p - Exhibits 23-	-2, 23-3	f _{ID} - Exhibit 23-7				
DDHV - Directional design ho	our volume								

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mith) Free-Flow Spred FFS = 75 midt Application Input Output 70 mith 70 Operational (LOS) FFS, N, v_D LOS, S, D 65 midt 60 miih Design (N) FFS, LOS, Vn N, S, D 60 55 mith FFS, LOS, N Design (v_p) v_p. S. D 50 Planning (LOS) FFS, N, AADT LOS, S, D Planning (M) FFS, LOS, AADT N, S, D 10 Planning (v_n) FFS, LOS, N v_p. S. D 30 -2400 400 00S1200 1600 2000 Flow Rate (pc/h/lin) Site Information General Information Highway/Direction of Travel Southbound I-87 Analyst SEB From/To Exit 6 to Exit 5 Agency or Company CHA Jurisdiction NYSDOT Date Performed 6/22/2011 Analysis Time Period Analysis Year 2036 No-Build AM Project Description Exit 4 回 Des.(N) Oper.(LOS) □ Planning Data Flow Inputs Peak-Hour Factor, PHF 0.92 Volume, V 6050 veh/h AADT veh/day %Trucks and Buses, P_⊤ 2 $%RVs, P_R$ 0 Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D General Terrain: Level $DDHV = AADT \times K \times D$ Grade % Length veh/h mi Up/Down % Driver type adjustment 1.00 Calculate Flow Adjustments 1.00 E_{R} 1.2 ET 1.5 0.990 $f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$ Calc Speed Adj and FFS Speed Inputs Lane Width 12.0 ft f_{LW} mi/h Rt-Shoulder Lat. Clearance 6.0 ft f_{LC} mi/h Interchange Density 0.50 I/mi mi/h f_{ID} Number of Lanes. N 4 f_N mi/h FFS (measured) 56.0 mi/h FFS 56.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v = (V \text{ or DDHV}) / (PHF x N x f_{m} x)$

f_p	1660 pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$	pc/h
S D = v _p / S LOS	56.0 mi/h 29.6 pc/mi/lr D	I _p) S D = v _p / S Required Number of Lanes, N	mi/h pc/mi/ln
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow spee	E_R - Exhibits23-8, 23-10 E_T - Exhibits 23-8, 23-10, 23-11 f_p - Page 23-12 LOS, S, FFS, v_p - Exhibits 23-2, 23-3	f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{ID} - Exhibit 23-7
Copyright © 2010 University of Floric	la. All Rights Reserved	HCS+TM Version 5.5	Generated: 12/12/2011 4:05 F

	RAI	MPS AND	RAMP JUNG	CTIONS W	ORKSHE	ET				
General Infor				Site Infor						
Analyst Agency or Company Date Performed Analysis Time Period	SEB CHA 9/08/ I AM		Jui Jui	eeway/Dir of Tranction risdiction alysis Year	Travel Northbound I-87 Exit 2W On-Ramp NYSDOT 2036 No-Build					
Project Description			7	arysis i oui		20301	NO Dalla			
nputs										
Jpstream Adj Ramp		Terrain: Level							Downstrea Ramp	am Adj
Yes On									☐ Yes	☐ On
□ No Off	Ī								™ No	☐ Off
up = 1100	ft								L _{down} =	ft
$v_{\rm u} = 700 \text{ v}$	eh/h	S	$_{FF} = 56.0 \text{ mph}$ Sketch (s	show lanes, L _A ,	$S_{FR} = 4$ $L_{D'}V_{R'}V_{f}$	0.0 m	ph		V _D =	veh/h
Conversion to	o pc/h Und	der Base C	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f_{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	2600	0.92	Level	2	0	+	.990	1.00		854
Ramp	380	0.92	Level	2	0	+-	.990	1.00		117
JpStream DownStream	700	0.92	Level	2	0	0	.990	1.00	-	768
DOWNSHEAM		Merge Areas						Diverge Area	ls.	
stimation of	Estimati	on (of v ₁₂	Divorge 7 ii ou						
	V ₁₂ = V _F	(P _{EM})					\/ -	- \/ - \//	\/ \D	
EQ =		(Equation 2	5-2 or 25-3)		-		v ₁₂ -	= V _R + (V _F -	^v _R ル _{FD} 25-8 or 25-9	`
r _{FM} =			on (Exhibit 25-5)		L _{EQ} =			-	ation (Exhibit :	
12 =	1716		,		P _{FD} =			pc/h	ונוטוו (באוווטוני.	20-12)
₃ or V _{av34}			n 25-4 or 25-		$V_{12} = V_3 \text{ or } V_{av34}$			•	on 25-15 or 25-	14)
	5)					\ 2	700 nc/h2			10)
s V_3 or $V_{av34} > 2,70$					Is V_3 or $V_{av34} > 2,700$ pc/h? Yes No Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No					
s V ₃ or V _{av34} > 1.5 *	·=				If Yes, $V_{12a} = pc/h$ (Equation 25-18)					
Yes,V _{12a} =	•	(Equation 25	-8)					pc/ii (Equa	11011 23-10)	
Capacity Che					Capacity	y Cr		. 1		
	Actual	Ca	apacity	LOS F?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Actua		Capacity	LOS F
					V _F			Exhibit 2		
V_{FO}	3271	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		Exhibit 2	_	
					V _R Exhibit					
low Entering					Flow En	1			ence Are	
	Actual	<u> </u>	Desirable	Violation?	.,	-	Actual	Max De		Violation?
V _{R12}	2133	Exhibit 25-7	4600:AII	No	V ₁₂	Ļ		Exhibit 25-14		. =\
evel of Serv									tion (if no	t F)
10		0.0078 V ₁₂ - 0.0	0627 L _A					0.0086 V ₁₂	- 0.009 L _D	
O _R = 16.6 (pc						c/mi/	,			
OS = B (Exhib							it 25-4)			
Speed Detern	nination				Speed D			ion		
M _S = 0.286 (Exil	oit 25-19)				3		25-19)			
$S_{R} = 52.0 \text{ mph} ($	(Exhibit 25-19)				I ''		hibit 25-19			
₀ = 53.7 mph ((Exhibit 25-19)				$S_0 = mp$	oh (Ex	hibit 25-19	9)		
	(Exhibit 25-14)				S = mp	oh (Ex	hibit 25-15	<u>5)</u>		
pyright © 2007 Unive	ersity of Florida, A	All Rights Reserv	ed		HCS+ [™] \	/ersior	n 5.3		Generated: 12/	16/2011 8:5

		IVAIIII	S AND RAM							
General Info	ormation			Site Infor	mation					
Analyst Agency or Compa Date Performed Analysis Time Per	9/08		Ji Ji	reeway/Dir of Tr unction urisdiction nalysis Year		Exit 4 NYSD	ound I-87 NB Off OT No-Build			
Project Description	n Exit 4									
Inputs		1							ī	
Upstream Adj Ran		Terrain: Leve	l						Downstrea Ramp	m Adj
Yes C									✓ Yes	✓ On
✓ No ☐ (OĦ								□ No	☐ Off
L _{up} = ft		S	_{FF} = 56.0 mph		S _{FR} = 4	10.0 mi			L _{down} =	2660 ft
V _u = veh			Sketch (show lanes, L _A					V _D =	640 veh/h
Conversion		der Base (Conditions	<u>, </u>	1			1	n e	
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck %Rv f _{HV} f _p		f _p	v = V/PHF	x f _{HV} x f _p		
Freeway	3000	0.92	Level	2	0	0.990		1.00	329	
Ramp	800	0.82	Level	2	0	0	.990	1.00	98	5
UpStream DownStream	640	0.92	Lovol	1 2	0	+	.990	1.00	70	າ
Downsteam	640	Merge Areas	Level	2	U	0		Diverge Areas	70	ა
Estimation of v ₁₂						ion d	of v ₁₂	Divorgo / irous		
		/D \						\/ . (\/ \/	\D	
$V_{12} = V_F (P_{FM})$								= V _R + (V _F - V		
L _{EQ} =		ation 25-2 or			L _{EQ} =			(Equation 25-8		05 40)
P _{FM} =	_	Equation (E	EXNIBIT 25-5)		P _{FD} =			.632 using Ed	quation (Exh	bit 25-12)
V ₁₂ =	pc/h		4 05 5)		V ₁₂ =			444 pc/h		0= 10)
V ₃ or V _{av34}		(Equation 25	-4 or 25-5)		V ₃ or V _{av34}	2 .		49 pc/h (Equa	ation 25-15	or 25-16)
Is V_3 or $V_{av34} > 2$,								Yes ✓ No		
Is V_3 or $V_{av34} > 1$.	:=		. 0)		0 0.0			☐ Yes ☑ No	05 40)	
If Yes,V _{12a} =		(Equation 25	9-8)		If Yes,V _{12a} = pc/h (Equation 25-18)					
Capacity Cl		1		1	Capacit	y Ch	1			1.00.50
	Actual		apacity	LOS F?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Actual		pacity	LOS F
.,		1			V _F		3293	Exhibit 25-1	_	No
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2308	Exhibit 25-1		No
					V _R		985	Exhibit 25-3	3 2100	No
Flow Enteri	ng Merge lı	nfluence A	rea		Flow En	terii	ng Dive	rge Influen	ce Area	
	Actual		Desirable	Violation?		 	Actual	Max Desiral		Violation
V _{R12}		Exhibit 25-7			V ₁₂		2444	Exhibit 25-14	4400:All	No
Level of Se	vice Deteri	mination (i	f not F)		Level of	Ser	vice De	eterminatio	n (if not l	-)
$D_R = 5.475 +$	0.00734 v _R +	0.0078 V ₁₂ -	0.00627 L _A			$D_R = \frac{1}{2}$	4.252 + 0	0.0086 V ₁₂ - 0	.009 L _D	
$D_R = (pc/n)$	ni/ln)				$D_R = 22$	2.1 (pc	:/mi/ln)			
LOS = (Exh	ibit 25-4)				LOS = C (Exhibit 25-4)					
Speed Dete	rmination				Speed D	Detei	rminati	on		
M _S = (Exibit	25-19)				D _s = 0.4	452 (E	xhibit 25	-19)		
· ·	xhibit 25-19)					9.7 mpl	h (Exhibit	25-19)		
	xhibit 25-19)				1 ''	-	` h (Exhibit			
1					. "	-	h (Exhibit			
S = mph (Exhibit 25-14)						mp	. ,	,		

			WPS AND	RAMP JUN			<u>:EI </u>				
General	Inform	ation			Site Infor						
Analyst Agency or Co Date Perform Analysis Time	ed	SEB CHA 9/08/ AM	2011	Ju Ju	eeway/Dir of Tr Inction Irisdiction nalysis Year		Northbound I-1 Exit 4 NB On-1 NYSDOT 2036 No-Build	Ramp			
Project Descr							2000 110 24.14				
Inputs											
Jpstream Adj	j Ramp		Terrain: Leve	l					Downstro Ramp	eam Adj	
	☐ On								✓ Yes	☐ On	
☑ No	☐ Off								□ No	✓ Off	
_ _{up} =	ft								L _{down} =	3500 ft	
•	veh/h		S	FF = 56.0 mph Sketch (show lanes, L _A ,	$S_{FR} = 4$ $L_{D_f} V_{D_f} V_f$	0.0 mph		V _D =	480 veh/h	
Convers	ion to	pc/h Und	der Base	Conditions		D K I					
(pc/h)		V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	fp	v = V/PH	F x f _{HV} x f _p	
Freeway		2200	0.92	Level	2	0	0.990	1.00		2415	
Ramp		640	0.92	Level	2	0	0.990	1.00		703	
UpStream											
DownStream	1	480	0.96	Level	2	0	0.990	1.00		505	
Estimatio	on of v		Merge Areas			Estimati	ion of v ₁₂	Diverge A	reas		
LSuman	OII OI V					LSumau		'			
		$V_{12} = V_F$					V ₁₂	$_{2} = V_{R} + (V_{F})$	11 12		
-EQ =		2452.65	(Equation	25-2 or 25-3)		L _{EQ} =			n 25-8 or 25-		
P _{FM} =				ion (Exhibit 25-5)		P _{FD} =		using Eq	juation (Exhibi	t 25-12)	
/ ₁₂ =		1456				V ₁₂ =		pc/h			
V_3 or V_{av34}				n 25-4 or 25-5)		V_3 or V_{av34}			ation 25-15 or 2	5-16)	
	-	oc/h? 🗌 Ye					₃₄ > 2,700 pc/h				
Is V ₃ or V _{av34}	₄ > 1.5 * V	-=				Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No					
f Yes,V _{12a} =			(Equation 25	5-8)		If Yes,V _{12a} = pc/h (Equation 25-18)					
Capacity	Chec	ks				Capacity Checks					
		Actual	C	apacity	LOS F?		Acti	ıal	Capacity	LOS F	
						V _F		Exhib	it 25-14		
V_{FO}		3118	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhib	it 25-14		
						V_R		Exhib	it 25-3		
Flow Ent	tering	Merge In	fluence A	rea		Flow En	tering Di	verge Inf	luence Are		
	Ĭ	Actual	1	Desirable	Violation?		Actual		Desirable	Violation?	
V_{R12}		2159	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25	-14		
		e Detern	nination (if not F)		Level of	Service	Determin	ation (if n	ot F)	
D _R = 5	5.475 + 0.0	00734 v _R + 0	0.0078 V ₁₂ - 0.0	00627 L _A		[O _R = 4.252	+ 0.0086 V	₁₂ - 0.009 L _D		
) _R = 1	16.3 (pc/m	i/ln)				$D_R = (p)$	c/mi/ln)				
LOS = B (Exhibit 25-4)						xhibit 25-4)					
Speed Determination						Petermina					
M _S = 0.283 (Exibit 25-19)						xhibit 25-19)					
Ü	-	hibit 25-19)				-	ph (Exhibit 25-	19)			
		hibit 25-19)									
$S_0 = 54.$	-					S ₀ = mph (Exhibit 25-19)					
S = 52.7 mph (Exhibit 25-14)						S = mph (Exhibit 25-15)					

		IVAIIII	S AND RAM			11110					
General Infor	mation			Site Infor							
Analyst Agency or Company Date Performed Analysis Time Period	SEB CHA 9/08/ I AM	2011	Jı Jı	reeway/Dir of Tra unction urisdiction nalysis Year	f Travel Northbound I-87 Exit 5 NB Off NYSDOT 2036 No-Build						
Project Description	Exit 4										
Inputs		,									
Upstream Adj Ramp		Terrain: Level							Downstreai Ramp	m Adj	
▼ Yes ▼ On									☐ Yes	□ On	
□ No □ Off	f								✓ No	☐ Off	
L _{up} = 3500	ft	<u> </u>	_{FF} = 56.0 mph		S _{FR} = 3	25 0 mr	h.		L _{down} =	ft	
$V_u = 640 \text{ ve}$			Sketch (show lanes, L _A ,		10.0 mp)II		V _D =	veh/h	
Conversion to	o pc/h Und	der Base (Conditions					-			
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	2800	0.92	Level	2	0	0	.990	1.00	307		
Ramp	480	0.96	Level	2	0	0 0.990 1.00		1.00	50		
UpStream	640	0.92	Level	2	0	0 0.990 1.00		703			
DownStream		Merge Areas		<u> </u>				L Diverge Areas			
Estimation of v ₁₂						ion c	of v ₁₂	biverge / ireas			
		/D \						\/ . (\/ \/	\D		
$V_{12} = V_F (P_{FM})$								= V _R + (V _F - V		a= a\	
L _{EQ} =		ation 25-2 or			L _{EQ} =			803.97 (Equat			
P _{FM} =	_	Equation (E	Xnidit 25-5)		P _{FD} =			.718 using Ed	juation (Exhi	bit 25-12)	
V ₁₂ =	pc/h	/F 0.F	4 05 5)		V ₁₂ =			351 pc/h			
V ₃ or V _{av34}		(Equation 25	-4 or 25-5)		V ₃ or V _{av34}	. 2 -		23 pc/h (Equa	ition 25-15 (or 25-16)	
Is V_3 or $V_{av34} > 2,70$								Yes ☑ No			
Is V ₃ or V _{av34} > 1.5 *	· -		0)					Yes Mo	05.40\		
If Yes,V _{12a} =		(Equation 25	-8)		If Yes,V _{12a} = pc/h (Equation 25-18)						
Capacity Che	1	1 0		1 100 50	Capacity	y Ch				Lione	
	Actual	Ca	pacity	LOS F?	\		Actual		pacity	LOS F	
		1			V _F		3074	Exhibit 25-1	_	No	
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2569	Exhibit 25-1		No	
					V _R		505	Exhibit 25-3	3 2000	No	
Flow Entering	g Merge In	fluence A	rea		Flow En	terir	ng Dive	rge Influen	ce Area		
	Actual	1	Desirable	Violation?		_	Actual	Max Desiral		Violation	
V _{R12}		Exhibit 25-7			V ₁₂		2351	Exhibit 25-14	4400:All	No	
Level of Serv					_			terminatio		-)	
$D_R = 5.475 + 0.$	00734 v _R +	0.0078 V ₁₂ -	0.00627 L _A		[D _R = 4	1.252 + 0	0.0086 V ₁₂ - 0.	009 L _D		
D _R = (pc/mi/	ln)				$D_R = 22$	2.2 (pc	/mi/ln)				
LOS = (Exhibi	t 25-4)				LOS = C	(Exhi	bit 25-4)				
Speed Detern	nination				Speed D	Deter	minati	on			
M _S = (Exibit 2					$D_s = 0.4$	473 (E	xhibit 25	-19)			
ľ	ibit 25-19)				S _R = 49	9.4 mpł	ı (Exhibit	25-19)			
	ibit 25-19)					I.4 mph	(Exhibit	25-19)			
· ·	ibit 25-14)				1.	-	i (Exhibit				
. ,					1		•	•			

		RAMP	S AND RAI	IP JUNCTI	ONS WOR	RKS	HEET					
General Info	rmation		<u> </u>	Site Infor								
Analyst Agency or Compan Date Performed Analysis Time Peric	SEB y CHA 9/08/ od AM		J	reeway/Dir of Tr unction urisdiction analysis Year	avel S E N	Southb Exit 2V NYSD(2036 N	V Off					
Project Description	Exit 4											
Inputs		Terrain: Leve	ıl						Downstrea	m Adi		
Upstream Adj Ramı									Ramp			
™ No □ O									✓ Yes	☑ On		
	11								□ No	☐ Off		
L _{up} = ft			E4.0 mnh		C 4/	0.0	. h		L _{down} =	1300 ft		
V _u = veh/	h	3	FF = 56.0 mph Sketch ((show lanes, L _A ,	$S_{FR} = 40$ $L_{D'}V_{R'}V_{f}$	u.u mp	JΠ		V _D =	360 veh/h		
Conversion	to pc/h Un	der Base (Conditions	•								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv f _{HV} f _p		f _p	v = V/PHF	x f _{HV} x f _p			
Freeway	5300	0.92	Level	2	0 0.990		1.00	58	18			
Ramp	760	0.92	Level	2	0	0 0.990		1.00	83	34		
UpStream DownStream	360	0.92	Level	2	0		.990	1.00	395			
Downstream		Merge Areas	Levei		0	U		Diverge Areas	3,	70		
Estimation o		go 7 ouc			Estimati	on c		2.ve.ge / ede				
	V ₁₂ = V _F	(P.,,)						= V _R + (V _F - V _F)P-2			
L _{EQ} =	12 1	ation 25-2 or	25-3)		L _{FO} =			Equation 25-8	` ''			
P _{FM} =		Equation (E			P _{FD} =			.576 using Eq		nibit 25-12)		
V ₁₂ =	pc/h	,	,		V ₁₂ =			706 pc/h	(=	,		
V ₃ or V _{av34}	pc/h	(Equation 25	5-4 or 25-5)		V ₃ or V _{av34}			112 pc/h (Equ	ation 25-1	5 or 25-16		
Is V ₃ or V _{av34} > 2,7	00 pc/h?	s 🗆 No				4 > 2,7		☐ Yes ☑ No				
Is V ₃ or V _{av34} > 1.5	* V ₁₂ /2	s 🗆 No			Is V ₃ or V _{av3}	4 > 1.5	5 * V ₁₂ /2	Tyes ✓ No				
If Yes,V _{12a} =	pc/h	(Equation 25	5-8)		If Yes,V _{12a} = pc/h (Equation 25-18)							
Capacity Ch	ecks				Capacity Checks							
	Actual	С	apacity	LOS F?			Actual		pacity	LOS F?		
					V _F		5818	Exhibit 25-1	4 6780	No		
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	4984	Exhibit 25-1	4 6780	No		
					V _R		834	Exhibit 25-3	2100	No		
Flow Enterin		Υ			Flow En	1		rge Influen				
V	Actual	i i	Desirable	Violation?	1 1/	_	Actual	Max Desirab		Violation?		
V _{R12}	vice Determ	Exhibit 25-7	if not T\		V ₁₂		3706	Exhibit 25-14	4400:All	No No		
Level of Serv		•						eterminatio	-	<i>r)</i>		
$D_{R} = 5.475 + 0$		0.0078 V ₁₂ -	0.00021 L _A).0086 V ₁₂ - 0.	ooa r ^D			
$D_R = (pc/m)$ LOS = (Exhib	,						:/mi/ln)					
LOS = (Exhibit 25-4) Speed Determination					Speed D	`	bit 25-4)	0 <i>n</i>				
•												
M _S = (Exibit 2					-	•	xhibit 25	*				
S _R = mph (Exhibit 25-19)						•	S _R = 49.9 mph (Exhibit 25-19)					
							S ₀ = 57.1 mph (Exhibit 25-19) S = 52.3 mph (Exhibit 25-15)					
S ₀ = mph (Ex	hibit 25-19) hibit 25-14)											

		RAMP	S AND RAM	IP JUNCTI	ONS WO	RKS	HEET			
General Info	rmation			Site Infor						
Analyst Agency or Company Date Performed Analysis Time Perio	SEB / CHA 9/08/ d AM		J	reeway/Dir of Tr unction urisdiction Analysis Year	ravel S E	Exit 4 S NYSD(oound I-87 SB Off OT Jo-Build			
Project Description	Exit 4									
Inputs		Terrain: Leve	1						Б	A 11
Upstream Adj Ramp		Terrum. Leve	'						Downstrea Ramp	ım Aaj
✓ No ☐ Of									✓ Yes	☑ On
I NO I O	11								□ No	☐ Off
L _{up} = ft									L _{down} =	3100 ft
V _u = veh/ł	h	S	$_{FF}$ = 56.0 mph Sketch ((show lanes, L _A ,	$S_{FR} = 40$ $L_{D_{i}}V_{R_{i}}V_{f}$	0.0 mp	oh		V _D =	400 veh/l
Conversion t	to pc/h Und	der Base (Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	5400	0.92	Level	2	0	0	.990	1.00	59	28
Ramp	1020	0.92	Level	2	0	0	.990	1.00	11	20
UpStream	100	0.00					205	1.00		
DownStream	400	0.93 Merge Areas	Level	3	0	0	.985	1.00 Diverge Areas	43	37
Estimation o		ivici ge Ai cas			Estimati	on c		Diverge Areas		
	V ₁₂ = V _F	(P)						= V _R + (V _F - V _F	/P	
l -	12 1		25-3)		-			Equation 25-8		
L_{EQ} = (Equation 25-2 or 25-3) P_{FM} = using Equation (Exhibit 25-5)					L _{EQ} = P _{FD} =			560 using Eq		iihit 25 ₋ 12)
V ₁₂ =	pc/h	Lqualion (.XIII.DIL 20 0)		V ₁₂ =			814 pc/h	dation (Exi	IIDI(25-12)
V ₃ or V _{av34}	•	(Equation 25	-4 or 25-5)		V ₃ or V _{av34}			114 pc/h (Equ	ation 25-1	5 or 25-16
Is V ₃ or V _{av34} > 2,70			,			, > 2,7		Yes 🗹 No	u 20 10	0. 20 10
Is V ₃ or V _{av34} > 1.5								Yes ✓ No		
If Yes,V _{12a} =	· -	(Equation 25	5-8)		If Yes, V _{12a} =			c/h (Equation	25-18)	
Capacity Che					Capacity		ecks			
	Actual	С	apacity	LOS F?			Actual	Ca	pacity	LOS F
					V_{F}		5928	Exhibit 25-1	4 6780	No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	4808	Exhibit 25-1	4 6780	No
					V _R		1120	Exhibit 25-3	2100	No
Flow Enterin	g Merge In	fluence A	rea		Flow En	terir	ng Dive	rge Influen	ce Area	
	Actual	1	Desirable	Violation?		1	Actual	Max Desirab		Violation
V _{R12}		Exhibit 25-7			V ₁₂		3814	Exhibit 25-14	4400:All	No
Level of Serv		•						terminatio	-	F)
$D_R = 5.475 + 0$	• •	0.0078 V ₁₂ -	0.00627 L _A			O _R = 4	4.252 + 0	.0086 V ₁₂ - 0.	009 L _D	
D _R = (pc/mi/ln)				D _R = 32.8 (pc/mi/ln)						
LOS = (Exhibit 25-4)					`	bit 25-4)				
Speed Deteri	mination				Speed D					
M _S = (Exibit 2	25-19)				, and the second	•	xhibit 25	•		
S _R = mph (Exhibit 25-19)					I	•	n (Exhibit	,		
S ₀ = mph (Ext	hibit 25-19) hibit 25-14)				_		n (Exhibit n (Exhibit			

	RAI	MPS AND I	RAMP JUNG	CTIONS W	ORKSHE	ET_				
General Infor	mation			Site Infor	mation					
Analyst	SEB		Fre	eeway/Dir of Tr	avel :	Southbound	l I-87			
gency or Company	CHA		Ju	nction	I	Exit 4 SB O	n-Ramp			
ate Performed	9/08/	2011	Ju	risdiction	1	NYSDOT				
nalysis Time Period	AM		An	alysis Year	,	2036 No-Bu	ild			
roject Description	Exit 4									
nputs										
pstream Adj Ramp		Terrain: Level							Downstrea Ramp	am Adj
Yes 🗹 On									☐ Yes	□ On
No ☐ Off									✓ No	☐ Off
up = 2035 f	t								L _{down} =	ft
		S	$_{\rm F} = 56.0 \; {\rm mph}$		$S_{FR} = 4$	0.0 mph			V _D =	veh/h
u = 400 ve	en/n		Sketch (s	show lanes, L _A ,	$L_{D'}V_{R'}V_{f}$				v D —	VC11/11
Conversion to	pc/h Und	der Base C	onditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}		f _p	v = V/PHF	x f _{HV} x f _p
reeway	4800	0.92	Level	2	0	0.990		1.00	Ę	5270
Ramp	490	0.93	Level	5	0	0.976	Т	1.00		540
JpStream	400	0.93	Level	3	0	0.985		1.00		437
DownStream										
		Merge Areas						erge Areas		
stimation of	v ₁₂				Estimati	on of v	12			
	V ₁₂ = V _F	(P _{EM})				١.	/ _ \/	. (\/_\/	\D	
L _{EQ} = (Equation 25-2 or 25-3)						v		+ (V _F - V		
					L _{EQ} =			-	5-8 or 25-9	
FM =			on (Exhibit 25-5)		P _{FD} = using Equation (Exhibit 25-12)					
12 =	3176		05.4.05		V ₁₂ =		pc/	h		
3 or V _{av34}	2094 5)	pc/h (Equatio	n 25-4 or 25-		V_3 or V_{av34}		pc/l	h (Equation	25-15 or 25	-16)
s V ₃ or V _{av34} > 2,700	,	s V No			Is V ₃ or V _{av3}	₄ > 2,700 p	c/h? 🥅 ነ	′es □ No)	
s V ₃ or V _{av34} > 1.5 *					Is V ₃ or V _{av3}	₄ > 1.5 * V ₁	2/2 □ \	′es)	
	· -		0)		If Yes, V_{12a} = pc/h (Equation 25-18)					
Yes,V _{12a} =		(Equation 25-	0)		120			(1	,	
Capacity Che		1		I	Capacity	1				1
	Actual	Ca	pacity	LOS F?	1	P	ctual		pacity	LOS F
					V _F			Exhibit 25-	14	
V_{FO}	5810	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		Exhibit 25-	14	
					V _R			Exhibit 25	-3	
low Entering	Merge In	fluence Ar	<u></u>	<u>, ,</u>	Flow En	terina l	Divera	e Influe	nce Are	' a
	Actual	1	esirable	Violation?		Actua		Max Desi		Violation
V _{R12}	3716	Exhibit 25-7	4600:All	No	V ₁₂	1		nibit 25-14		
evel of Servi				L	Level of	Service			on (if no	<i>t F</i>)
		0.0078 V ₁₂ - 0.00)86 V ₁₂ - (_ •	,
		0.0070 v ₁₂ - 0.00	,02, LA				∠ + 0.00	,00 v ₁₂ - (J.009 LD	
D _R = 28.6 (pc/mi/ln)					c/mi/ln)					
OS = D (Exhib	•					xhibit 25-				
Speed Detern	nination				Speed D	etermii	nation			
l _S = 0.409 (Exik	 oit 25-19)				$D_s = (E_s)$	xhibit 25-19)			
_	Exhibit 25-19)					h (Exhibit 2	25-19)			
						oh (Exhibit 2				
S ₀ = 50.3 mph (Exhibit 25-19)				I 0 ""	. ,	,				
	S = 50.3 mph (Exhibit 25-14)				S = mr	h (Exhibit 2	05-15\			

		MPS AND				· - ·			
General Info	rmation			Site Infor	mation				
Analyst Agency or Compan Date Performed Analysis Time Peric	9/08/	2011	Ju Ju	eeway/Dir of Tr nction risdiction alysis Year	E N	Southbound I-Exit 5 SB On-F NYSDOT 2036 No-Build			
Project Description				-					
Inputs									
Jpstream Adj Ram		Terrain: Level						Downstr Ramp	eam Adj
Yes O								✓ Yes	✓ On
▼ No	ff							□ No	☐ Off
_{up} = ft	_	S	$S_{FF} = 56.0 \text{ mph}$ $S_{FR} = 40.0 \text{ mph}$					L _{down} =	2035 ft
/ _u = veh/	h		Sketch (s	show lanes, L _A ,	$L_{D'}V_{R'}V_{f}$			V _D =	490 veh/h
Conversion	to pc/h Und	der Base C	Conditions						
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	fp	v = V/PH	IF x f _{HV} x f _p
Freeway	4550	0.92	Level	2	0	0.990	1.00		4995
Ramp	400	0.93	Level	3	0	0.985	1.00		437
UpStream DownStream	400	0.02	Lovel			0.07/	1.00		E40
Downstream	490	0.93 Merge Areas	Level	5	0	0.976	1.00 Diverge A	rass	540
Estimation of v ₁₂					Estimati	on of v ₁₂	Diverge F	ircus	
		(D)							
	$V_{12} = V_F$		OF 3)			V ₁₂		_F - V _R)P _{FD}	
-EQ =		ation 25-2 or			L _{EQ} =			on 25-8 or 25	
) _{FM} =			on (Exhibit 25-5)		P _{FD} =		using E	quation (Exhib	it 25-12)
/ ₁₂ =	3010		05.4.05		V ₁₂ =		pc/h		
V_3 or V_{av34}	1985 5)	pc/h (Equatio	n 25-4 or 25-		V_3 or V_{av34}		pc/h (Equ	ation 25-15 or 2	25-16)
Is V ₃ or V _{av34} > 2,7	,	s 🔽 No			Is V ₃ or V _{av3}	4 > 2,700 pc/h	? ☐ Yes I	No	
Is V ₃ or V _{av34} > 1.5					Is V ₃ or V _{av3}	₄ > 1.5 * V ₁₂ /2	☐ Yes I	No	
f Yes,V _{12a} =	:=	Equation 25	-8)		If Yes,V _{12a} = pc/h (Equation 25-18)				
Capacity Ch		(Equation Eo	<u> </u>		Canacity	/ Checks			
supuony on	Actual	l Ca	pacity	LOS F?	Gapaon	Actu	ıal I	Capacity	LOS F
	7101001	Ť	.puony	20011	V _F	7.0.0		oit 25-14	2001
V_{FO}	5432	Exhibit 25-7		No	$V_{FO} = V_F$	· V_		oit 25-14	
*FO	3432	LATIIDIT 23-7		INO		*R	_		
	<u> </u>	<u> </u>			V _R	<u> </u>		oit 25-3	
Flow Enterin				Violation?	Flow En			fluence Are	
V	Actual 3447	Exhibit 25-7	Desirable 4600:All	Violation? No	V ₁₂	Actual	Exhibit 2	Desirable	Violation?
V _{R12}				INU		Somiac			ot E)
Level of Ser								nation (if n	υι <i>Γ)</i>
••	+ 0.00734 v _R + (0.0010 V ₁₂ - 0.0	JUZI LA				r U.UU86 V	₁₂ - 0.009 L _D	
D _R = 26.5 (pc/mi/ln)						c/mi/ln)			
	ibit 25-4)					xhibit 25-4)	41		
Speed Deter					' '	etermina	τιοπ		
$M_{\rm S} = 0.371 (E)$	kibit 25-19)				3	(hibit 25-19)			
S _R = 50.8 mph (Exhibit 25-19)					$S_R = mp$	h (Exhibit 25-			
$S_0 = 50.7 \text{ mph}$	(Exhibit 25-19) (Exhibit 25-14)				$S_0 = mp$	h (Exhibit 25-	19)		

			FREEWA	Y WEAV	/ING WOR	KSHEE	Т		
Genera	l Informat	ion			Site Information				
Date Perfor	nalyst SEB gency/Company CHA ate Performed 9/08/2011 nalysis Time Period AM				Weaving Seg Jurisdiction	Freeway/Dir of Travel Weaving Seg Location Jurisdiction Analysis Year I-87 Northbound Exit 2E on to 2V NYSDOT 2036 No-Build			f
Inputs									
Weaving nu Weaving se Terrain	ee-flow speed, sumber of lanes, eg length, L (ft)	N	56 4 815 Lev	el	Weaving type Volume ratio, Weaving ratio	VR		A 0.3 0.3	
Conver	sions to p	c/h Unde	er Base C	onditio				,	_
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f_{HV}	fp	V
V_{o1}	2290	0.92	2	0	1.5	1.2	0.990	1.00	2514
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0
V_{w1}	700	0.92	2	0	1.5	1.2	0.990	1.00	768
V_{w2}	310	0.92	2	0	1.5	1.2	0.990	1.00	340
V _w				1108	V _{nw}				2514
V	7				TIW				3622
Weavin	g and No	n-Weavin	a Speeds	 S					
			Unconstr				Cons	trained	
		Weaving	(i = w)	Non-Wea	aving (i = nw)		ng (i = w)	1	ving (= nw)
a (Exhibit 2		ļ		<u> </u>			35 20	}	020
b (Exhibit 2 c (Exhibit 2				<u> </u>			97	}	00 30
d (Exhibit 2				1			80		75
Weaving intens	sity factor, Wi						18	4	27
Weaving and n speeds, Si (mi/						29	.47	51	.33
Number of I	lanes required		ned operation,	Nw	1.46			Į.	
1	number of lanes			_	1.40				
	If Nw < Nw	<u> </u>					v (max) const	rained operati	on
	g Segmer egment speed,		Density,		f Service,	and Cap	acity		
	· .			41.83					
weaving se	egment density,	υ (pc/mi/ln)		21.64 C					
		c (nc/h)							
ļ	base condition a 15-minute fl	ь	h/h)	6154					
<u> </u>	a full-hour vol			6093					
	a iuii-iiuui VUI	unie, c _h (ven/i	<i>y</i>	5606					
Notes									

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 1/9/2012 1:48 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

			FREEWA	Y WEAV	ING WOR	KSHEE	Τ			
General	Informat	ion			Site Information					
Date Perfori	gency/Company CHA ate Performed 9/08/2011 nalysis Time Period AM				Weaving Seg Location Exit 2V Jurisdiction NYSD			Southbound W on to 2E off DOT No-Build		
Inputs										
Weaving nu Weaving se Terrain	e-flow speed, and the speed, and the speed a	N	56 4 810 Lev	el	Weaving type Volume ratio Weaving ratio	, VR		A 0.2 0.3		
Convers	sions to p	c/h Unde	r Base C	ondition		r		1		
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f _{HV}	fp	V	
V_{o1}	3740	0.92	2	0	1.5	1.2	0.990	1.00	4105	
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0	
V_{w1}	810	0.92	2	0	1.5	1.2	0.990	1.00	889	
V_{w2}	360	0.92	2	0	1.5	1.2	0.990	1.00	395	
V _w	1	•	•	1284	V_{nw}		•	•	4105	
V	7				,	ı			5389	
Weaving	g and No	n-Weavin	g Speeds	3						
			Unconstr	4				trained		
- /Fhihik 0./	1.()	Weaving			ving (i = nw)	Weavir	ng (i = w)	Non-Wea	ving (= nw)	
a (Exhibit 24 b (Exhibit 24		0.15 2.20			.00			-		
c (Exhibit 24		0.97			.30					
d (Exhibit 24		0.80			.75					
Weaving intensi		1.23	}	0.	.63					
Weaving and no speeds, Si (mi/h		35.6	5	43	3.15					
Number of la Maximum n	anes required umber of lanes	, ,	•		1.31 1.40					
		(max) uncons					v (max) constr	rained operat	ion	
					f Service,	and Cap	acity			
		S (mi/h)		41.09						
	gment density	, D (pc/mi/ln)		32.79						
Level of ser) o (no/h)		D						
	base condition	<u>. </u>	- /I-\	6524						
		ow rate, c (veh		6459						
	a iuii-nour vol	ume, c _h (veh/h)	5942						
Notes										

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

1/9/2012

Generated: 1/9/2012 1:49 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 12/16/2011 10:23 AM

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 12/16/2011 10:23 AM

Application	<u>Input</u>	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	v _p . S, D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N. S. D
Planning (v _p)	FFS, LOS, N	v _p , S, D

	Flow Rate (pc/h/l	п)			
General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Northbo	und I-87
Agency or Company	CHA		From/To	Exit 2 to	Exit 4
Date Performed	6/22/2011		Jurisdiction	NYSDO	Τ
Analysis Time Period	PM		Analysis Year	2016 No	-Build
Project Description Exit 4					
☑ Oper.(LOS))		Des.(N)	□ Pla	nning Data
Flow Inputs	E400				
Volume, V AADT	5100	veh/h	Peak-Hour Factor, PHF	0.86	
		veh/day	%Trucks and Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terrain: Grade % Length	Level	
Driver type adjustment	1.00	VEII/II	Grade % Length Up/Down %	mi	
Calculate Flow Adjusti			ор/20111 /0		
f_p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
Lane Width	12.0	ft	f _{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	1_		
Interchange Density	0.50	l/mi	f _{LC}		mi/h
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance	Measures		Design (N)		
Operational (LOS)			Design (N)		
	v f		Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF x N)$	^{^ 'HV ^} 1997	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N \times N)$:f⊔v x	
f _p)			f_p)	110	pc/h
S	55.0	mi/h	S S		mi/h
$D = v_p / S$	36.3	pc/mi/ln	D = v _p / S		
LOS	E		Required Number of Lanes, N		pc/mi/ln
Glossary			Factor Location		
N - Number of lanes	S - Speed				
V - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
v _n - Flow rate	FFS - Free-flow	v sneed	E _T - Exhibits 23-8, 23-10, 23-1	1	f _{LC} - Exhibit 23-5
LOS - Level of service			f _p - Page 23-12		f _N - Exhibit 23-6
	BFFS - Base fro	ee-now speed	LOS, S, FFS, v _p - Exhibits 23-	2, 23-3	f _{ID} - Exhibit 23-7
DDHV - Directional design ho	ur volume	•	1		IU

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mi/h) Froe-Flow Spred FFS = 75 midt 70 midi 70 65 midt 60 midt 60 55 minh 30 400 0081200 1600 2000 2400 Flow Rate (pc/h/lin)

Application	<u>Input</u>	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, V _p	N, S, D
Design (v _p)	FFS, LOS, N	V _D , S, D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (N)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	V _D , S, D

General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Southbo	und I-87
Agency or Company	CHA		From/To	Exit 4 to	Exit 2
Date Performed	6/22/2011		Jurisdiction	NYSDO	Τ
Analysis Time Period	PM		Analysis Year	2016 No	-Build
Project Description Exit 4					
✓ Oper.(LOS)			Des.(N)	□ Pla	nning Data
Flow Inputs	0.050				
Volume, V	3850	veh/h	Peak-Hour Factor, PHF	0.92	
AADT		veh/day	%Trucks and Buses, P_T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade % Length Up/Down %	mi	
Calculate Flow Adjustn			Ор/Домп %		
	1.00		E	1.2	
f _p			E _R		
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
Lane Width	12.0	ft	f_{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h
Interchange Density	0.50	l/mi			
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance I	Measures		Design (N)		
			Design (N)		
Operational (LOS)			Design LOS		
v _p = (V or DDHV) / (PHF x N x	(f _{HV} x 1409	no/h/ln	<u> </u>	, f v	
f _p)	1409	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x N x)$	K I _{HV} X	pc/h
S S	56.0	mi/h	(p)		·
$D = v_p / S$	25.2	pc/mi/ln	S		mi/h
LOS	C	l	$D = v_p / S$		pc/mi/ln
			Required Number of Lanes, N	I	
Glossary			Factor Location		
N - Number of lanes	S - Speed		E Evhibito 22.0.22.40		£ 5.555.00 A
V - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
v _p - Flow rate	FFS - Free-flow	/ speed	E _T - Exhibits 23-8, 23-10, 23-1	11	f _{LC} - Exhibit 23-5
LOS - Level of service	BFFS - Base fr		f _p - Page 23-12		f _N - Exhibit 23-6
DDHV - Directional design hou		opood	LOS, S, FFS, v _p - Exhibits 23-	-2, 23-3	f _{ID} - Exhibit 23-7

Generated: 12/12/2011 3:58 PM

<u>Application</u>	Input	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, v _n	N, S, D
Design (v _p)	FFS, LOS, N	V _D . S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _n)	FFS, LOS, N	v _p , S, D

	How Rate (pc/h/l	n)			
General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Northbe	ound I-87
Agency or Company	CHA		From/To		off to Exit 4 on
Date Performed	9/09/2011		Jurisdiction	NYSDO	
Analysis Time Period	PM		Analysis Year	2016 N	lo-Build
Project Description Exit 4					
☑ Oper.(LOS)		Des.(N)	□PI	anning Data
Flow Inputs					
Volume, V	4500	veh/h	Peak-Hour Factor, PHF	0.86	
AADT		veh/day	%Trucks and Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D	1.00	veh/h	Grade % Length	mi	
Driver type adjustment Calculate Flow Adjusti	1.00		Up/Down %		
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
Lane Width	12.0	ft	f _{LW}		mai/la
Rt-Shoulder Lat. Clearance	6.0	ft			mi/h
Interchange Density	0.50	l/mi	fLC		mi/h
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f_N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance			Design (N)		
			Design (N)		
Operational (LOS)					
$V_p = (V \text{ or DDHV}) / (PHF \times N)$	x f _{HV} x	a a	Design LOS	_	
(p)	1762	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x N x)$	f _{HV} x	pc/h
5	56.0	mi/h	f _p)		ролі
$D = v_p / S$	31.5	pc/mi/ln	s		mi/h
.OS	51.5 D	pomini	$D = v_p / S$		pc/mi/ln
-00	D		Required Number of Lanes, N		•
Glossary		***	Factor Location		
N - Number of lanes	S - Speed				
/ - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
, - Flow rate	FFS - Free-flow	speed	E _T - Exhibits 23-8, 23-10, 23-1	1	f _{LC} - Exhibit 23-5
OS - Level of service	BFFS - Base fre	•	f _p - Page 23-12		f _N - Exhibit 23-6
		se-now speed	LOS, S, FFS, v _p - Exhibits 23-2	2, 23-3	f _{ID} - Exhibit 23-7
DDHV - Directional design ho	ur volume		L P		יטו

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mi/h) Free-Flow Speed FFS = 75 mids Application Input Output 70 mish 70 Operational (LOS) FFS, N, vo 65 mish LOS, S, D 60 miih Design (N) FFS, LOS, vn N, S, D 60 55 min Design (v_o) FFS, LOS, N v_p, S, D 50 Planning (LOS) FFS, N, AADT LOS, S. D. Planning (M) FFS, LOS, AADT N, S, D 40 -Planning (v_p) FFS, LOS, N v_p. S. D 30 400 200 1200 1600 2000 2400 Flow Rate (pc/h/lin) General Information Site Information Analyst SEB Highway/Direction of Travel Southbound I-87 Agency or Company CHA From/To Exit 5 on to Exit 4 on Date Performed Jurisdiction 12/09/2011 NYSDOT Analysis Time Period PM Analysis Year 2016 No-Build Project Description Exit 4 Oper.(LOS) ☐ Des.(N) Planning Data Flow Inputs Volume, V 2800 Peak-Hour Factor, PHF veh/h 0.92 AADT veh/dav %Trucks and Buses, P_⊤ 2 %RVs, P_R Peak-Hr Prop. of AADT, K 0 Peak-Hr Direction Prop. D General Terrain: Level $DDHV = AADT \times K \times D$ veh/h Grade % Length mi Driver type adjustment 1.00 Up/Down % Calculate Flow Adjustments 1.00 ER 1.2 E_{T} 1.5 $f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$ 0.990 Speed Inputs Calc Speed Adj and FFS ane Width 12.0 ft f_{LW} mi/h Rt-Shoulder Lat. Clearance 6.0 ft f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 3 f_N mi/h FFS (measured) 56.0 mi/h **FFS** 56.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times V_p)$ 1025 pc/h/ln $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ $f_p)$ pc/h 56.0 mi/h mi/h $D = v_n / S$ 18.3 pc/mi/ln $D = v_n / S$ pc/mi/ln LOS C Required Number of Lanes, N Glossary **Factor Location** N - Number of lanes S - Speed E_p - Exhibits23-8, 23-10 f_{IW} - Exhibit 23-4

DDHV - Directional design hour volume

D - Density

FFS - Free-flow speed

BFFS - Base free-flow speed

- Hourly volume

LOS - Level of service

- Flow rate

f_p - Page 23-12

E_T - Exhibits 23-8, 23-10, 23-11

LOS, S, FFS, v_n - Exhibits 23-2, 23-3

f_{IC} - Exhibit 23-5

f_N - Exhibit 23-6

f_{ID} - Exhibit 23-7

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mi/h) F<u>rce-</u>Flow Sp<u>red</u> FFS = <u>75 mith</u> 70 mith 70 65 midt 60 mith 55 mith 60 50 40 400 800 1200 1600 2000 2400 Flow Rate (pc/h/lin)

Application	Input	Output
Operational (LOS)	FFS, N, v _p	LOS, S, D
Design (N)	FFS, LOS, v _p	N. S. D
Design (v _p)	FFS, LOS, N	V _D . S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _n)	FFS, LOS, N	v _p , S, D

General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Morth	ound I-87
Agency or Company	CHA		From/To		ouna 1-87 o Exit 5
Date Performed	6/22/2011		Jurisdiction	NYSD	
Analysis Time Period	PM		Analysis Year		Io-Build
Project Description Exit 4				20,01	io Balla
Oper.(LOS)		Des.(N)	ПΡ	lanning Data
Flow Inputs					
Volume, V	5900	veh/h	Peak-Hour Factor, PHF	0.86	
AADT		veh/day	%Trucks and Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D		veh/h	Grade % Length	mi	
Driver type adjustment Calculate Flow Adjust	1.00		Up/Down %		
fp	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
Lane Width	12.0	ft			
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}		mi/h
Interchange Density	0.50	l/mi	f _{LC}		mi/h
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance	Measures		Design (N)		
0			Design (N)		
Operational (LOS)			Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 2310	pc/h/ln			
(p)	2010	ролли	$V_p = (V \text{ or DDHV}) / (PHF x N x)$	T _{HV} X	pc/h
6		mi/h	f_p)		P
$D = v_p / S$		pc/mi/ln	S		mi/h
.os [°]	F	F	$D = v_p / S$		pc/mi/ln
	•		Required Number of Lanes, N		
Glossary			Factor Location		
N - Number of lanes	S - Speed		F		
/ - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
p - Flow rate	FFS - Free-flow	speed	E _T - Exhibits 23-8, 23-10, 23-1	1	f _{LC} - Exhibit 23-5
.OS - Level of service	BFFS - Base fre	•	f _p - Page 23-12		f _N - Exhibit 23-6
DDHV - Directional design ho		spood	LOS, S, FFS, v _p - Exhibits 23-2	2, 23-3	f _{ID} - Exhibit 23-7
	ai volume		<u> </u>		

Application	Input	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, V _D	N, S, D
Design (v _p)	FFS, LOS, N	v _p . S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _p , S, D

General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Southh	ound I-87
Agency or Company	CHA		From/To	Exit 5 to	
Date Performed	6/22/2011		Jurisdiction	NYSDO	
Analysis Time Period	PM		Analysis Year	2016 N	
Project Description Exit 4					o Dana
☑ Oper.(LOS)		Des.(N)	□ PI	anning Data
Flow Inputs					
Volume, V	2550	veh/h	Peak-Hour Factor, PHF	0.92	
AADT		veh/day	%Trucks and Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D	4.00	veh/h	Grade % Length	mi	
Driver type adjustment	1.00		Up/Down %		
Calculate Flow Adjust			***************************************		
f_p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
_ane Width	12.0	ft	f		
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}		mi/h
nterchange Density	0.50	I/mi	f _{LC}		mi/h
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance	Measures		Design (N)		
			Design (N)		
Operational (LOS)			Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 933	20/b/ln		,	
(_p)	933	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x N x)$	(T _{HV} X	pc/h
3	56.0	mi/h	f_p)		p 5///
$D = v_p / S$	16.7	pc/mi/ln	S		mi/h
os [°]	В	p 6////	$D = v_p / S$		pc/mi/ln
			Required Number of Lanes, N		
Glossary			Factor Location		
l - Number of lanes	S - Speed		F - F - 1 1 2 00 00 00 00		_
/ - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
- Flow rate	FFS - Free-flow	speed	E _T - Exhibits 23-8, 23-10, 23-1	11	f _{LC} - Exhibit 23-5
OS - Level of service	BFFS - Base fre		f _p - Page 23-12		f _N - Exhibit 23-6
DDHV - Directional design ho		oo now speed	LOS, S, FFS, v _p - Exhibits 23-2	2, 23-3	f _{ID} - Exhibit 23-7
- Directional design no	our volume				,,,

Generated: 12/12/2011 3:58 PM

Application	<u>Input</u>	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, V _p	N, S, D
Design (v _p)	FFS, LOS, N	Vp. S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS. LOS. AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _p . S, D

General Information			Site Information				
Analyst	SEB		Highway/Direction of Travel	Northbo	und I-87		
Agency or Company	CHA		From/To	Exit 5 to	Exit 6		
Date Performed	6/22/2011		Jurisdiction	NYSDO	T		
Analysis Time Period	PM		Analysis Year	2016 No	o-Build		
Project Description Exit 4							
✓ Oper.(LOS)			Des.(N)	☐ Pla	inning Data		
Flow Inputs Volume, V	6100	vala/la					
AADT	0100	veh/h	Peak-Hour Factor, PHF	0.86			
Peak-Hr Prop. of AADT, K		veh/day	%Trucks and Buses, P _T	2			
Peak-Hr Direction Prop, D			%RVs, P _R	0			
DDHV = AADT x K x D		veh/h	General Terrain: Grade % Length	Level			
Driver type adjustment	1.00	VC11/11	Grade % Length Up/Down %	mi			
Calculate Flow Adjustr	nents		Op/Down 76				
f _p	1.00		E _R	1.2			
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990			
Speed Inputs			Calc Speed Adj and FF				
ane Width	12.0	ft					
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}		mi/h		
Interchange Density	0.50	I/mi	f _{LC}		mi/h		
Number of Lanes, N	4		f_{ID}		mi/h		
FFS (measured)	56.0	mi/h	f _N		mi/ħ		
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h		
LOS and Performance	Measures		Design (N)				
Operational (LOS)			Design (N)				
Operational (LOS)			Design LOS				
$V_p = (V \text{ or DDHV}) / (PHF x N x)$	(† _{HV} X 1791	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N \times N)$	fv			
(p)	,,,,,	ролин		'HV X	pc/h		
5	56.0	mi/h	f _p)		-		
) = v _p / S	32.0	pc/mi/ln	S		mi/h		
.os	D	•	$D = v_p / S$		pc/mi/ln		
None and			Required Number of Lanes, N				
Glossary		*****	Factor Location				
V - Number of lanes	S - Speed		E _R - Exhibits23-8, 23-10		f Evhihit 00 4		
/ - Hourly volume	D - Density		**	4	f _{LW} - Exhibit 23-4		
p - Flow rate	FFS - Free-flow	speed	E _T - Exhibits 23-8, 23-10, 23-1	I	f _{LC} - Exhibit 23-5		
OS - Level of service	BFFS - Base fre	e-flow speed	f _p - Page 23-12		f _N - Exhibit 23-6		
DDHV - Directional design hou		•	LOS, S, FFS, v _p - Exhibits 23-2	2. 23-3	f _{ID} - Exhibit 23-7		

Application	Input	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	vp. S. D
Planning (LOS)	FFS, N, AADT	LOS, S. D
Planning (N)	FFS, LOS, AADT	N, S, D
Planning (v _n)	FFS, LOS, N	v _o . S, D

	гюж кае фели	ii) 			
General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Southbo	ound I-87
Agency or Company	CHA		From/To	Exit 6 to	Exit 5
Date Performed	6/22/2011		Jurisdiction	NYSDO	T
Analysis Time Period	PM		Analysis Year	2016 No	o-Build
Project Description Exit 4					
Oper.(LOS))		Des.(N)	□ Pla	anning Data
Flow Inputs					
Volume, V	3450	veh/h	Peak-Hour Factor, PHF	0.92	
AADT		veh/day	%Trucks and Buses, P_T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade % Length	mi	
Calculate Flow Adjusti			Up/Down %		
	1.00		Г	4.5	
f _p			E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
ane Width	12.0	ft	f_LW		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft			
nterchange Density	0.50	l/mi	f _{LC}		mi/h
Number of Lanes, N	4		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
OS and Performance			Design (N)		
			Design (N)		
Operational (LOS)			Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 947	no/h/ln		, f	
_p)	341	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N)$	CIHV X	pc/h
	56.0	mi/h	f _p)		•
v_p / S	16.9	pc/mi/ln	S		mi/h
.OS	В	b ~	$D = v_p / S$		pc/mi/ln
-			Required Number of Lanes, N	I	
Glossary			Factor Location		
I - Number of lanes	S - Speed		F - F-1-11-11-00 0 00 10		
/ - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
, - Flow rate	FFS - Free-flow	v speed	E _T - Exhibits 23-8, 23-10, 23-1	11	f _{LC} - Exhibit 23-5
OS - Level of service	BFFS - Base fr		f _p - Page 23-12		f _N - Exhibit 23-6
		co now speed	LOS, S, FFS, v _p - Exhibits 23-	2, 23-3	f _{ID} - Exhibit 23-7
DDHV - Directional design ho	ur volume	·	<u> </u>		1 and

Generated: 12/12/2011 3:59 PM

	RAI	MPS AND	RAMP JUNG	<u> </u>	ORKSHE	<u>:EI</u>					
General Info	rmation			Site Infor	mation						
Analyst SEB Agency or Company CHA Date Performed 9/08/2011 Analysis Time Period PM				Freeway/Dir of Travel Northbound I-87 Junction Exit 2W On-Ramp Jurisdiction NYSDOT Analysis Year 2016 No-Build							
Project Description	Exit 4										
Inputs											
Upstream Adj Ram		Terrain: Level							Downstre Ramp	am Adj	
Yes TO									☐ Yes	□ On	
□ No □ O									M No	□ Off	
L_{up} = 1100 ft S_{FF} = 56.0 mph V_u = 900 veh/h Sketch (show lanes, L_y				show lanes I	S _{FR} = 4	0.0 mph			L _{down} = V _D =	ft veh/h	
Conversion		l der Rase (snow lanes, L _A ,	D' R' V f'						
				0/.	0/ D	١,			L. V/DUI		
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv	f _H	V	f _p	V = V/PHF	x f _{HV} x f _p	
Freeway	4400	0.86	Level	2	0	0.99	0	1.00	í	5167	
Ramp	730	0.92	Level	2	0	0.99	0	1.00		801	
UpStream	900	0.92	Level	2	0	0.99	0	1.00		988	
DownStream	<u> </u>	Marga Araga						Niverse Areas			
Estimation of		Merge Areas			Diverge Areas						
Estimation o					Estimation of v ₁₂						
	$V_{12} = V_F$	(P _{FM})					V ₁₂ = '	V _R + (V _F - V	' _R)P _{ED}		
-EQ =	1344.35	(Equation	25-2 or 25-3)		L _{EQ} = (Equation 25-8 or 25-9)						
P _{FM} =	0.586	using Equati	on (Exhibit 25-5)		P_{FD} = using Equation (Exhibit 25-12)						
/ ₁₂ =	3027	oc/h			V ₁₂ =			oc/h	= :		
/ ₃ or V _{av34}	2140	oc/h (Equatio	n 25-4 or 25-		V ₁₂ - V ₃ or V _{av34}		-		25 15 or 25	14)	
	5)				V_3 or V_{av34} pc/h (Equation 25-15 or 25-16) Is V_3 or $V_{av34} > 2,700$ pc/h? Yes No						
Is V_3 or $V_{av34} > 2.7$					Is V_3 or $V_{av34} > 2.700$ pcm: Yes No						
Is V_3 or $V_{av34} > 1.5$	* V ₁₂ /2	s 🗹 No									
f Yes,V _{12a} =	pc/h	(Equation 25	-8)		If Yes,V _{12a} = pc/h (Equation 25-18)						
Capacity Ch	ecks				Capacity	/ Ched	cks				
	Actual	Ca	pacity	LOS F?			Actual	С	apacity	LOS F	
					V _F			Exhibit 25	-14		
V_{FO}	5968	Exhibit 25-7		No	V _{FO} = V _F	- V _D		Exhibit 25	-14		
FU					V _R	N.		Exhibit 25	_		
Tlavy Entarin	Maraa la	fluores A				40 11 10 0	Divo				
Flow Enterin			Desirable	Violation?	FIOW EII			rge Influe Max Des		Violation?	
V	Actual 3828	Exhibit 25-7	4600:All	Violation? No	\/	Act	_	Exhibit 25-14	ii anie	violation?	
V _{R12}				INU	V ₁₂	Come			on /:f := =	<u> </u>	
Level of Ser					Level of Service Determination (if not F)					n r)	
$D_R = 5.475 + 0.00734 \text{ v}_R + 0.0078 \text{ V}_{12} - 0.00627 \text{ L}_A$				$D_R = 4.252 + 0.0086 V_{12} - 0.009 L_D$							
D _R = 29.6 (pc/mi/ln)				$D_R = (pc/mi/ln)$							
<u> </u>	ibit 25-4)					xhibit 2					
Speed Deter	mination				Speed D			on			
M _S = 0.432 (E)	(ibit 25-19)				$D_s = (E_s)$	xhibit 25-	19)				
-	(Exhibit 25-19)				S _R = mr	oh (Exhib	it 25-19)				
	(Exhibit 25-19)					oh (Exhib	it 25-19)				
	(Exhibit 25-14)					` oh (Exhib					

			RAMP	S AND RAM	IP JUNCTI	ONS WO	RKS	HEET			
Genera	l Inforr	nation		<u> </u>	Site Infor						
Analyst Agency or (Date Perfor Analysis Tir	Company med me Period	SEB CHA 9/08/ PM	2011	Freeway/Dir of Travel Northbound I-87 Junction Exit 4 NB Off Jurisdiction NYSDOT Analysis Year 2016 No-Build							
Project Des Inputs	scription	EXIT 4									
Upstream A	ldi Dama		Terrain: Leve	<u> </u>						Downstrea	ım Adi
Yes										Ramp	•
✓ No	□ Off									✓ Yes	✓ On
IM INO	i Oii									□ No	☐ Off
L _{up} =	ft			E4.0 mnh		<u> </u>	0.0	- h		L _{down} =	2660 ft
V _u =	veh/h		3	$S_{FF} = 56.0 \text{ mph}$ Sketch (show lanes, L _A ,	$S_{FR} = 4$ $L_{D_t} V_{D_t} V_t$	o.o m	JII		V _D =	1430 veh/
Conver	sion to	pc/h Und	der Base	Conditions	A	D. K. I.					
(pc/	T	V (Veh/hr) PHF Terrain %Truck %Rv f _{HV} f _p				f _p	v = V/PHF	x f _{HV} x f _p			
Freeway		5100	0.86	Level	2	0	0	.990	1.00	59	90
Ramp		620	0.86	Level	2	0	0	.990	1.00	728	
UpStream DownStrea	ım.	1420	0.88	Lovel	1	0	0.995 1.00			1633	
Downstiea	1111	1430	U.88 Merge Areas	Level	1	0	0 0.995 1.00 Diverge Areas				33
Estima	tion of		g			Estimation of v ₁₂					
		V ₁₂ = V _F	(P _{EM})						= V _R + (V _F - V _I)P _{ED}	
L _{EQ} =		12 1	ation 25-2 o	r 25-3)		L _{FO} = (Equation 25-8 or 25-9)					
P _{FM} =			Equation (I			P_{FD} = 0.577 using Equation (Exhibit 25-12)					
V ₁₂ =		pc/h				V ₁₂ = 3763 pc/h					
V ₃ or V _{av34}		pc/h	(Equation 2	5-4 or 25-5)		V ₃ or V _{av34} 2227 pc/h (Equation 25-15 or 25-16					
Is V ₃ or V _{av}	_{v34} > 2,700	pc/h? TYe:	s 🗆 No			Is V ₃ or V _{av3}	34 > 2,	700 pc/h?	TYes ✓ No		
		V ₁₂ /2							TYes ✓ No		
If Yes,V _{12a}			(Equation 2	5-8)		If Yes,V _{12a} =			oc/h (Equation	25-18)	
Capacit	ty Chec		,		1	Capacity	y Ch	1			•
		Actual	C	Capacity	LOS F?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Actual	- 1	pacity	LOS F?
.,			E 1 11 11 0 E 7			V _F			Exhibit 25-1	_	No
V _F	· O		Exhibit 25-7			$V_{FO} = V_{F}$	- v _R	5262	Exhibit 25-1		No
<u> </u>			<u></u>		ļ	V _R		728	Exhibit 25-3		No
Flow EI	ntering I	Merge In	Y	A rea Desirable	Violation?	Flow En	1	ng Dive Actual	rge Influen Max Desirat		Violation?
V _{R1}	10	Actual	Exhibit 25-7	Desirable	violation:	V ₁₂	_	3763	Exhibit 25-14	4400:All	No
Level o	f Servi	ce Detern		if not F)	<u> </u>				eterminatio		
			•	· 0.00627 L _A					.0086 V ₁₂ - 0.	•	- /
D _R =	(pc/mi/lı	• • • • • • • • • • • • • • • • • • • •	12	A		L		:/mi/ln)	12	D	
LOS = (Exhibit 25-4)				LOS = D (Exhibit 25-4)							
Speed	,					Speed D	•		on		
_	Exibit 25					_		xhibit 25			
_		bit 25-19)				S _R = 50	.0 mpl	n (Exhibit	25-19)		
		bit 25-19)				$S_0 = 56$.6 mpl	n (Exhibit	25-19)		
-	nph (Exhi	bit 25-14)				S = 52	.3 mpl	n (Exhibit	25-15)		
Copyright © 2	2007 Univer	sity of Florida, A	All Rights Reser	ved		HCS+TM \	Version	5.3	Gen	erated: 12/16	/2011 8:41 A

		VIF 3 AND	RAMP JUNG			<u> </u>				
General Info	rmation			Site Infor	mation					
Analyst Agency or Company Date Performed Analysis Time Perio	9/08/		Jui Jui	eeway/Dir of Tr nction risdiction alysis Year		Northboun Exit 4 NB (NYSDOT 2016 No-E	On-Ran	np		
Project Description			7.1.	arysis rour	•	2010110 2	Juliu			
nputs										
Jpstream Adj Ramp)	Terrain: Level							Downstre Ramp	am Adj
Yes O	n								✓ Yes	□ On
™ No □ O	ff								□ No	✓ Off
- _{up} = ft			=						L _{down} =	3500 ft
$l_{\rm u} = {\rm veh/l}$	า	S	$_{FF} = 56.0 \text{ mph}$ Sketch (s	show lanes, L _A ,	$S_{FR} = 4$ $L_{D'}V_{R'}V_{f}$	0.0 mph			V _D =	440 veh/h
Conversion t	to pc/h Und	der Base C	Conditions						•	
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	,	f_p	v = V/PHI	F x f _{HV} x f _p
Freeway	4500	0.86	Level	2	0	0.990		1.00		5285
Ramp	1430	0.88	Level	1	0	0.995		1.00		1633
UpStream				_	<u> </u>					
DownStream	440	0.92	Level	3	0	0.985		1.00		485
Estimation o		Merge Areas			Estimati	ion of v		Diverge Areas		
		(D)					12			
	$V_{12} = V_{F}$	• • • • • • • • • • • • • • • • • • • •					V ₁₂ =	V _R + (V _F - V	′ _R)P _{FD}	
·EQ =		(Equation :			L _{EQ} =			(Equation 25	5-8 or 25-9	9)
P _{FM} =			on (Exhibit 25-5)		P _{FD} =			using Equat	ion (Exhibit	25-12)
/ ₁₂ =	3185				V ₁₂ =			pc/h		
₃ or V _{av34}	2100 5)	pc/h (Equatio	n 25-4 or 25-		V_3 or V_{av34}			pc/h (Equation	25-15 or 25	5-16)
Is V ₃ or V _{av34} > 2,7	,	s 🔽 No			Is V ₃ or V _{av3}	34 > 2,700	pc/h? [TYes □ No	0	
Is V_3 or $V_{av34} > 1.5$					Is V ₃ or V _{av3}	₃₄ > 1.5 * \	/ ₁₂ /2 [TYes □ No	0	
Yes,V _{12a} =		(Equation 25	-8)		If Yes, V _{12a} =			pc/h (Equati	on 25-18)	
Capacity Che		(Equation 20			Capacit		ks			
supuonty on	Actual	Ca	npacity	LOS F?	Joapaon	1	Actual	C	apacity	LOS F
		Ì			V _F			Exhibit 25		
V_{FO}	6918	Exhibit 25-7		Yes	$V_{FO} = V_{F}$	- V-		Exhibit 25		_
*FO	0710	EXHIBIT 25-7		103		*R		Exhibit 25	_	-
Tlave Fratarin	. Mayara In	fluores A		<u> </u>	V _R	40 11 10 01	Dive			
Flow Enterin	g Merge In Actual		rea Desirable	Violation?	riow En	tering Actu		rge Influe Max Des		Violation
V _{R12}	4818	Exhibit 25-7	4600:All	Yes	V ₁₂	Actu		Exhibit 25-14	ii abic	violations
Level of Serv				163		Sarvic		terminati	on (if no)
	- 0.00734 v _R + (1			.0086 V ₁₂ -		<i>,</i> , ,
$D_{R} = 3.475$	11	12 0.0	A			c/mi/ln)	J_ F U	.3000 12	0.000 LD	
Κ	bit 25-4)				1 "	c/mi/in) Exhibit 25	5_4)			
Speed Deteri					<u> </u>			20		
					Speed D	xhibit 25-1		<i>)</i>		
$M_{\rm S} = 0.731 ({\rm Ex}$					3		-			
	(Exhibit 25-19)				S _R = m _l	oh (Exhibit	25-19)			
					C	1. /	OF 40'			
$S_0 = 50.2 \text{ mph}$	(Exhibit 25-19) (Exhibit 25-14)				I * .	oh (Exhibit oh (Exhibit				

0		TO TOTAL	S AND RAN							
General Infor				Site Infor						
Analyst Agency or Company Date Performed Analysis Time Perioo	9/08/		J	reeway/Dir of Tra unction urisdiction unalysis Year		Exit 5 N NYSD(
Project Description										
Inputs										
Upstream Adj Ramp		Terrain: Level							Downstrea Ramp	m Adj
Yes Or									☐ Yes	□ On
□ No □ Of	f								✓ No	☐ Off
L _{up} = 3500	ft	9	_{FF} = 56.0 mph		S _{FR} = 3	25 0 mr	h.		L _{down} =	ft
V _u = 1430 v			Sketch (show lanes, L _A ,		10.0 mp)II		V _D =	veh/h
Conversion t	o pc/h Und	der Base (Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	\perp	f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	5900	0.86	Level	2	0	_	.990	1.00	692	
Ramp	440	0.92	Level	3	0	_	.985	1.00	48	
UpStream DownStream	1430	0.88	Level	1	0	0.	.995	1.00	163	33
Downstream		Merge Areas						L Diverge Areas		
Estimation of v ₁₂					Estimati	ion c		51101.go 711.ouc		
	V ₁₂ = V _F	(D)						= V _R + (V _F - V _I	\D	
l –		(F _{FM}) ation 25-2 or	25 2)		_			- v _R + (v _F - v _I 438.97 (Equati		3F 0\
L _{EQ} = P =		Equation (E			L _{EQ} =			.729 using Ec		
P _{FM} = V ₁₂ =	pc/h	Lquation (L	ATIIDIL 23-3)		P _{FD} = V ₁₂ =			.729 using Ec 180 pc/h	quation (Exili	DIL 23-12)
V ₁₂ = V ₃ or V _{av34}	•	(Equation 25	-1 or 25-5)		V ₁₂ – V ₃ or V _{av34}			749 pc/h (Equ	ation OF 15	or 25 16
Is V_3 or $V_{av34} > 2,70$			- 4 01 23-3)			> 2.7		749 pc/ii (Equ ☐ Yes ☑ No	iali011 25-15	01 25-10
Is V_3 or $V_{av34} > 2,76$								Yes V No		
If Yes,V _{12a} =	· -	S I NO (Equation 25	-8)		If Yes, $V_{12a} =$			oc/h (Equation	25-18)	
Capacity Che		(Equation 23	-0)		Capacit			oon (Equation	125-10)	
Capacity Cite	Actual	T C:	apacity	LOS F?	Capacit	y Cii	Actual	l Ca	pacity	LOS F
	Actual		трасну	L031:	V _F		6929	Exhibit 25-1	<u> </u>	Yes
V _{FO}		Exhibit 25-7			$V_{FO} = V_F$	- V	6444	Exhibit 25-1		No
*FO		LAHIDIT 25-7				^v R				
<u></u>	<u> </u>	<u></u>			V _R		485	Exhibit 25-3		No
Flow Entering		1		\/iolation?	riow En	- 1		rge Influen		Violation
V _{R12}	Actual	Exhibit 25-7	Desirable	Violation?	V ₁₂	_	Actual 5180	Max Desirat Exhibit 25-14	4400:All	Yes
V _{R12} Level of Serv	ica Dotorr		f not El					eterminatio		
$D_{R} = 5.475 + 0.$								0.0086 V ₁₂ - 0.	-)
	.,	0.0070 V ₁₂	0.00021 LA			•••		12 - 0.	_D	
					l ''		/mi/ln)			
`					Speed D	•	oit 25-4)	<u> </u>		
Speed Deterr										
$M_S = (Exibit 2)$. "	•	xhibit 25	*		
	ibit 25-19)				***	-	(Exhibit			
	ibit 25-19)				S ₀ = 58.5 mph (Exhibit 25-19)					
S = mph (Exhibit 25-14)		S = 51	1 1 222	ı (Exhibit	OF 45\					

		KAMP	S AND RAM			KNO	<u> </u>			
General Infor	mation			Site Infor						
Analyst Agency or Company Date Performed Analysis Time Perioc	SEB CHA 9/08/ I PM		Ju Ju	eeway/Dir of Tr Inction Irisdiction nalysis Year		Southb Exit 2W NYSD(2016 N	/ Off			
Project Description	Exit 4									
Inputs		1								
Upstream Adj Ramp		Terrain: Level							Downstrea Ramp	m Adj
Yes Or									✓ Yes	✓ On
✓ No ☐ Of	İ								□ No	☐ Off
_ _{up} = ft		<u> </u>	_{FF} = 56.0 mph		S _{FR} = 4	10 0 mr	h		L _{down} =	1300 ft
V _u = veh/h			Sketch (show lanes, L _A ,		ю.о пір			V _D =	800 veh/
Conversion to		der Base C	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	\perp	f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	3850	0.92	Level	2	0	0.	990	1.00	42:	27
Ramp	500	0.92	Level	2	0	0.	990	1.00	54	9
UpStream		0.00				+-		1.00		
DownStream	800	0.92 Merge Areas	Level	2	0	0.	990	1.00 Diverge Areas	87	8
Estimation of	Estimation of v ₁₂				Estimati	ion c		Diverge Areas		
Ligariation of					LStillati	1011				
	$V_{12} = V_F$							= V _R + (V _F - V _I		
L _{EQ} =		ation 25-2 or			L _{EQ} =			Equation 25-8		
P _{FM} =	using	Equation (E	xhibit 25-5)		P _{FD} =			.629 using Ed	uation (Exh	ibit 25-12)
V ₁₂ =	pc/h				V ₁₂ =		2	863 pc/h		
V ₃ or V _{av34}		(Equation 25	-4 or 25-5)		V_3 or V_{av34}			364 pc/h (Equ	ation 25-15	or 25-16
Is V_3 or $V_{av34} > 2,70$								☐ Yes ☑ No		
Is V_3 or $V_{av34} > 1.5$	V ₁₂ /2	s 🗆 No			Is V ₃ or V _{av3}	₃₄ > 1.5		TYes ✓ No		
If Yes,V _{12a} =	pc/h	(Equation 25	-8)		If Yes,V _{12a} =	:	ŗ	oc/h (Equation	25-18)	
Capacity Che	cks				Capacit	y Ch	ecks			
	Actual	Ca	pacity	LOS F?			Actual	Ca	pacity	LOS F
					V _F		4227	Exhibit 25-1	4 6780	No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	3678	Exhibit 25-1	4 6780	No
					V _R		549	Exhibit 25-3	3 2100	No
Flow Entering	n Merge In	fluence A	rea		Flow Fn	terin	a Dive	rge Influen	ce Area	
TOW LINCOLNY	Actual		Desirable	Violation?	1 1011 211	-	Actual	Max Desirat		Violation
V _{R12}		Exhibit 25-7			V ₁₂		2863	Exhibit 25-14	4400:All	No
Level of Serv	ice Detern		f not F)			Ser	vice De	eterminatio	n (if not l	-)
$D_R = 5.475 + 0.$		•						0.0086 V ₁₂ - 0.	_	,
O _R = (pc/mi/	• • •	12	А		L	• • •	/mi/ln)	12	D	
_OS = (Exhibi							oit 25-4)			
Speed Determination				Speed E	•		on			
•							xhibit 25			
M _S = (Exibit 2					l "	,		•		
	ibit 25-19)				**	-	(Exhibit			
₀ = mph (Exhibit 25-19)		$S_0 = 60$	ט.u mph	(Exhibit	∠5-19)					
	11105 44	= mph (Exhibit 25-14)			S = 53		(Exhibit	\		

					ONS WO					
General Infor	mation			Site Infor	mation					
Analyst Agency or Company Date Performed Analysis Time Perion	9/08/		J	reeway/Dir of Tr unction urisdiction analysis Year		Exit 4 S NYSD(
Project Description	Exit 4									
Inputs										
Upstream Adj Ramp		Terrain: Leve							Downstrea Ramp	m Adj
☐ Yes ☐ Or									✓ Yes	✓ On
☑ No ☐ Of	f								□ No	☐ Off
L _{up} = ft		5	_{FF} = 56.0 mph		S _{FR} = 4	0 0 mr	h		L _{down} =	3100 ft
V _u = veh/h			Sketch ((show lanes, L _A		0.0 mp	'''		V _D =	440 veh/l
Conversion t	o pc/h Un	der Base (Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	2800	0.92	Level	2	0	0.	990	1.00	30	74
Ramp	640	0.92	Level	2	0	0.	990	1.00	70	3
UpStream DownStream	440	0.07	Lough	1		+	005	1.00	F0	0
Downstieam	440	0.87 Merge Areas	Level	1	0	0.	995	1.00 Diverge Areas	50	8
Estimation o		werge rireas			Estimati	ion c		biverge / ireas		
		/D)						= V _R + (V _F - V	\D	
1	$V_{12} = V_F$		OF 0\							
L _{EQ} =		ation 25-2 or			L _{EQ} =			Equation 25-8		:L::: OF 10\
P _{FM} =	_	Equation (E	XIIIDII 25-5)		P _{FD} =			.651 using Ed	luation (Exn	IDIT 25-12)
V ₁₂ =	pc/h	/Faustian OF	4 or 05 5)		V ₁₂ =			246 pc/h	05.45	05.40\
V ₃ or V _{av34}		(Equation 25	-4 Of 25-5)		V ₃ or V _{av34}	. 27		28 pc/h (Equa	ition 25-15	or 25-16)
Is V_3 or $V_{av34} > 2,70$ Is V_3 or $V_{av34} > 1.5$								Yes ✓ No		
	· -		0/		5 475	, ,	12		OF 10)	
If Yes,V _{12a} =		(Equation 25	-8)		If Yes,V _{12a} =			oc/h (Equation	125-18)	
Capacity Che	1	1 0		LOS F?	Capacity	y Cn			11	LOS F
	Actual		apacity	LUS F?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Actual		pacity	
.,					V _F		3074	Exhibit 25-1		No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- v _R	2371	Exhibit 25-1	-	No
					V _R		703	Exhibit 25-3	3 2100	No
Flow Entering		1			Flow En	1		rge Influen		
	Actual	 	Desirable	Violation?	 ,.	_	Actual	Max Desiral		Violation
V _{R12}	<u> </u>	Exhibit 25-7	·		V ₁₂		2246	Exhibit 25-14	4400:All	No
Level of Serv								terminatio		<u>-) </u>
$D_R = 5.475 + 0.0$		0.0078 V ₁₂ -	0.00627 L _A					0.0086 V ₁₂ - 0.	009 L _D	
D _R = (pc/mi/	ln)						/mi/ln)			
•	it 25-4)					•	oit 25-4)			
Speed Deteri	Speed Determination				Speed D	eter	minati	on		
M _S = (Exibit 2	5-19)				$D_s = 0.4$	426 (E	xhibit 25	-19)		
S _R = mph (Exh	nibit 25-19)				$S_R = 50$	0.0 mph	(Exhibit	25-19)		
					S ₀ = 61.4 mph (Exhibit 25-19)					
$S_0 = mph (Exh$	S = mph (Exhibit 25-14)			S = 52.7 mph (Exhibit 25-15)						

	RAI	MPS AND F	<u>RAMP JU</u> N	<u>CTIONS</u> W	ORKSHE	ET			
General Infor	mation			Site Infor	mation				
Analyst Agency or Company Date Performed	SEB CHA 9/08/		Ju	reeway/Dir of Tr unction urisdiction		Southbound I-F Exit 4 SB On-F NYSDOT			
Analysis Time Perior Project Description	d PM	2011		nalysis Year		2016 No-Build			
nputs	LAIL 4								
Jpstream Adj Ramp		Terrain: Level						Downstr	eam Adi
Yes Or								Ramp T Yes	
□ No □ Of	f							✓ No	□ On □ Off
- _{up} = 2035	ft							L _{down} =	ft
$v_{u} = 440 \text{ V}$		S _F	_F = 56.0 mph Sketch (show lanes, L _A ,	$S_{FR} = 4$ $L_{D_f} V_{P_f} V_f)$	0.0 mph		V _D =	veh/h
Conversion t	o pc/h Un	der Base C			D K I				
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p
Freeway	2800	0.92	Level	2	0	0.990	1.00		3074
Ramp	1050	0.93	Level	4	0	0.980	1.00		1152
UpStream DownStream	440	0.87	Level	1	0	0.995	1.00	+	508
JownStream	<u> </u>	Merge Areas					Diverge Area		
Estimation o		Werge Areas			Estimati	ion of v ₁₂		13	
	V ₁₂ = V _F	(D)							
_			OF 2\			V ₁₂	$= V_R + (V_F -$		
EQ =		ation 25-2 or 2			L _{EQ} =		(Equation		
) _{FM} =		using Equation	on (Exhibit 25-5))	P _{FD} =		using Equa	ation (Exhibi	t 25-12)
1 ₁₂ =	1853	pc/n pc/h (Equatioı	25 4 or 25		V ₁₂ =		pc/h		
V_3 or V_{av34}	5)	pc/ii (Equatioi	125-4 01 25-		V_3 or V_{av34}		pc/h (Equation		5-16)
s V_3 or $V_{av34} > 2,70$	00 pc/h?	s 🗹 No					? ☐ Yes ☐ I		
s V_3 or $V_{av34} > 1.5$	* V ₁₂ /2	s 🗹 No					☐ Yes ☐		
Yes,V _{12a} =	pc/h	(Equation 25-	8)		If Yes,V _{12a} =		pc/h (Equa	ation 25-18)
Capacity Che	ecks				Capacity	y Checks			
	Actual	Ca	pacity	LOS F?		Actu	ıal	Capacity	LOS F
					V_{F}		Exhibit 2	25-14	
V_{FO}	4226	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhibit 2	25-14	
					V _R		Exhibit 2	25-3	
Flow Entering	a Merae In	fluence Ar	ea		<u>'</u>	terina Di	verge Influ	ence Ar	<u></u>
	Actual		esirable	Violation?		Actual		esirable	Violation?
V _{R12}	3005	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-1	4	
Level of Serv	ice Deterr	nination (if	not F)			Service I	Determina	tion (if n	ot F)
		0.0078 V ₁₂ - 0.00			1		+ 0.0086 V ₁₂		
) _R = 22.7 (pc	:/mi/ln)	· -	••			c/mi/ln)		5	
	bit 25-4)					xhibit 25-4)			
Speed Deteri					`	Petermina	tion		
$M_{\rm S} = 0.328 (Ex)$						xhibit 25-19)	-		
-	(Exhibit 25-19)					ph (Exhibit 25-	19)		
						ph (Exhibit 25-			
0= 53.4 mph (Exhibit 25-19)		ľ		•					
	= 52.0 mph (Exhibit 25-14)			IS = mi	ph (Exhibit 25-	15)			

	R/	MPS AND	RAMP JUNG	CTIONS W	ORKSHE	ET				
General Int				Site Infor						
Analyst Agency or Comp Date Performed Analysis Time Pe	9/0 eriod PM	A 8/2011	Ju Ju	eeway/Dir of Tr nction risdiction alysis Year]]	Southbound Exit 5 SB Oi NYSDOT 2016 No-Bu	n-Ramp			
Project Description	ON EXIT4									
Inputs		Terrain: Leve	<u> </u>					Бол	motro	am Adj
Upstream Adj Ra	•							Ran		ani Auj
☐ Yes ☐	On							V .	res	✓ On
✓ No	Off									☐ Off
L _{up} = ft		5	_{FF} = 56.0 mph		S _{FR} = 4	0 0 mnh		Ldowr	1 -	2035 ft
V _u = ve	h/h		• •	show lanes, L _A ,		o.o mpn		V _D =	=	1050 veh/h
Conversion	n to pc/h Ur	nder Base (A,	D' R' I'					
(pc/h)	V	PHF	Terrain	%Truck	%Rv	f	f	f _D v = '	//PHI	x f _{HV} x f _p
	(Veh/hr)				ļ	f _{HV}				· ·
Freeway	2550	0.92	Level	2	0	0.990	1.0			2799
Ramp UpStream	440	0.87	Level	1	0	0.995	1.0	00		508
DownStream	1050	0.93	Level	4	0	0.980	1.0	00		1152
		Merge Areas						e Areas		
Estimation	of v ₁₂				Estimati	on of v	12			
	V ₁₂ = V	(P _{EM})				\/		(V _F - V _R)P _F		
L _{EQ} =	(Eq	uation 25-2 or	25-3)		l =	v		tion 25-8 o	_	2)
P _{FM} =	0.603	using Equat	ion (Exhibit 25-5)		L _{EQ} = P _{FD} =			Equation (
V ₁₂ =		pc/h			V ₁₂ =		pc/h	Equation (LATIIDIC	25-12)
V ₃ or V _{av34}	1112	pc/h (Equation	on 25-4 or 25-		V ₁₂ – V ₃ or V _{av34}		-	Equation 25-1	5 or 25	i-16)
	5)				Is V ₃ or V _{av3}	> 2.700 pc			0 01 20	, 10)
	2,700 pc/h?				Is V ₃ or V _{av3}	-				
	1.5 * V ₁₂ /2		. 0)		If Yes,V _{12a} =		=	Equation 2	5-18)	
If Yes,V _{12a} = Capacity C		n (Equation 25	1-8)		Capacity					
Сараспу С	Actual		apacity	LOS F?	Capacity		ctual	Capaci	tv	LOS F?
	ricidal	ŤĬ	араску	2001.	V _F			thibit 25-14	· y	2031.
V _{FO}	3307	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V ₂		hibit 25-14		
. 40	3307	EXHIBIT 25 7		140	V _R	· R		thibit 25-3		+
Flow Entor	ing Merge I	Influence A	roa	<u> </u>		toring [nfluence	Δκο	<u> </u>
I IOW LIILEI	Actual	T T	Desirable	Violation?	I IOW LII	Actual		Max Desirable		Violation?
V _{R12}	2195	Exhibit 25-7	4600:All	No	V ₁₂	, .5.00	Exhibit			1.0.00011
Level of Se	ervice Deter	mination (f not F)	<u> </u>	-	Service		nination (if no	ot F)
	5 + 0.00734 v _R +							5 V ₁₂ - 0.00		
13	(pc/mi/ln)	12	n		L	c/mi/ln)			U	
IX.	xhibit 25-4)					xhibit 25-	4)			
	ermination				Speed D		•			
•	(Exibit 25-19)					xhibit 25-19				
o .	ph (Exhibit 25-19))				oh (Exhibit 2				
	ph (Exhibit 25-19				S_0 = mph (Exhibit 25-19)					
U	ph (Exhibit 25-14				1 -	oh (Exhibit 2	•			
		•			,	,	•			

			FREEWA	Y WEAV	ING WOR	KSHEE	Т			
General	Informat	ion			Site Info	rmation				
Analyst Agency/Cor Date Perfor Analysis Tin	med	SEB CHA 9/08/2 PM	011		Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	Location	Exit 2 NYSD	I-87 Northbound Exit 2E on to 2W off NYSDOT 2016 No-Build		
Inputs										
Weaving nu	e-flow speed, mber of lanes, g length, L (ft)		56 4 815 Lev		Weaving type Volume ratio, Weaving ratio	, VR		A 0.: 0.:	25 34	
Conver	sions to p	c/h Unde	er Base C	ondition		r		1		
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f _{HV}	fp	V	
V_{o1}	3930	0.86	2	0	1.5	1.2	0.990	1.00	4615	
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0	
V_{w1}	900	0.92	2	0	1.5	1.2	0.990	1.00	988	
V_{w2}	470	0.92	2	0	1.5	1.2	0.990	1.00	515	
$V_{\rm w}$				1503	V _{nw}				4615	
V	7				,	ı			6118	
Weavin	g and No	n-Weavin	g Speeds	3						
			Unconstr					trained		
a (Exhibit 24	1.6)	Weaving 0.15			ving (i = nw) 1035	Weavir	ng (i = w)	Non-Wea	ving (= nw)	
b (Exhibit 24		2.20			.00					
c (Exhibit 24		0.97		}	.30					
d (Exhibit 24	l-6)	0.80)	0.	.75			ĺ		
Weaving intensi		1.40)	0.	.76					
Weaving and no speeds, Si (mi/h		34.1	7	41	.10					
	anes required		ned operation,	Nw	1.36					
1	umber of lanes If Nw < Nw	, ,	trained aperat	ion	1.40	if Nw > Nv	v (max) consti	rained aperati	ion	
		<u> </u>			f Service,			iairieu uperati	IUII	
	gment speed,			39.15	OGIVICE,	unu vap	acity			
	gment density,			39.07						
Level of ser		м /		E						
	base condition	ı, c _h (pc/h)		6490						
	a 15-minute fl	<u> </u>	n/h)	6426						
Capacity as	a full-hour vol	ume, c _h (veh/h	1)	5626						
Notes		· · · · · · · · · · · · · · · · · · ·								

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 1/9/2012 12:53 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

			FREEWA	Y WEAV	ING WOF	RKSHEE	Γ			
General	Informat	ion			Site Info	rmation				
Analyst Agency/Con Date Perforr Analysis Tim	ned	SEB CHA 6/22/2 PM	011		Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	g Location	Exit 2' NYSD	I-87 Southbound Exit 2W on to 2E off NYSDOT 2016 No-Build		
Inputs										
Weaving nu	e-flow speed, mber of lanes, g length, L (ft)		56 4 810 Lev		Weaving typo Volume ratio Weaving rati	, VR		A 0.2 0.2		
Convers	sions to p	c/h Unde	r Base C	ondition	าร					
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f_{HV}	fp	V	
V _{o1}	3080	0.92	2	0	1.5	1.2	0.990	1.00	3381	
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0	
V _{w1}	800	0.92	2	0	1.5	1.2	0.990	1.00	878	
V _{w2}	270	0.92	2	0	1.5	1.2	0.990	1.00	296	
V _w				1174	V_{nw}				3381	
V	1				1 iiw	J			4555	
Weaving	g and No	n-Weavin	g Speeds	<u> </u>						
			Unconstr					trained		
<u> </u>		Weaving			ving (i = nw)	Weavir	ng (i = w)	Non-Wea	ving (= nw)	
a (Exhibit 24 b (Exhibit 24		0.15 2.20			.00					
c (Exhibit 24		0.97		<u> </u>	.30					
d (Exhibit 24		0.80			.75					
Weaving intensit		1.08		1	.54	 				
Weaving and no speeds, Si (mi/h	n-weaving	37.1		†	1.82					
		for unconstrain	ned operation,	Nw	1.34	<u>!</u>		!		
1	umber of lanes	, ,			1.40	_				
		(max) uncons					v (max) constr	rained operati	on	
		it Speed, S (mi/h)		42.55	f Service,	and Cap	acity			
	gment density,			26.76						
Level of serv		, υ (μωπιπη)		C C						
	base condition	ı, c _h (pc/h)		6416						
		ow rate, c (vel	n/h)	6352						
<u> </u>		ume, c _h (veh/r		5844						
Notes		11.	-							

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 1/9/2012 12:54 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

Average Passenger-Car Speed (mith) Froe-Flow Spred FFS = 75 min Application Input Output 70 miih 70 Operational (LOS) FFS, N, vo LOS, S, D 65 midt 60 mish Design (N) FFS, LOS, Va N, S, D 60 55 milh Design (v_o) FFS, LOS, N Vp. S. D 50 Planning (LOS) FFS, N, AADT LOS, S, D FFS, LOS, AADT Planning (N) N, S, D 40 Planning (v_n) FFS. LOS. N v_p, S, D 30 400 200 1200 1600 2000 2400 Flow Rate (pc/h/ln) General Information Site Information Analyst SEB Highway/Direction of Travel Northbound I-87 Agency or Company CHA From/To Exit 2 to Exit 4 Date Performed 6/22/2011 Jurisdiction NYSDOT Analysis Time Period PMAnalysis Year 2026 No-Build Project Description Exit 4 Oper.(LOS) 「Des.(N) Planning Data Flow Inputs Volume, V 5150 Peak-Hour Factor, PHF veh/h 0.86 AADT %Trucks and Buses, P_T veh/day 2 %RVs, P_R 0 Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop. D General Terrain: Level DDHV = AADT x K x Dveh/h Grade % Length mi Driver type adjustment 1.00 Up/Down % Calculate Flow Adjustments 1.00 E_R 1.2 E_{T} 1.5 $f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$ 0.990 Speed Inputs Calc Speed Adj and FFS ane Width 12.0 ft f_{LW} mi/h Rt-Shoulder Lat. Clearance 6.0 ft f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 3 f_N mi/h FFS (measured) 56.0 mi/h FFS 56.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_n = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times V)$ 2016 v_n = (V or DDHV) / (PHF x N x f_{HV} x pc/h/ln t_p) pc/h 54.8 mi/h mi/h $D = v_n / S$ 36.8 pc/mi/ln $D = v_n / S$ pc/mi/ln LOS E Required Number of Lanes, N Glossary Factor Location N - Number of lanes S - Speed E_R - Exhibits23-8, 23-10 f_{IW} - Exhibit 23-4 V - Hourly volume D - Density E_T - Exhibits 23-8, 23-10, 23-11 f_{LC} - Exhibit 23-5 - Flow rate FFS - Free-flow speed f_p - Page 23-12 f_N - Exhibit 23-6 BFFS - Base free-flow speed LOS - Level of service LOS, S, FFS, v_n - Exhibits 23-2, 23-3 f_{ID} - Exhibit 23-7

BASIC FREEWAY SEGMENTS WORKSHEET

DDHV - Directional design hour volume

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mith) Free-Flow Spred FFS = 75 mith Application Input Output 70 miih 70 Operational (LOS) FFS, N, v_D LOS, S, D 65 mish 60 mid Design (N) FFS, LOS, v, N, S, D 60 55 min Design (v_o) FFS, LOS, N vp. S. D 50 FFS, N, AADT LOS, S, D Planning (LOS) Planning (M) FFS, LOS, AADT N, S, D Planning (v_n) FFS, LOS, N v_p. S. D 30 400 200 1200 1600 2000 2400 Flow Rate (pc/h/lin) General Information Site Information Highway/Direction of Travel Analyst SEB Southbound I-87 Agency or Company CHA From/To Exit 4 to Exit 2 Date Performed Jurisdiction 6/22/2011 NYSDOT Analysis Time Period PMAnalysis Year 2026 No-Build Project Description Exit 4 Des.(N) Oper.(LOS) ☐ Planning Data Flow Inputs Volume, V 3950 veh/h Peak-Hour Factor, PHF 0.92 AADT %Trucks and Buses, P_⊤ veh/day 2 0 Peak-Hr Prop. of AADT, K %RVs, P_R Peak-Hr Direction Prop, D General Terrain: Level $DDHV = AADT \times K \times D$ veh/h Grade % Length mi Driver type adjustment 1.00 Up/Down % Calculate Flow Adjustments E_R 1.00 1.2 E_{T} 1.5 0.990 $f_{HV} = 1/[1+P_T(E_T-1) + P_R(E_R-1)]$ Calc Speed Adj and FFS Speed Inputs ane Width 12.0 ft f_{LW} mi/h Rt-Shoulder Lat. Clearance 6.0 ft f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 3 mi/h f_N FFS (measured) 56.0 mi/h **FFS** 56.0 mi/h Base free-flow Speed, BFFS mi/h

	-		•	
LOS and Performance	e Measures		Design (N)	
Operational (LOS) v _p = (V or DDHV) / (PHF x N f _p) S D = v _p / S LOS	N x f _{HV} x 1445 56.0 25.8 C	pc/h/ln mi/h pc/mi/ln	Design (N) Design LOS v _p = (V or DDHV) / (PHF x N x f _{HV} x f _p) S D = v _p / S Required Number of Lanes, N	pc/h mi/h pc/mi/ln
Glossary			Factor Location	
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits23-8, 23-10 E _T - Exhibits 23-8, 23-10, 23-11 f _p - Page 23-12 LOS, S, FFS, v _p - Exhibits 23-2, 23-3	f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6 f _{ID} - Exhibit 23-7

DDHV - Directional design hour volume

Application	<u>Input</u>	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, V _p	N, S, D
Design (v _p)	FFS, LOS, N	VD. S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	VD, S, D

	Linux kere theurin	•			
General Information			Site Information		
Analyst	SEB		Highway/Direction of Travel	Northbo	und I-87
Agency or Company	CHA		From/To	Exit 4 of	f to Exit 4 on
Date Performed	9/09/2011		Jurisdiction	NYSDO	T
Analysis Time Period	PM		Analysis Year	2026 No	o-Build
Project Description Exit 4					
✓ Oper.(LOS)			Des.(N)	□ Pla	inning Data
Flow Inputs					
Volume, V	4500	veh/h	Peak-Hour Factor, PHF	0.86	
AADT		veh/day	%Trucks and Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D		1.0	General Terrain:	Level	
DDHV = AADT x K x D	1.00	veh/h	Grade % Length Up/Down %	mi	
Driver type adjustment Calculate Flow Adjustm			Op/Down 78		
	1.00		E _R	1.2	
f _p					
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T-1)+P_R(E_R-1)]$	0.990	
Speed Inputs			Calc Speed Adj and FF	S	
ane Width	12.0	ft	f{LW}		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f_{LC}		mi/h
nterchange Density	0.50	I/mi	f _{ID}		mi/h
Number of Lanes, N	3				mi/h
FFS (measured)	56.0	mi/h	f _N		
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance I	Measures		Design (N)		
0			Design (N)		
Operational (LOS)			Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF x N x)$	^{(†} HV X 1762	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N)$	cf _{av} , x	
(p)		F	1 *	ΠV	pc/h
3	56.0	mi/h	f _p) S		mi/h
$D = v_p / S$	31.5	pc/mi/ln			
LOS	D		$D = v_p / S$	•	pc/mi/ln
<u></u>			Required Number of Lanes, N		
Glossary			Factor Location		
N - Number of lanes	S - Speed		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4
V - Hourly volume	D - Density		E _T - Exhibits 23-8, 23-10, 23-	11	f _{LC} - Exhibit 23-5
/ _p - Flow rate	FFS - Free-flow	/ speed	1 '	. ,	f_N - Exhibit 23-6
OS - Level of service	BFFS - Base fre	ee-flow speed	f _p - Page 23-12	2 22 2	, ,
DDHV - Directional design hoเ	ır volumo		LOS, S, FFS, v _p - Exhibits 23-	Z, ZJ-J	f _{ID} - Exhibit 23-7

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (milh) FFS = 75 midt 70 midt F<u>ree-</u>Flow Speed 70 65 mid 60 miih 60 55 midti 30 400 800 1200 1600 2000 2400 Flow Rate (pc/h/lin)

Application	Input	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	v _p , S, D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _n)	FFS, LOS, N	v _p , S, D

General Information			Site Information					
Analyst	SEB		Highway/Direction of Travel	Southbo	ound I-87			
Agency or Company	CHA		From/To	Exit 5 o	n to Exit 4 on			
Date Performed	12/09/2011		Jurisdiction	NYSDC)T			
Analysis Time Period	PM		Analysis Year	2026 No	o-Build			
Project Description Exit 4								
✓ Oper.(LOS)			Des.(N)	□ Pla	anning Data			
Flow Inputs								
Volume, V	2850	veh/h	Peak-Hour Factor, PHF	0.92				
AADT		veh/day	%Trucks and Buses, P_T	2				
Peak-Hr Prop. of AADT, K			%RVs, P _R	0				
Peak-Hr Direction Prop, D			General Terrain:	Level				
DDHV = AADT x K x D	1.00	veh/h	Grade % Length	mi				
Driver type adjustment Calculate Flow Adjustr		· · · · · · · · · · · · · · · · · · ·	Up/Down %					
	1.00			1.2				
f _p			E _R					
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990				
Speed Inputs			Calc Speed Adj and FF	<u>S</u>				
Lane Width	12.0	ft	f _{LW}		mi/h			
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h			
Interchange Density	0.50	I/mi						
Number of Lanes, N	3		f _{ID}		mi/h			
FFS (measured)	56.0	mi/h	f _N		mi/h			
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h			
LOS and Performance			Design (N)					
			Design (N)					
Operational (LOS)			Design LOS					
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 1043	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N)$	v f v				
f _p)	1043	ролили	^r	` 'HV ^	pc/h			
S	56.0	mi/h	f_p)		- 4			
D = v _p / S	18.6	pc/mi/ln	S		mi/h			
LOS	С	•	D = v _p / S		pc/mi/ln			
	-		Required Number of Lanes, N	1				
Glossary			Factor Location					
N - Number of lanes	S - Speed		E Evhibite 22 9 22 10		f Evhihit 22.4			
V - Hourly volume	D - Density		E _R - Exhibits 23-8, 23-10	4.4	f _{LW} - Exhibit 23-4			
v _o - Flow rate	FFS - Free-flow	v speed	E _T - Exhibits 23-8, 23-10, 23-	11	f _{LC} - Exhibit 23-5			
LOS - Level of service	BFFS - Base fr		f _p - Page 23-12		f _N - Exhibit 23-6			
DDHV - Directional design ho		opood	LOS, S, FFS, v _p - Exhibits 23-	-2, 23-3	f _{ID} - Exhibit 23-7			
ייסכ וויסכוייי יייסכוייי יייסכויייייייייי		*****						

Generated: 12/12/2011 4:02 PM

Average Passenger-Car Speed (mith) Free-Flow Spreed FFS = 75 minh Application nput Output 70 miih 70 Operational (LOS) FFS, N, VD LOS, S, D 65 mich 60 mith Design (N) FFS, LOS, Vn N, S, D 60 55 min FFS, LOS, N Design (v_p) v_p, S, D 50 Planning (LOS) FFS, N, AADT LOS, S, D Planning (M) FFS, LOS, AADT N, S, D 40 Planning (v_o) FFS, LOS, N v_p, S, D 30 008 400 1200 1600 2400 2000 Flow Rate (pc/h/lin) General Information Site Information Analyst Highway/Direction of Travel SEB Northbound I-87 Agency or Company CHA From/To Exit 4 to Exit 5 Date Performed Jurisdiction 6/22/2011 NYSDOT Analysis Time Period PMAnalysis Year 2026 No-Build Project Description Exit 4 Oper.(LOS) □ Des.(N) □ Planning Data Flow Inputs Volume, V 5950 Peak-Hour Factor, PHF veh/h 0.86 AADT veh/dav %Trucks and Buses, P_⊤ 2 0 Peak-Hr Prop. of AADT, K %RVs, P_R Peak-Hr Direction Prop, D General Terrain: Level $DDHV = AADT \times K \times D$ veh/h Grade % Length mi Driver type adjustment 1.00 Up/Down % Calculate Flow Adjustments 1.00 E_R f_p 1.2 E_{T} 1.5 $f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$ 0.990 Speed Inputs Calc Speed Adj and FFS ane Width 12.0 ft f_{LW} mi/h Rt-Shoulder Lat. Clearance 6.0 ft f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 3 f_N mi/h FFS (measured) 56.0 mi/h **FFS** 56.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_n = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ 2329 $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ pc/h/ln f_p pc/h mi/h mi/h $D = v_{D} / S$ pc/mi/ln $D = v_n / S$ pc/mi/ln LOS F Required Number of Lanes, N Glossary Factor Location S - Speed N - Number of lanes E_R - Exhibits23-8, 23-10 f_{IW} - Exhibit 23-4 - Hourly volume D - Density E_T - Exhibits 23-8, 23-10, 23-11 f_{IC} - Exhibit 23-5 Flow rate FFS - Free-flow speed f_p - Page 23-12 f_N - Exhibit 23-6 BFFS - Base free-flow speed LOS - Level of service LOS, S, FFS, v_p - Exhibits 23-2, 23-3 f_{ID} - Exhibit 23-7 DDHV - Directional design hour volume

Application	Input	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	Vp. S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (N)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _p , S, D

	raow kate (pom/a	!!)						
General Information			Site Information					
Analyst	SEB		Highway/Direction of Travel	Southbou	ınd I-87			
Agency or Company	CHA		From/To	Exit 5 to I				
Date Performed	6/22/2011		Jurisdiction	NYSDOT				
Analysis Time Period	PM		Analysis Year	2026 No-	Build			
Project Description Exit 4								
✓ Oper.(LOS)			Des.(N)	□ Plar	nning Data			
Flow Inputs								
Volume, V	2600	veh/h	Peak-Hour Factor, PHF	0.92				
AADT		veh/day	%Trucks and Buses, P _T	2				
Peak-Hr Prop. of AADT, K			%RVs, P _R	0				
Peak-Hr Direction Prop, D			General Terrain:	Level				
DDHV = AADT x K x D	1.00	veh/h	Grade % Length Up/Down %	mi				
Driver type adjustment Calculate Flow Adjustr			Op/Down %					
	1.00			1.2				
f _p			E _R					
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990				
Speed Inputs			Calc Speed Adj and FF	<u>S</u>				
_ane Width	12.0	ft	f_LW		mi/h			
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h			
Interchange Density	0.50	I/mi	I .		mi/h			
Number of Lanes, N	3		f _{ID}					
FFS (measured)	56.0	mi/h	f _N		mi/h			
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h			
LOS and Performance	Measures		Design (N)					
			Design (N)					
Operational (LOS)			Design LOS					
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 951	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N)$	v f v				
· _p)	931	рсліліп	P	' 'HV ^	pc/h			
5	56.0	mi/h	f _p)					
$D = v_p / S$	17.0	pc/mi/ln	S		mi/h			
LOS	В	P 3	$D = v_p / S$		pc/mi/ln			
	2		Required Number of Lanes, N	1				
Glossary			Factor Location					
N - Number of lanes	S - Speed		F.,Libit-00, 0, 00, 40		f			
V - Hourly volume	D - Density		E _R - Exhibits23-8, 23-10		f _{LW} - Exhibit 23-4			
v _p - Flow rate	FFS - Free-flow	v speed	E _T - Exhibits 23-8, 23-10, 23-	11	f _{LC} - Exhibit 23-5			
LOS - Level of service	BFFS - Base fr		f _p - Page 23-12		f _N - Exhibit 23-6			
		oo now speed	LOS, S, FFS, v _p - Exhibits 23-	-2, 23-3	f _{ID} - Exhibit 23-7			
DDHV - Directional design ho	our volume		<u>'</u>					

Generated: 12/12/2011 4:03 PM

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mith) Free-Flow Spred FFS = <u>75 midt</u> 70 miih 70 65 midt 60 mish 60 55 min 50 30 200 400 1200 1600 2000 2400 Flow Rate (pc/h/lin)

Application	<u>Input</u>	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	v _p , S, D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _o , S, D

General Information			Site Information						
Analyst	SEB		Highway/Direction of Travel	Northbo	und I-87				
Agency or Company	CHA		From/To	Exit 5 to	Exit 6				
Date Performed	6/22/2011		Jurisdiction	NYSDO					
Analysis Time Period	PM		Analysis Year	2026 No	-Build				
Project Description Exit 4			THE REPORT OF THE PARTY OF THE						
✓ Oper.(LOS)			Des.(N)	□ Pla	nning Data				
Flow Inputs									
Volume, V	6150	veh/h	Peak-Hour Factor, PHF	0.86					
AADT		veh/day	%Trucks and Buses, P_T	2					
Peak-Hr Prop. of AADT, K			%RVs, P _R	0					
Peak-Hr Direction Prop, D			General Terrain:	Level					
DDHV = AADT x K x D	1.00	veh/h	Grade % Length Up/Down %	mi					
Driver type adjustment Calculate Flow Adjustr			Op/Down 76						
······································	1.00		E	1.2					
f _p			E _R						
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990					
Speed Inputs			Calc Speed Adj and FF	<u>s</u>					
ane Width	12.0	ft	f_LW		mi/h				
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h				
nterchange Density	0.50	I/mi	I _						
Number of Lanes, N	4		f _{ID}		mi/h				
FFS (measured)	56.0	mi/h	f _N		mi/h				
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h				
OS and Performance	Measures		Design (N)						
			Design (N)						
Operational (LOS)			Design LOS						
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 1806	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N)$	rf v					
; p)	7000	рс/п/п	l r	'HV ^	pc/h				
S	56.0	mi/h	f_p)						
$D = v_p / S$	32.3	pc/mi/ln	S		mi/h				
LOS	D	1	$D = v_p / S$		pc/mi/ln				
	-		Required Number of Lanes, N	l					
Glossary			Factor Location						
N - Number of lanes	S - Speed		E Evhibite 22 9 22 10		f Eyhihit 22 4				
√ - Hourly volume	D - Density		E _R - Exhibits 23-8, 23-10		f _{LW} - Exhibit 23-4				
, - Flow rate	FFS - Free-flow	/ speed	E _T - Exhibits 23-8, 23-10, 23-	11	f _{LC} - Exhibit 23-5				
OS - Level of service	BFFS - Base fr		f _p - Page 23-12		f _N - Exhibit 23-6				
DDHV - Directional design ho		oo non opood	LOS, S, FFS, v _p - Exhibits 23-	2, 23-3	f _{ID} - Exhibit 23-7				
יוטכ - טוופטוטום design nc	ou voluine		<u> </u>						

Generated: 12/12/2011 4:03 PM

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mi/h) Free-Flow Spred FFS = 75 min 70 mish 70 65 midt 60 mish 60 55 miih 50 30 400 800 1200 2000 2400 1600 Flow Rate (pc/h/lin)

Application	Input	Output
Operational (LOS)	FFS, N, v _D	LOS, S, D
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	v _p . S. D
Planning (LOS)	FFS, N, AADT	LOS, S, D
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _p)	FFS, LOS, N	v _p , S, D

General Information			Site Information					
Analyst	SEB		Highway/Direction of Travel	Southbo	und I-87			
Agency or Company	CHA		From/To	Exit 6 to	Exit 5			
Date Performed	6/22/2011		Jurisdiction	NYSDO				
Analysis Time Period	PM		Analysis Year	2026 No	-Build			
Project Description Exit 4								
Oper.(LOS)		.	Des.(N)	□ Pla	nning Data			
Flow Inputs								
Volume, V	3650	veh/h	Peak-Hour Factor, PHF	0.92				
AADT		veh/day	%Trucks and Buses, P _T	2				
Peak-Hr Prop. of AADT, K			%RVs, P _R	0				
Peak-Hr Direction Prop, D			General Terrain:	Level				
DDHV = AADT x K x D	1.00	veh/h	Grade % Length	mi				
Driver type adjustment Calculate Flow Adjusti			Up/Down %					
	1.00		E _R	1.2				
f _p								
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990				
Speed Inputs			Calc Speed Adj and FF	<u>s</u>				
Lane Width	12.0	ft	f_{LW}		mi/h			
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}		mi/h			
Interchange Density	0.50	I/mi			mi/h			
Number of Lanes, N	4		f _{ID}					
FFS (measured)	56.0	mi/h	f _N		mi/h			
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h			
LOS and Performance	Measures		Design (N)					
			Design (N)					
Operational (LOS)	_		Design LOS					
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 1002	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N)$	cfx				
f_p)	,	ролин	1 -	HV	pc/h			
S	56.0	mi/h	f _p)					
$D = v_p / S$	17.9	pc/mi/ln	S		mi/h			
LOS	В		$D = v_p / S$		pc/mi/ln			
			Required Number of Lanes, N	l				
Glossary	×		Factor Location					
N - Number of lanes	S - Speed		E _R - Exhibits23-8, 23-10		f _{I W} - Exhibit 23-4			
V - Hourly volume	D - Density		' '	11				
v _p - Flow rate	FFS - Free-flov	v speed	E _T - Exhibits 23-8, 23-10, 23-	1 1	f _{LC} - Exhibit 23-5			
LOS - Level of service	BFFS - Base fr	ee-flow speed	f _p - Page 23-12	0.00.0	f _N - Exhibit 23-6			
DDHV - Directional design ho	our volume		LOS, S, FFS, v _p - Exhibits 23-	-2, 23-3	f _{ID} - Exhibit 23-7			
				······································				

	RAI	MPS AND	RAMP JUNG	CTIONS W	ORKSHE	ET					
General Infor				Site Infor		= =					
Analyst Agency or Company Date Performed Analysis Time Perioc	SEB CHA 9/08/	2011	Fre Jui Jui	eeway/Dir of Tr nction risdiction alysis Year	Travel Northbound I-87 Exit 2W On-Ramp NYSDOT 2026 No-Build						
	Exit 4										
Inputs											
Upstream Adj Ramp		Terrain: Level						Downstre	eam Adj		
✓ Yes ☐ Or)							Ramp Yes	□ On		
□ No Of	f							✓ No	☐ Off		
_ _{up} = 1100	ft							L _{down} =	ft		
	$S_{FF} = 56.0 \text{ mph}$ $S_{FR} = 40.0 \text{ mph}$ $S_{FR} = 40.0 \text{ mph}$ $S_{FR} = 40.0 \text{ mph}$							V _D =	veh/h		
Conversion to	o pc/h Und	der Base C									
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	fp	v = V/PH	F x f _{HV} x f _p		
Freeway	4400	0.86	Level	2	0	0.990	1.00		5167		
Ramp	730	0.92	Level	2	0	0.990	1.00		801		
UpStream	880	0.92	Level	2	0	0.990	1.00		966		
DownStream	<u> </u>	Marga Arasa				<u> </u>	Divorgo Aro				
Estimation of		Merge Areas			Fstimati	ion of v ₁₂	Diverge Are	as			
		<u> </u>			LStillati	011 01 1 12					
	$V_{12} = V_F$					V ₁₂	$= V_R + (V_F -$	$V_R)P_{FD}$			
- _{EQ} =		(Equation 2			L _{EQ} =		(Equation	25-8 or 25-	9)		
P _{FM} =			on (Exhibit 25-5)		P _{FD} =		using Equ	ation (Exhibit	25-12)		
I ₁₂ =	3027				V ₁₂ =		pc/h				
V_3 or V_{av34}	2140 5)	oc/h (Equatio	n 25-4 or 25-		V_3 or V_{av34}		pc/h (Equati	pc/h (Equation 25-15 or 25-16)			
Is V ₃ or V _{av34} > 2,70		s 🗹 No			Is V ₃ or V _{av3}	$_{34} > 2,700 \text{ pc/h}$? ☐ Yes ☐	No			
Is V ₃ or V _{av34} > 1.5					Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No						
f Yes,V _{12a} =		(Equation 25	-8)		If Yes,V _{12a} = pc/h (Equation 25-18)						
Capacity Che					Capacity	y Checks					
, ,	Actual	Ca	pacity	LOS F?	<u> </u>	Actu	ıal	Capacity	LOS F		
					V _F		Exhibit :	25-14			
V_{FO}	5968	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhibit :	25-14			
. 0					V _R		Exhibit	25-3			
Flow Entering	n Merae In	fluence A	rea	<u>. </u>		terina Di	verge Influ		 Pa		
.o. znenn	Actual	î .	Desirable	Violation?		Actual		esirable	Violation		
V _{R12}	3828	Exhibit 25-7	4600:All	No	V ₁₂	1	Exhibit 25-1				
Level of Serv	ice Detern	nination (i	f not F)			Service	Determina	tion (if n	ot F)		
		0.0078 V ₁₂ - 0.00					+ 0.0086 V ₁₂	•			
O _R = 29.6 (pc						c/mi/ln)	12	5			
OS = D (Exhib						xhibit 25-4)					
Speed Detern						Petermina	tion				
M _S = 0.432 (Exi						xhibit 25-19)					
-	(Exhibit 25-19)				,	oh (Exhibit 25-	19)				
	(Exhibit 25-19)					oh (Exhibit 25-					
	(Exhibit 25-19)				1	oh (Exhibit 25-					
S = 50.0 mph					IS = mi	ON (Exhibit 75-	151				

		KAIVIF	S AND RAM			INNO	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
General Info	rmation			Site Infor							
Analyst Agency or Compan Date Performed Analysis Time Perio	9/08/		J	reeway/Dir of Tr unction urisdiction .nalysis Year		Exit 4 NYSD	ound I-87 NB Off OT Io-Build				
Project Description	Exit 4										
Inputs											
Upstream Adj Ram		Terrain: Leve							Downstrea Ramp	m Adj	
☐ Yes ☐ C									✓ Yes	✓ On	
✓ No	tt .								□ No	☐ Off	
L _{up} = ft		S	$S_{EE} = 56.0 \text{ mph}$ $S_{ED} = 40.0 \text{ mph}$							2660 ft	
V _u = veh/			Sketch (show lanes, L _A					V _D =	1470 veh/	
Conversion		der Base (Conditions		1						
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	╙	f _{HV}	f _p	x f _{HV} x f _p		
Freeway	5150	0.86	Level	2	0	0.990 1.00			604		
Ramp	630	0.86	Level	2	0	0.990 1.00		1.00	740		
UpStream DownStream	1470	0.88	Level	1	0	_	.995	1.00	167	70	
Downstream		Merge Areas	FEAGI	, '	 			Diverge Areas	107	17	
Estimation of			Estimati	ion d		g					
	V ₁₂ = V _F	(P)			 			= V _R + (V _F - V	\P		
 =		ation 25-2 or	25-3)		_			Equation 25-8			
L _{EQ} = P _{FM} =		Equation (E			L _{EQ} = P _{FD} =			.575 using Ed		ihit 25 12)	
' FM V ₁₂ =	pc/h	Equation (E	Allibit 25-5)		V ₁₂ =			791 pc/h	juation (Exil	IDIL 23-12)	
V ₃ or V _{av34}	•	(Equation 25	-4 or 25-5)		V ₃ or V _{av34}			771 pc/11 257 pc/h (Equ	ation 25-15	or 25-16	
Is V_3 or $V_{av34} > 2.7$			4 01 20 0)			>2		Yes Mo	allon 25-15	01 23-10	
Is V ₃ or V _{av34} > 1.5								Yes ✓ No			
If Yes, V _{12a} =	· =	(Equation 25	-8)		If Yes, V_{12a} = pc/h (Equation 25-18)						
Capacity Ch		(Equation 20	- 0)		Capacit			John (Equation	120 10)		
Capacity Cit	Actual		apacity	LOS F?	Capach	y Cil	Actual	Ca	pacity	LOS F?	
	notaai	l ĭ	ариону	1 2001.	V _F		6048	Exhibit 25-1	· ·	No	
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V_	5308	Exhibit 25-1		No	
* FO		LAHIDIT 25-7			V _R	*R	740	Exhibit 25-1	-	_	
<u> </u>	<u> </u>	<u> </u>			<u> </u>					No	
Flow Enterin	Actual	1	rea Desirable	Violation?	riow En	- 1	<i>ng Dive</i> Actual	rge Influen Max Desiral		Violation	
V _{R12}	netuai	Exhibit 25-7	Desirable	violation?	V ₁₂		3791	Exhibit 25-14	4400:All	No	
Level of Ser	vice Deter		f not F)					eterminatio			
$D_{R} = 5.475 + 0$		•			1			0.0086 V ₁₂ - 0.	_	/	
$D_R = 3.473 + C$ $D_R = (pc/m)$		0.0070 v ₁₂	0.00021 L _A				+.232 + 0 :/mi/ln)	12 - U.	-D		
1.5	oit 25-4)						bit 25-4)				
Speed Deter					Speed D	•		<u></u>			
							xhibit 25				
M _S = (Exibit 2						•	:xriibit 25 n (Exhibit	*			
	hibit 25-19)					-					
	hibit 25-19) hibit 25-14)				1.		n (Exhibit n (Exhibit				
S = mph (Ex											

		<u> RAI</u>	MPS AND	RAMP JUNG	<u> FIIONS W</u>	ORKSHE	ET					
General	Inform	ation			Site Infor	mation						
Analyst Agency or Co Date Perform Analysis Time	ompany ned e Period	SEB CHA 9/08/2 PM	2011	Fre Jui Jui	eeway/Dir of Tr nction risdiction alysis Year	Exit 4 NB On-Ramp NYSDOT						
Project Descr	ription E	xit 4										
Inputs			l .									
Jpstream Ad			Terrain: Level							Downstre Ramp	eam Adj	
Yes	□ On □ Off									✓ Yes	□ On	
™ No	III OTT									□ No	✓ Off	
up =	ft		s	_{FF} = 56.0 mph		S _{FR} = 4	0.0 mph	1		L _{down} =	3500 ft	
/ _u =	veh/h			• •	show lanes, L _A ,		o.op			V _D =	450 veh/h	
Convers	ion to	pc/h Und	ler Base C	Conditions								
(pc/h))	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _H	HV	f _p	v = V/PH	F x f _{HV} x f _p	
Freeway		4500	0.86	Level	2	0	0.99	90	1.00		5285	
Ramp		1470	0.88	Level	1	0	0.99	95	1.00	ļ	1679	
UpStream DownStream	+	4EO	0.92	Lovel	2	0	0.00	05	1.00	-	106	
Downstean		450	Verge Areas	Level	3	0	0.98		Diverge Areas	<u> </u>	496	
Estimati		Estimati	on of	f V ₄₂	biverge Area.	,						
		V ₁₂ = V _F ((P)			1						
_				25-2 or 25-3)					V _R + (V _F - V			
-EQ =						L _{EQ} =			(Equation 2			
_{FM} =				on (Exhibit 25-5)		P _{FD} =			using Equa	tion (Exhibit	25-12)	
/ ₁₂ =		3185 p		- 05 4 05		V ₁₂ =			pc/h			
V_3 or V_{av34}		2100 p 5)	oc/n (Equation	n 25-4 or 25-		V_3 or V_{av34}			pc/h (Equation	n 25-15 or 2	5-16)	
Is V ₃ or V _{av3}	, > 2,700	pc/h? TYes	s 🗹 No			Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No						
		7 ₁₂ /2				Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No						
f Yes,V _{12a} =	4		Equation 25	-8)		If Yes,V _{12a} = pc/h (Equation 25-18)						
Capacity	/ Chec			-,		Capacity	/ Che	cks				
		Actual	Ca	pacity	LOS F?			Actual		Capacity	LOS F	
				•		V _F			Exhibit 25	5-14		
V_{FO}		6964	Exhibit 25-7		Yes	$V_{FO} = V_{F}$	- V _D		Exhibit 25	5-14		
FU		0,01				V _R	R		Exhibit 2	_	_	
Flow En	torina	Morgo In	l l fluence A	ro2	<u> </u>	•	torine	rge Influe		<u> </u>		
IOW LIII	tering	Actual		Desirable	Violation?	I IOW LII		tual	Max De:		Violation?	
V _{R12}		4864	Exhibit 25-7	4600:All	Yes	V ₁₂	1		Exhibit 25-14	1	7 Iolation:	
evel of	Servic		nination (i				Serv	ice De	eterminat	ion (if n	ot F	
			0.0078 V ₁₂ - 0.0						.0086 V ₁₂ -		/	
	37.0 (pc/m		- 12	А			c/mi/ln		112	-12-00 <u>-</u> 13		
IX.	F (Exhibit						xhibit 2	•				
Speed D						Speed D			on			
•						 	xhibit 25					
3	/54 (Exibit	•						bit 25-19)				
••		khibit 25-19)						bit 25-19)				
U		khibit 25-19) khibit 25-14)				I "	-	bit 25-19) bit 25-15)				
S = 46.												

		KAIVIFS	AND RAM			KNS	пььі				
General Infor	mation			Site Infor							
Analyst Agency or Company Date Performed Analysis Time Period	SEB CHA 9/08/ PM		Ju Ju	eeway/Dir of Tr unction urisdiction nalysis Year		Northbo Exit 5 N NYSDO 2026 N	T				
Project Description	Exit 4										
Inputs		,									
Upstream Adj Ramp		Terrain: Level							Downstrea Ramp	m Adj	
✓ Yes ✓ On									☐ Yes	□ On	
I NO I OII									✓ No	☐ Off	
L _{up} = 3500 1	t	S	_{-F} = 56.0 mph		S _{FR} = 3	35.0 mp	h		L _{down} =	ft	
$V_{u} = 1470 \text{ v}$			Sketch (show lanes, L _A					V _D =	veh/h	
Conversion to		der Base C	onditions	1							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	5950	0.86	Level	2		0 0.990 1.00			698		
Ramp	450	0.92	Level	3	0	_	985	1.00	49		
UpStream DownStream	1470	0.88	Level	1	0	0.	995	1.00	167	/9	
Downstieam		Merge Areas			 			Diverge Areas			
Estimation of		morgo / ii ous			Estimat	ion c		bivorgo / irous			
		(D)						\/ . (\/ \/	\D		
	$V_{12} = V_F$		05.0)					= V _R + (V _F - V _F		05.0)	
L _{EQ} =		ation 25-2 or			L _{EQ} =			653.39 (Equati			
P _{FM} =	_	Equation (Ex	(NIDIT 25-5)		P _{FD} =			.734 using Eq	uation (Exhi	ibit 25-12)	
V ₁₂ =	pc/h	/= <i>:</i> :			V ₁₂ =			263 pc/h			
V ₃ or V _{av34}		(Equation 25-	4 or 25-5)		V ₃ or V _{av34}	0.7		725 pc/h (Equ	ation 25-15	or 25-16	
Is V_3 or $V_{av34} > 2,70$								Yes ✓ No			
Is V_3 or $V_{av34} > 1.5$ *	· -		۵)		Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No						
f Yes,V _{12a} =		(Equation 25-	8)		If Yes, V _{12a} = pc/h (Equation 25-18)						
Capacity Che				1	Capacity Checks						
	Actual	Ca	pacity	LOS F?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Actu			pacity	LOS F	
					V _F		6988	Exhibit 25-1	4 6780	Yes	
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	6492	Exhibit 25-1	4 6780	No	
					V _R		496	Exhibit 25-3	2000	No	
Flow Entering	Merge In	fluence A	rea		Flow Er	nterin	g Dive	rge Influen	ce Area		
	Actual	Max D	esirable	Violation?			Actual	Max Desirab	le	Violation	
V _{R12}		Exhibit 25-7			V ₁₂	į	5263	Exhibit 25-14	4400:All	Yes	
Level of Servi	ice Detern	nination (i	not F)		Level o	f Ser	vice De	eterminatio	n (if not l	-)	
$D_R = 5.475 + 0.0$	00734 v _R + 0	0.0078 V ₁₂ -	0.00627 L _A			$D_R = 4$	1.252 + 0	.0086 V ₁₂ - 0.	009 L _D		
O _R = (pc/mi/l	n)				$D_R = 4$	7.3 (pc	/mi/ln)				
_OS = (Exhibit	t 25-4)				LOS = F	(Exhib	oit 25-4)				
Speed Detern	nination				Speed I	•		on			
$M_S = $ (Exibit 25							xhibit 25				
o .			,	(Exhibit	•						
**	ibit 25-19)				1 ''	-	(Exhibit				
~0 - mhn (⊏XII		1.	-								
S = mph (Exh	IS = 5	1 /1 mnh	ı (Exhibit	25-151							

		IVAINIL	S AND RAM								
General In	formation			Site Infor	mation						
Analyst Agency or Com _l Date Performed Analysis Time P	9/0	A 8/2011	Jı Jı	reeway/Dir of Tr unction urisdiction nalysis Year	<u> </u>	Southb Exit 2V NYSD(2026 N	V Off				
Project Descript	ion Exit 4										
Inputs											
Upstream Adj R	•	Terrain: Leve	l						Downstrea Ramp	m Adj	
	On								✓ Yes	✓ On	
™ No □	Off								□ No	☐ Off	
L _{up} = f	t		_{FF} = 56.0 mph		S _{FR} = 4	ΛΛ mr	h.		L _{down} =	1300 ft	
	eh/h		Sketch (show lanes, L _A		0.0 111) i i		V _D =	850 veh/l	
Conversion	n to pc/h Ur	nder Base (Conditions								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f_p $v = V/PHF$			
Freeway	3950	0.92	Level	2	0	0.990 1.00			433	36	
Ramp	570	0.92	Level	2	0	0.990 1.00		1.00	626		
UpStream	050	0.00	11		_	+	000	1.00	022		
DownStream	850	0.92 Merge Areas	Level	2	0	0	.990	1.00 Diverge Areas	93	3	
Estimation	1 of v	Merge Areas		Estimati	ion c		Diverge Areas				
		/ / D)				-		V - (V - V	\D		
		(P _{FM})	05.0)					$= V_R + (V_F - V_F)$			
L _{EQ} =		uation 25-2 or			L _{EQ} =			Equation 25-8		=	
P _{FM} =		g Equation (E	EXNIBIT 25-5)		P _{FD} =			.623 using Ed	juation (Exhi	bit 25-12)	
V ₁₂ =	pc/h		. 4 05 5)		V ₁₂ =			937 pc/h			
V ₃ or V _{av34}		n (Equation 25	o-4 or 25-5)		V ₃ or V _{av34}	. 2 -		399 pc/h (Equ	ation 25-15	or 25-16	
0 0.01	2,700 pc/h? ☐ Y							Yes ☑ No			
	1.5 * V ₁₂ /2		. 0)					Yes Mo	05.40\		
If Yes,V _{12a} =		n (Equation 25	9-8)		If Yes,V _{12a} = pc/h (Equation 25-18)						
Capacity (1 100 50	Capacity	y Ch				1.00.5	
	Actual		apacity	LOS F?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Actual		pacity	LOS F	
.,					V _F		4336	Exhibit 25-1	-	No	
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	3710	Exhibit 25-1	-	No	
					V _R		626	Exhibit 25-3	3 2100	No	
Flow Ente	ring Merge I	nfluence A	rea		Flow En	terir	ng Dive	rge Influen	ce Area		
	Actual		Desirable	Violation?		_	Actual	Max Desiral		Violation	
V _{R12}		Exhibit 25-7			V ₁₂		2937	Exhibit 25-14	4400:All	No	
	ervice Deter							terminatio		=)	
$D_{R} = 5.475$	+ 0.00734 v _R +	+ 0.0078 V ₁₂ -	0.00627 L _A			O _R = 4	4.252 + 0	0.0086 V ₁₂ - 0.	009 L _D		
$D_R = (pc)$:/mi/ln)				D _R = 26	.8 (pc	/mi/ln)				
LOS = (E)	(hibit 25-4)				LOS = C	(Exhi	bit 25-4)				
Speed Det	termination				Speed D	eter)	minati	on			
M _s = (Exit	oit 25-19)				$D_{S} = 0.4$	419 (E	xhibit 25	-19)			
Ŭ	(Exhibit 25-19)				S _R = 50	.1 mpł	n (Exhibit	25-19)			
	(Exhibit 25-19)				$S_0 = 59$.9 mpł	n (Exhibit	25-19)			
1	(Exhibit 25-14)				1.		n (Exhibit				
•	,					11.1	,	,			

		NAIVIE	S AND RAM			ININO				
General Info				Site Infor						
Analyst Agency or Compan Date Performed Analysis Time Peric	9/08/		J	reeway/Dir of Tr unction urisdiction .nalysis Year]]	Exit 4 S NYSD(
Project Description				inarysis i cai		2020 1	io-Duliu			
Inputs	ZAIL I									
Upstream Adj Ram	p	Terrain: Leve							Downstrea Ramp	m Adj
□ Yes □ O	n								✓ Yes	☑ On
™ No □ O	ff								□ No	☐ Off
L _{up} = ft		S	_{FF} = 56.0 mph		S _{FR} = 4	0.0 mp	oh		401111	3100 ft
V _u = veh/			Sketch (show lanes, L _A					V _D =	450 veh /l
Conversion		der Base (Conditions						1	
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	3000	0.92	Level	2	0	0.	990	1.00	329	93
Ramp	620	0.92	Level	2	0	0.	990	1.00	68	1
UpStream		 				╀				
DownStream	450	0.87	Level	1	0	0.	995	1.00	52	0
Estimation a		Merge Areas			Fatimati	ion c		Diverge Areas		
Estimation o	12 12				Estimati	on c) V 12			
	$V_{12} = V_{F}$	(P _{FM})					V ₁₂ =	= V _R + (V _F - V	_R)P _{FD}	
L _{EQ} =	(Equ	ation 25-2 or	25-3)		L _{EQ} =		(Equation 25-8	3 or 25-9)	
P _{FM} =	using	Equation (E	xhibit 25-5)		P _{FD} =		0	.646 using Ed	quation (Exhi	bit 25-12)
V ₁₂ =	pc/h				V ₁₂ =			369 pc/h		
V ₃ or V _{av34}	pc/h	(Equation 25	-4 or 25-5)		V ₃ or V _{av34}			24 pc/h (Equa	ation 25-15	or 25-16)
Is V_3 or $V_{av34} > 2.7$,			> 2.7		Yes Mo		0. 20 .0,
Is V_3 or $V_{av34} > 1.5$								Yes ✓ No		
If Yes,V _{12a} =	·=	(Equation 25	-8)		If Yes,V _{12a} = pc/h (Equation 25-18)					
Capacity Ch		(Equation 25	-0)					on (Equation	123-10)	
Сарасну Сп	Actual		apacity	LOS F?	Capacity	CII	Actual	Co	pacity	LOS F
	Actual		арасну	LUST!	\/			Exhibit 25-1	1	
.,		I I			V _F	``	3293		_	No
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2612	Exhibit 25-1	4 6780	No
					V _R		681	Exhibit 25-3	3 2100	No
Flow Enterin	g Merge In	fluence A	rea		Flow En	terir	g Dive	rge Influen	ce Area	
-	Actual	1	Desirable	Violation?		1	Actual	Max Desiral		Violation
V _{R12}		Exhibit 25-7			V ₁₂		2369	Exhibit 25-14	4400:All	No
Level of Ser	vice Deterr	nination (i	f not F)		Level of	Ser	vice De	terminatio	n (if not l	
$D_R = 5.475 + 0$					1			.0086 V ₁₂ - 0.	•	
D _R = (pc/m		12	n		L		/mi/ln)	12	D	
LOS = (Exhib	oit 25-4)				LOS = C	(Exhi	bit 25-4)			
Speed Deter	mination				Speed D	•		on		
•							xhibit 25			
M _S = (Exibit 2						,	(Exhibit	*		
	hibit 25-19)					-				
nph (Exhibit 25-19)					1.	-	(Exhibit			
mph (Exhibit 25-14)					S = 52	n	/E 1 '1 '4	25-15)		

	1 17 11	III O AILD		CTIONS W		<u> </u>				
General Info	rmation			Site Infor	mation					
Analyst Agency or Company Date Performed Analysis Time Perio	9/08/		Freeway/Dir of Travel Junction Jurisdiction Analysis Year			Southbound I-87 Exit 4 SB On-Ramp NYSDOT 2026 No-Build				
Project Description										
Inputs										
Jpstream Adj Ramp		Terrain: Level							Downstrea Ramp	am Adj
Yes O									☐ Yes	☐ On
□ No □ Of	T .								™ No	☐ Off
- _{up} = 2035	ft								L _{down} =	ft
$v_{u} = 450 \text{ v}$	eh/h	S	_{FF} = 56.0 mph Sketch (s	show lanes, L _A ,	$S_{FR} = 4$ $L_{D'}V_{R'}V_{f}$	10.0 mpl	า		V _D =	veh/h
Conversion t	o pc/h Und	der Base C	Conditions		_					
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f	HV	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	2850	0.92	Level	2	0	0.9	90	1.00	3	129
Ramp	1110	0.93	Level	4	0	0.9	80	1.00	1	217
UpStream	450	0.87	Level	1	0	0.9	95	1.00	!	520
DownStream	<u> </u>	Marga Araga			-			Diverse Areas	<u> </u>	
Estimation o		Merge Areas			Estimati	ion o		Diverge Areas	5	
	V ₁₂ = V _F	(D)								
_	· - ·	ation 25-2 or	25 2\					$V_R + (V_F - V_F)$		
EQ =					L _{EQ} =			(Equation 2		
) _{FM} =			on (Exhibit 25-5)		P _{FD} =			using Equat	tion (Exhibit	25-12)
1 ₁₂ =	1886		n 05 4 az 05		V ₁₂ =			pc/h		
V_3 or V_{av34}	1243 5)	pc/h (Equatio	n 25-4 or 25-		V ₃ or V _{av34} pc/h (Equation 25-15 or 25-16)					
Is V_3 or $V_{av34} > 2,70$,	s 🗹 No			Is V_3 or $V_{av34} > 2,700$ pc/h? Yes No					
Is V_3 or $V_{av34} > 1.5$					Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No					
f Yes,V _{12a} =	· -	(Equation 25	·8)		If Yes,V _{12a} = pc/h (Equation 25-18)					
Capacity Che	ecks				Capacit	y Che	ecks			
	Actual	Ca	pacity	LOS F?			Actual	С	apacity	LOS F
					V_{F}			Exhibit 25	-14	
V_{FO}	4346	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		Exhibit 25	-14	
					V_R			Exhibit 25	5-3	
low Enterin	g Merge In	fluence A	rea	•		terin	g Dive	erge Influe	nce Are	 a
	Actual		esirable	Violation?		Ac	ctual	Max Des	sirable	Violation?
V _{R12}	3103	Exhibit 25-7	4600:All	No	V ₁₂			Exhibit 25-14		
Level of Serv	rice Detern	nination (i	not F)		Level of	Serv	rice De	eterminati	on (if no	t F)
$D_{R} = 5.475 +$	0.00734 v _R + 0	0.0078 V ₁₂ - 0.0	0627 L _A			$D_R = 4$.252 + (0.0086 V ₁₂ -	0.009 L _D	
$O_R = 23.5 \text{ (pc/mi/ln)}$					$D_R = (p$	c/mi/ln	1)			
.OS = C (Exhi	bit 25-4)				LOS = (E	xhibit	25-4)			
Speed Deteri	mination				Speed L	Deterr	minati	on		
M _S = 0.336 (Ex	ibit 25-19)				$D_s = (E)$	xhibit 25	5-19)			
=	(Exhibit 25-19)				S _R = m _l	ph (Exhi	ibit 25-19)		
$S_0 = 53.3 \text{ mph (Exhibit 25-19)}$					$S_0 = m_1$	ph (Exhi	ibit 25-19)		
$p_0 = 53.3 \text{ mph}$	$S_0 = 51.9 \text{ mph (Exhibit 25-14)}$									
					S = m	ph (Exhi	ibit 25-15)		

	11/71	III O AIND	117 111111 00111	CTIONS W	01110112					
General Info	rmation			Site Infor	mation					
Analyst Agency or Company Date Performed Analysis Time Perio	9/08/ d PM	2011	Ju Ju	eeway/Dir of Tr nction risdiction alysis Year	E N	Southbound I- Exit 5 SB On- NYSDOT 2026 No-Build	Ramp			
Project Description	Exit 4									
Inputs		IT a marker of a const								
Upstream Adj Ramp Yes O		Terrain: Level						Downstr Ramp	eam Adj	
✓ No O								✓ Yes	☑ On	
I INO I O	II.							□ No	☐ Off	
- _{up} = ft		S	FF = 56.0 mph		S _{FR} = 40	0.0 mph		L _{down} =	2035 ft	
V _u = veh/h	1		Sketch (show lanes, L _A , L _D ,V _R ,V _f)					V _D =	1110 veh/h	
Conversion t	o pc/h Und	der Base C	Conditions		_					
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	IF x f _{HV} x f _p	
Freeway	2600	0.92	Level	2	0	0.990	1.00		2854	
Ramp	450	0.87	Level	1	0	0.995	1.00		520	
UpStream DownStream	1110	0.93	Level	4	0	0.980	1.00	_	1217	
Downstream		Merge Areas	Level	7		0.700	Diverge /	Areas	1217	
Estimation o		J			Estimati	on of v ₁₂				
	V ₁₂ = V _F	(P _{rм})			1			/ \/\D		
-EQ =		ation 25-2 or	25-3)			V 12		_F - V _R)P _{FD}	0)	
P _{FM} =			on (Exhibit 25-5)		L _{EQ} =			on 25-8 or 25		
тм / ₁₂ =	1720		OTT (EXTIIDIT 23-3)		P _{FD} =		_	quation (Exhib	it 25-12)	
			n 25-4 or 25-		V ₁₂ =		pc/h			
V_3 or V_{av34}	5)	oom (Equano	20 1 0. 20		V ₃ or V _{av34}	"		uation 25-15 or 2 —	5-16)	
Is V_3 or $V_{av34} > 2,70$	00 pc/h? 🥅 Ye	s 🗹 No			Is V_3 or $V_{av34} > 2,700$ pc/h? Yes No					
Is V_3 or $V_{av34} > 1.5$	* V ₁₂ /2	s 🗹 No			Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No					
f Yes,V _{12a} =	pc/h	(Equation 25	-8)		If Yes,V _{12a} = pc/h (Equation 25-18)					
Capacity Che	ecks				Capacity	/ Checks				
	Actual	Ca	apacity	LOS F?		Act	ual	Capacity	LOS F?	
					V_{F}		Exhi	bit 25-14		
V_{FO}	3374	Exhibit 25-7		No	$V_{FO} = V_{F}$	· V _R	Exhi	bit 25-14		
					V_R		Exhi	bit 25-3		
Flow Enterin	g Merge In	fluence A	rea		Flow En	tering Di	verge In	fluence Ar	ea	
	Actual	Max [Desirable	Violation?		Actual	Ma	x Desirable	Violation?	
V _{R12}	2240	Exhibit 25-7	4600:AII	No	V ₁₂		Exhibit 2	5-14	<u> </u>	
Level of Serv					Level of	Service	Determi	nation (if n	ot F)	
$D_R = 5.475 +$	0.00734 v _R + 0	0.0078 V ₁₂ - 0.0	0627 L _A			$P_{R} = 4.252$	+ 0.0086 \	/ ₁₂ - 0.009 L _D		
D _R = 17.1 (pc/mi/ln)					$D_R = (p_0)$	c/mi/ln)				
OS = B (Exhi	bit 25-4)				LOS = (E	xhibit 25-4)				
Speed Deteri	mination				-	etermina	ntion			
M _S = 0.286 (Ex	ibit 25-19)				$D_{S} = (E)$	khibit 25-19)				
S_{R} = 52.0 mph (Exhibit 25-19)					S _R = mp	h (Exhibit 25	19)			
- R 02.0p						S ₀ = mph (Exhibit 25-19)				
	(Exhibit 25-19)				$S_0 = mp$	h (Exhibit 25	·19)			

			FREEWA	Y WEAV	ING WOF	KSHEE	T		
Genera	l Informat	ion			Site Info	rmation			
Analyst Agency/Co Date Perfor Analysis Tir	med	SEB CHA 9/08/2 PM	011		Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	Location	I-87 Northbound Exit 2E on to 2W off NYSDOT 2026 No-Build		
Inputs									
Freeway free-flow speed, S _{FF} (mi/h) 56 Weaving number of lanes, N 4 Weaving seg length, L (ft) 815 Terrain Lev			Weaving type Volume ratio, VR Weaving ratio, R			A 0.24 0.35			
Conver	sions to p	c/h Unde	r Base C	ondition	1	r			_
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f _{HV}	fp	٧
V_{o1}	3930	0.86	2	0	1.5	1.2	0.990	1.00	4615
V_{02}	0	0.92	2	0	1.5	1.2	0.990	1.00	0
V_{w1}	880	0.92	2	0	1.5	1.2	0.990	1.00	966
V_{w2}	470	0.92	2	0	1.5	1.2	0.990	1.00	515
$V_{\rm w}$			•	1481	V _{nw}			•	4615
V	7				1	ı			6096
Weavin	g and No	n-Weavin	g Speeds	S					
			Unconstr	4				trained	
a (Exhibit 2	1 ()	Weaving 0.15	<u> </u>		ving (i = nw) 035	Weavir	ng (i = w)	Non-Wea	ving (= nw)
b (Exhibit 2		2.20			00				
c (Exhibit 2		0.97		1.30					
d (Exhibit 2		0.80		<u> </u>	75				
Weaving intens Weaving and n		1.39			75				
speeds, Si (mi/	h)	34.2			.25				
Maximum r	lanes required number of lanes If Nw < Nw	s, Nw (max)	•		1.35 1.40	if Nw > Nv	v (max) constr	rained operati	on
Weavin	g Segmer	nt Speed,			Service,	and Cap	acity		
	egment speed,			39.30					
	egment density	, D (pc/mi/ln)		38.78					
Level of se				E					
	base condition		, // _e \	6505					
	a 15-minute fl			6441					
	a full-hour vol	ume, c _h (ven/n)	5638					
Notes									

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 1/9/2012 1:18 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

		FREEWA	Y WEAV	ING WOR	KSHEE	Τ			
General Informat	ion			Site Info	rmation				
Analyst Agency/Company Date Performed Analysis Time Period	SEB CHA 6/22/2 PM	011		Weaving Seg Location E Jurisdiction N			-87 Southbound Exit 2W on to 2E off NYSDOT 2026 No-Build		
Inputs				1					
Freeway free-flow speed, S _{FF} (mi/h) 56 Weaving number of lanes, N 4 Weaving seg length, L (ft) 810 Terrain Lev			el	Weaving type Volume ratio, VR Weaving ratio, R			A 0.2 0.2		
Conversions to p	1	er Base C	1			1		1	
(pc/h) V	PHF	Truck %	RV %	E _T	E _R	f _{HV}	fp	V	
V _{o1} 3150	0.92	2	0	1.5	1.2	0.990	1.00	3458	
V ₀₂ 0	0.92	2	0	1.5	1.2	0.990	1.00	0	
V _{w1} 850	0.92	2	0	1.5	1.2	0.990	1.00	933	
V _{w2} 250	0.92	2	0	1.5	1.2	0.990	1.00	274	
V _w	•	_	1207	V _{nw}		•	•	3458	
V					l			4665	
Weaving and Nor	า-Weavin	g Speeds	5						
		Unconstr	4				trained		
o (Eyhibit 24 ()	Weaving			Non-Weaving (i = nw) Weaving			Non-Wea	ving (= nw)	
a (Exhibit 24-6) b (Exhibit 24-6)	0.15 2.20			0.0035 4.00					
c (Exhibit 24-6)	0.97		1	.30					
d (Exhibit 24-6)	0.80			.75					
Weaving intensity factor, Wi	1.11		0.	.56					
Weaving and non-weaving speeds, Si (mi/h)	36.8	4	44	.46					
Number of lanes required f Maximum number of lanes	, Nw (max)			1.35 1.40	_				
If Nw < Nw	<u> </u>			1.0		v (max) constr	rained operati	on	
Weaving Segmen				Service,	and Cap	acity			
Weaving segment speed,			42.20						
Weaving segment density, Level of service, LOS	27.64 C								
Capacity of base condition	c. (pc/h)		6410						
Capacity as a 15-minute flo	Б -	n/h)	6347						
Capacity as a full-hour volu			5839						
Notes	- n (- 51, m)	<u>, </u>	2007						

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

1/9/2012

Generated: 1/9/2012 1:23 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

Application	<u>Input</u>	Output
Operational (LOS)	FFS, N, v _D	LOS, S, I
Design (N)	FFS, LOS, v _p	N, S, D
Design (v _p)	FFS, LOS, N	Vp. S. D
Planning (LOS)	FFS, N, AADT	LOS, S, I
Planning (M)	FFS, LOS, AADT	N, S, D
Planning (v _D)	FFS, LOS, N	V _n , S, D

General Information			Site Information				
Analyst	SEB		Highway/Direction of Travel	Northbou	ınd I-87		
Agency or Company	CHA		From/To	Exit 2 to			
Date Performed	6/22/2011		Jurisdiction	NYSDOT			
Analysis Time Period	PM		Analysis Year	2036 No-	-Build		
Project Description Exit 4							
✓ Oper.(LOS)			Des.(N)	Pla	nning Data		
Flow Inputs							
Volume, V	5200	veh/h	Peak-Hour Factor, PHF	0.86			
AADT		veh/day	%Trucks and Buses, P _T	2			
Peak-Hr Prop. of AADT, K			%RVs, P _R	0			
Peak-Hr Direction Prop, D			General Terrain:	Level			
DDHV = AADT x K x D	4.00	veh/h	Grade % Length	mi			
Driver type adjustment	1.00		Up/Down %				
Calculate Flow Adjustr							
f _p	1.00		E _R	1.2			
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	0.990			
Speed Inputs			Calc Speed Adj and FF	S			
_ane Width	12.0	ft	f _{LW}		mi/h		
Rt-Shoulder Lat. Clearance	6.0	ft			mi/h		
nterchange Density	0.50	l/mi	f _{LC}				
Number of Lanes, N	3		f _{ID}		mi/h		
FFS (measured)	56.0	mi/h	f _N		mi/h		
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h		
LOS and Performance	Measures		Design (N)				
			Design (N)		· · · · · · · · · · · · · · · · · · ·		
Operational (LOS)			Design LOS				
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 2036	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF \times N)$	rf v			
^F p)	2030	ролил	1 '	'HV ^	pc/h		
5	54.6	mi/h	f _p)				
$D = v_p / S$	37.3	pc/mi/ln	S		mi/h		
LOS	E	L	$D = v_p / S$		pc/mi/ln		
			Required Number of Lanes, N	l			
Glossary			Factor Location				
N - Number of lanes	S - Speed		F - Evhibite 22 8 22 10		f _{LW} - Exhibit 23-4		
V - Hourly volume	D - Density		E _R - Exhibits 23-8, 23-10	1.4			
v _n - Flow rate	FFS - Free-flow	v speed	E _T - Exhibits 23-8, 23-10, 23-	17	f _{LC} - Exhibit 23-5		
LOS - Level of service	BFFS - Base fr		f _p - Page 23-12 f _N - Exhibit 23-6				
DDHV - Directional design ho			LOS, S, FFS, v _p - Exhibits 23-	-2, 23-3	f _{ID} - Exhibit 23-7		
JULIA - Directional design fic	or volume						

Generated: 12/12/2011 4:05 PM

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (milth) Free-Flow Speed FFS = 75 mish Application Input Output 70 mith 70 Operational (LOS) FFS, N, v_p LOS, S, D 65 mich 60 mish Design (N) FFS, LOS, v, N, S, D 60 55 milh FFS, LOS, N Design (v_p) v_p, S, D 50 Planning (LOS) FFS, N, AADT LOS, S, D Planning (M) FFS, LOS, AADT N, S, D 40 Planning (v_n) FFS, LOS, N v_p, S, D 400 008 2000 2400 1200 1600 Flow Rate (pc/h/lin) General Information Site Information Analyst Highway/Direction of Travel SEB Southbound I-87 Agency or Company From/To Exit 4 to Exit 2 CHA Date Performed Jurisdiction NYSDOT 6/22/2011 **Analysis Time Period** Analysis Year 2036 No-Build PMProject Description Exit 4 Des.(N) Oper.(LOS) Planning Data Flow Inputs Volume, V 4100 Peak-Hour Factor, PHF 0.92 veh/h AADT veh/day %Trucks and Buses, P_⊤ 2 %RVs, P_R Peak-Hr Prop. of AADT, K 0 Peak-Hr Direction Prop. D General Terrain: Level $DDHV = AADT \times K \times D$ veh/h Grade % Length mi 1.00 Up/Down % Driver type adjustment Calculate Flow Adjustments 1.00 E_R 1.2 E_T 1.5 0.990 $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$ Speed Inputs Calc Speed Adj and FFS Lane Width 12.0 ft f_{LW} mi/h ft Rt-Shoulder Lat. Clearance 6.0 f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 3 f_N mi/h FFS (measured) 56.0 mi/h FFS 56.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times V_p)$

S D = v _p / S LOS	56.0 mi/h 26.8 pc/mi/lr D	S D = v _p / S Required Number of Lanes, N	mi/h pc/mi/ln
Glossary		Factor Location	
 N - Number of lanes V - Hourly volume v_p - Flow rate LOS - Level of service DDHV - Directional design heads 	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow spee our volume	E _R - Exhibits23-8, 23-10 E _T - Exhibits 23-8, 23-10, 23-11 f _p - Page 23-12 LOS, S, FFS, v _p - Exhibits 23-2, 23-3	f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6 f _{ID} - Exhibit 23-7

1500

pc/h/ln

 $V_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$

pc/h

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (milh) Free-Flow Spred FFS = 75 mid **Application** Input Output 70 mish 70 Operational (LOS) FFS, N, v_p LOS, S. D 65 mith 60 midh FFS, LOS, VD Design (N) N, S, D 60 55 milh FFS, LOS, N Design (v_p) Vp. S. D 50 LOS, S, D Planning (LOS) FFS. N. AADT Planning (M) FFS, LOS, AADT N, S, D 40 Planning (v_n) FFS, LOS, N Vov. S. D. 30 400 008 1600 1200 2000 2400 Flow Rate (pc/h/ln) General Information Site Information Analyst SEB Highway/Direction of Travel Northbound I-87 Agency or Company From/To CHA Exit 4 off to Exit 4 on Date Performed 9/09/2011 Jurisdiction NYSDOT Analysis Time Period Analysis Year 2036 No-Build PM Project Description Exit 4 Oper.(LOS) Des.(N) □ Planning Data Flow Inputs Volume, V 4600 Peak-Hour Factor, PHF veh/h 0.86 AADT veh/day %Trucks and Buses, P_⊤ 2 Peak-Hr Prop. of AADT, K %RVs, P_R 0 General Terrain: Peak-Hr Direction Prop. D Level $DDHV = AADT \times K \times D$ veh/h Grade % Length mi Driver type adjustment 1.00 Up/Down % Calculate Flow Adjustments fp 1.00 Ep 1.2 E_{T} 1.5 $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$ 0.990 Speed Inputs Calc Speed Adj and FFS Lane Width ft 12.0 f_{iw} mi/h Rt-Shoulder Lat. Clearance 6.0 ft f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 3 f_N mi/h FFS (measured) 56.0 mi/h **FFS** 56.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ 1801 $v_n = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ pc/h/ln f_p pc/h 56.0 mi/h mi/h $D = v_p / S$ 32.2 pc/mi/ln $D = v_n / S$ pc/mi/ln LOS D Required Number of Lanes, N Glossary Factor Location N - Number of lanes S - Speed E_R - Exhibits23-8, 23-10 f_{LW} - Exhibit 23-4 - Hourly volume D - Density E_T - Exhibits 23-8, 23-10, 23-11 f_{IC} - Exhibit 23-5 v_p - Flow rate FFS - Free-flow speed _p - Page 23-12 f_N - Exhibit 23-6 LOS - Level of service BFFS - Base free-flow speed LOS, S, FFS, $v_{_{D}}$ - Exhibits 23-2, 23-3

DDHV - Directional design hour volume

f_{ID} - Exhibit 23-7

Generated: 12/12/2011 4:06 PM

Average Passenger-Car Speed (mith) Free-Flow Speed FFS = 75 midt Application Input Output 70 miih Operational (LOS) FFS, N, v_D LOS, S, D 60 midt FFS, LOS, v_n Design (N) N, S, D 60 55 milh FFS, LOS, N Design (v_o) Vp. S. D 50 Planning (LOS) FFS, N, AADT LOS, S, D Planning (M) FFS, LOS, AADT N, S, D 40 Planning (v_n) FFS, LOS, N V_D, S, D 30 008 1600 1200 2000 2400 Flow Rate (pc/h/lin) General Information Site Information Analyst Highway/Direction of Travel SEB Southbound I-87 Agency or Company CHA From/To Exit 5 on to Exit 4 on Date Performed Jurisdiction NYSDOT 12/09/2011 Analysis Time Period Analysis Year PM 2036 No-Build Project Description Exit 4 Oper.(LOS) Des.(N) □ Planning Data Flow Inputs Volume, V 2950 Peak-Hour Factor, PHF veh/h 0.92 AADT %Trucks and Buses, P_T veh/day 2 Peak-Hr Prop. of AADT, K %RVs, P_R 0 General Terrain: Peak-Hr Direction Prop. D Level $DDHV = AADT \times K \times D$ veh/h Grade % Length mi Driver type adjustment 1.00 Up/Down % Calculate Flow Adjustments f_p 1.00 ER 1.2 E_{T} 1.5 $f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$ 0.990 Speed Inputs Calc Speed Adj and FFS Lane Width ft 12.0 f_{lw} mi/h Rt-Shoulder Lat. Clearance 6.0 ft f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 3 f_N mi/h FFS (measured) 56.0 mi/h **FFS** 56.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ 1080 $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ pc/h/ln f_p pc/h $f_p)$ 56.0 mi/h mi/h $D = v_p / S$ 19.3 pc/mi/ln $D = v_n / S$ pc/mi/ln LOS C Required Number of Lanes, N Factor Location Glossary N - Number of lanes S - Speed f_{LW} - Exhibit 23-4 E_R - Exhibits23-8, 23-10 - Hourly volume D - Density f_{LC} - Exhibit 23-5 E_{τ} - Exhibits 23-8, 23-10, 23-11 - Flow rate FFS - Free-flow speed f_p - Page 23-12 f_N - Exhibit 23-6 BFFS - Base free-flow speed LOS - Level of service LOS, S, FFS, v_o - Exhibits 23-2, 23-3 f_{ID} - Exhibit 23-7 DDHV - Directional design hour volume Generated: 12/12/2011 4:06 PM

Average Passenger-Car Speed (mi/h) Free-Flow Spred FFS = 75 mish Application Input Output 70 mid 70 Operational (LOS) FFS, N, v_D 65 midt LOS, S, D 60 mish Design (N) FFS, LOS, V, N, S, D 60 55 mith Design (v_n) FFS, LOS, N Vp. S. D 50 -Planning (LOS) FFS, N, AADT LOS, S, D Planning (M) FFS, LOS, AADT N, S, D 40 Planning (v_n) FFS, LOS, N v_p, S, D 30 008 1200 1600 2000 2400 Flow Rate (pc/h/lin) General Information Site Information Analyst Highway/Direction of Travel SEB Northbound I-87 Agency or Company CHA From/To Exit 4 to Exit 5 Date Performed 6/22/2011 Jurisdiction NYSDOT Analysis Time Period Analysis Year PM 2036 No-Build Project Description Exit 4 ✓ Oper.(LOS) ☐ Des.(N) □ Planning Data Flow Inputs Volume, V 6050 veh/h Peak-Hour Factor, PHF 0.86 AADT veh/day %Trucks and Buses, P_⊤ 2 Peak-Hr Prop. of AADT, K %RVs, PR 0 General Terrain: Peak-Hr Direction Prop. D Level $DDHV = AADT \times K \times D$ veh/h Grade % Length mi Driver type adjustment 1.00 Up/Down % Calculate Flow Adjustments f_p 1.00 E_R 1.2 ET 1.5 $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$ 0.990 Speed Inputs Calc Speed Adj and FFS Lane Width 12.0 ft f_{LW} mi/h Rt-Shoulder Lat. Clearance ft 6.0 f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 3 f_N mi/h FFS (measured) 56.0 mi/h **FFS** 56.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ pc/h/ln $v_n = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ $f_p)$ pc/h $f_p)$ mi/h mi/h $D = v_p / S$ pc/mi/ln $D = v_n / S$ pc/mi/ln LOS F Required Number of Lanes, N Glossary Factor Location N - Number of lanes S - Speed E_R - Exhibits23-8, 23-10 f_{LW} - Exhibit 23-4 - Hourly volume D - Density E_T - Exhibits 23-8, 23-10, 23-11 f_{LC} - Exhibit 23-5 - Flow rate FFS - Free-flow speed f_p - Page 23-12 f_N - Exhibit 23-6 LOS - Level of service BFFS - Base free-flow speed LOS, S, FFS, v_p - Exhibits 23-2, 23-3 f_{ID} - Exhibit 23-7 DDHV - Directional design hour volume

Average Passenger-Car Speed (mith) FFS = 75 mith Free-Flow Speed Application Input Output 70 mids 70 Operational (LOS) FFS, N, VD LOS, S, D 65 mids 60 miih FFS, LOS, VD Design (N) N, S, D 60 55 min FFS, LOS, N vp. S. D Design (v_o) 50 Planning (LOS) FFS, N. AADT LOS, S, D Planning (M) FFS, LOS, AADT N, S, D 40 Planning (v_o) FFS, LOS, N Vp. S. D 30 008 1200 1600 2000 2400 Flow Rate (pc/h/ln) General Information Site Information Analyst Highway/Direction of Travel SEB Southbound I-87 Agency or Company From/To CHA Exit 5 to Exit 4 Date Performed 6/22/2011 Jurisdiction NYSDOT Analysis Time Period Analysis Year 2036 No-Build PM Project Description Exit 4 Oper.(LOS) □ Des.(N) □ Planning Data Flow Inputs Volume, V 2750 Peak-Hour Factor, PHF veh/h 0.92 AADT veh/day %Trucks and Buses, P_T 2 Peak-Hr Prop. of AADT, K %RVs, P_R 0 General Terrain: Peak-Hr Direction Prop. D Level $DDHV = AADT \times K \times D$ veh/h Grade % Length mi Driver type adjustment 1.00 Up/Down % Calculate Flow Adjustments 1.00 Ep 1.2 f_p ET 1.5 $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$ 0.990 Speed Inputs Calc Speed Adj and FFS Lane Width ft 12.0 f_{iw} mi/h Rt-Shoulder Lat. Clearance ft 6.0 f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 3 f_N mi/h FFS (measured) 56.0 mi/h **FFS** 56.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times I)$ 1006 $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ pc/h/ln f_p pc/h f_p) 56.0 mi/h mi/h $D = v_D / S$ 18.0 pc/mi/ln $D = v_n / S$ pc/mi/ln LOS В Required Number of Lanes, N Glossary Factor Location N - Number of lanes S - Speed E_R - Exhibits23-8, 23-10 f_{LW} - Exhibit 23-4 - Hourly volume D - Density f_{IC} - Exhibit 23-5 E_{τ} - Exhibits 23-8, 23-10, 23-11 FFS - Free-flow speed Flow rate f_p - Page 23-12 f_N - Exhibit 23-6 LOS - Level of service BFFS - Base free-flow speed LOS, S, FFS, v_o - Exhibits 23-2, 23-3 f_{ID} - Exhibit 23-7 DDHV - Directional design hour volume Generated: 12/12/2011 4:06 PM

Average Passenger-Car Speed (mith) Free-Flow Speed FFS = 75 midt Application Input Output 70 mith 70 Operational (LOS) FFS, N, Vn LOS, S, D 60 midn Design (N) FFS, LOS, Vn N, S, D 60 55 midh v_p, S, D Design (v_o) FFS, LOS, N 50 Planning (LOS) FFS. N. AADT LOS, S, D Planning (M) FFS, LOS, AADT N, S, D 40 FFS, LOS, N Planning (v_n) v_o, S, D 30 00S1200 1600 2000 2400 Flow Rate (pc/h/lin) General Information Site Information Analyst Highway/Direction of Travel SEB Northbound I-87 Agency or Company CHA From/To Exit 5 to Exit 6 Date Performed Jurisdiction NYSDOT 6/22/2011 Analysis Time Period Analysis Year 2036 No-Build PM Project Description Exit 4 Oper.(LOS) Des.(N) ☐ Planning Data Flow Inputs Volume, V 6250 veh/h Peak-Hour Factor, PHF 0.86 AADT %Trucks and Buses, P_⊤ 2 veh/day %RVs, P_R Peak-Hr Prop. of AADT, K 0 General Terrain: Peak-Hr Direction Prop, D Level $DDHV = AADT \times K \times D$ Grade % veh/h Length mi Driver type adjustment 1.00 Up/Down % Calculate Flow Adjustments f_p 1.00 1.2 ER E_{T} 1.5 $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$ 0.990 Speed Inputs Calc Speed Adj and FFS Lane Width 12.0 ft mi/h f_{LW} Rt-Shoulder Lat. Clearance 6.0 ft f_{LC} mi/h Interchange Density 0.50 I/mi f_ID mi/h Number of Lanes, N 4 f_N mi/h FFS (measured) 56.0 mi/h **FFS** 56.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_{D} = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ 1835 pc/h/ln $f_p)$ pc/h $f_p)$ 55.9 mi/h mi/h D = v_n / S 32.8 pc/mi/ln $D = v_n / S$ pc/mi/ln LOS D Required Number of Lanes, N Factor Location Glossary N - Number of lanes S - Speed f_{LW} - Exhibit 23-4 E_R - Exhibits23-8, 23-10 V - Hourly volume D - Density f_{IC} - Exhibit 23-5 E_{τ} - Exhibits 23-8, 23-10, 23-11 v_p - Flow rate FFS - Free-flow speed f_p - Page 23-12 f_N - Exhibit 23-6 LOS - Level of service BFFS - Base free-flow speed LOS, S, FFS, v_o - Exhibits 23-2, 23-3 f_{ID} - Exhibit 23-7 DDHV - Directional design hour volume Copyright © 2010 University of Florida, All Rights Reserved HCS+TM Version 5.5 Generated: 12/12/2011 4:06 PM

BASIC FREEWAY SEGMENTS WORKSHEET Average Passenger-Car Speed (mi/h) Free-Flow Spred FFS = 75 mith **Application** Input Output 70 mish 70 Operational (LOS) FFS, N, v_D LOS, S. D. 65 midt 60 midh FFS. LOS, v_p Design (N) N, S, D 60 55 miih Design (v_n) FFS, LOS, N Vp. S. D 50 LOS, S, D Planning (LOS) FFS, N, AADT Planning (M) FFS, LOS, AADT N, S, D 40 Planning (v_n) FFS, LOS, N V_p , S_e D30 008 1600 1200 2000 2400 Flow Rate (pc/h/ln) General Information Site Information Analyst SEB Highway/Direction of Travel Southbound I-87 Agency or Company CHA From/To Exit 6 to Exit 5 Date Performed 6/22/2011 Jurisdiction NYSDOT Analysis Time Period Analysis Year 2036 No-Build PM Project Description Exit 4 Oper.(LOS) Des.(N) □ Planning Data Flow Inputs Volume, V 3800 veh/h Peak-Hour Factor, PHF 0.92 AADT veh/day %Trucks and Buses, P_T 2 Peak-Hr Prop. of AADT, K %RVs, Pp 0 Peak-Hr Direction Prop. D General Terrain: Level $DDHV = AADT \times K \times D$ veh/h Grade % Length mi Driver type adjustment 1.00 Up/Down % Calculate Flow Adjustments 1.00 f_p ER 1.2 E_{T} 1.5 $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$ 0.990 Speed Inputs Calc Speed Adj and FFS Lane Width ft 12.0 f_{LW} mi/h Rt-Shoulder Lat. Clearance ft 6.0 f_{LC} mi/h Interchange Density 0.50 I/mi f_{ID} mi/h Number of Lanes, N 4 f_N mi/h FFS (measured) 56.0 mi/h **FFS** 56.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design (N) Operational (LOS) Design LOS $v_p = (V \text{ or DDHV}) / (PHF x N x f_{HV} x)$ 1043 pc/h/ln v_n = (V or DDHV) / (PHF x N x f_{HV} x $f_p)$ pc/h f_p) 56.0 mi/h mi/h $D = v_p / S$ 18.6 pc/mi/ln $D = v_n / S$ pc/mi/ln LOS C Required Number of Lanes, N Glossary Factor Location N - Number of lanes S - Speed E_R - Exhibits23-8, 23-10 f_{LW} - Exhibit 23-4 - Hourly volume D - Density E_T - Exhibits 23-8, 23-10, 23-11 f_{IC} - Exhibit 23-5 - Flow rate FFS - Free-flow speed f_p - Page 23-12 f_N - Exhibit 23-6 LOS - Level of service BFFS - Base free-flow speed LOS, S, FFS, v_0 - Exhibits 23-2, 23-3 f_{ID} - Exhibit 23-7

DDHV - Directional design hour volume

	RAI	MPS AND	RAMP JUNG	CTIONS W	ORKSHE	ET				
General Infor				Site Infor						
Analyst Agency or Company Date Performed	SEB CHA 9/08/		Jui Jui	eeway/Dir of Tranction]]	Exit 2\ NYSD		ıp		
Analysis Time Period Project Description			An	alysis Year		2036	No-Build			
nputs	EXIL 4									
Jpstream Adj Ramp		Terrain: Level							Downstrea	ım Adi
Yes Con									Ramp	-
□ No ○ Off									☐ Yes ☑ No	☐ On ☐ Off
up = 1100 1		S	_{FF} = 56.0 mph		S _{FR} = 4	0.0 m	ph		L _{down} = V _D =	ft veh/h
$v_{\rm u} = 860 \text{ v}$				show lanes, L _A ,	$L_{D'}V_{R'}V_{f}$				VD -	VCII/II
Conversion to	pc/h Und	der Base C	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f_{HV}	f _p	v = V/PHF	x f _{HV} x f _p
reeway	4450	0.86	Level	2	0	0	.990	1.00	5	226
Ramp	740	0.92	Level	2	0	0	.990	1.00		312
JpStream	860	0.92	Level	2	0	0	.990	1.00	,	944
DownStream		Merge Areas				<u> </u>		Diverge Area	19	
Estimation of v ₁₂					Estimati	on	of v ₁₂	Diverge Area	13	
	V ₁₂ = V _F	(P _{EM})			1			\/ · (\)/	\/ \D	
EQ =		• • • • • • • • • • • • • • • • • • • •	25-2 or 25-3)				v ₁₂ =	: V _R + (V _F -		`
r _M =			on (Exhibit 25-5)		L _{EQ} =				25-8 or 25-9	
12 =	3056		(=		P _{FD} =				ation (Exhibit :	23-12)
			n 25-4 or 25-		V ₁₂ =			pc/h	n 25 15 ar 25	1/\
or V _{av34}	5)				V_3 or V_{av34} pc/h (Equation 25-15 or 25-16) Is V_3 or $V_{av34} > 2,700$ pc/h? Yes No					
s V_3 or $V_{av34} > 2,70$										
s V_3 or $V_{av34} > 1.5$ *	·=				Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No If Yes, $V_{12a} =$ pc/h (Equation 25-18)					
Yes,V _{12a} =	•	(Equation 25	-8)					pc/II (⊑qua	111011 25-16)	
Capacity Che					Capacity	y Cł				
	Actual	Ca	apacity	LOS F?			Actua		Capacity	LOS F
					V _F			Exhibit 2		4
V_{FO}	6038	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		Exhibit 2	5-14	
					V_R			Exhibit 2	25-3	
Flow Entering					Flow En	-			ence Are	
	Actual	T	Desirable	Violation?	ļ.,.	_	Actual	Max De	7	Violation?
V _{R12}	3868	Exhibit 25-7	4600:AII	No	V ₁₂			Exhibit 25-14		. =\
evel of Serv									tion (if no	t F)
••	• • • • • • • • • • • • • • • • • • • •	0.0078 V ₁₂ - 0.0	0627 L _A					0.0086 V ₁₂	- 0.009 L _D	
O _R = 29.9 (pc	•					c/mi/	,			
OS = D (Exhib							it 25-4)			
Speed Detern	nination				Speed D			ion		
1 _S = 0.440 (Exit	oit 25-19)				3		25-19)			
=	(Exhibit 25-19)				S _R = mr	oh (Ex	hibit 25-19))		
	(Exhibit 25-19)				S ₀ = mph (Exhibit 25-19)					
	(Exhibit 25-14)				S = mp	oh (Ex	chibit 25-15	5)		
ppyright © 2007 Unive	ersity of Florida, A	All Rights Reserv	ed		HCS+ [™] \	/ersio	n 5.3		Generated: 12/	16/2011 8:5

		NAMI	S AND RAM			,,,,,,	/I I L L I			
General Info	rmation			Site Infor						
Analyst Agency or Company Date Performed Analysis Time Perio	9/08/ d PM		Ju Ju	eeway/Dir of Tr nction risdiction nalysis Year		Exit 4 NYSD	oound I-87 NB Off OT No-Build			
Project Description	Exit 4									
Inputs		<u> </u>								
Upstream Adj Ramp		Terrain: Level							Downstrea Ramp	m Adj
Tyes To									✓ Yes	✓ On
✓ No ☐ Of	Π								□ No	☐ Off
L _{up} = ft		S	_{FF} = 56.0 mph		S _{FR} = ·	40.0 m	ph		L _{down} =	2660 ft
V _u = veh/ł			Sketch (show lanes, L _A , L _D ,V _R ,V _I)						V _D =	1500 veh/
Conversion t	7	der Base (Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f_{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	5200	0.86	Level	2	0	0	.990	1.00	610	07
Ramp	630	0.86	Level	2	0		.990	1.00	74	0
UpStream	4500	0.00	1 1	1		+		1.00	47	10
DownStream	1500	0.88 Merge Areas	Level	1	0		.995	1.00 Diverge Areas	17	13
Estimation o		ivier ge Areas			Estimat	tion (Diverge Areas		
		(D)						\/ . (\/ \/	\D	
	$V_{12} = V_F$		05.0)					$= V_R + (V_F - V_I)$		
L _{EQ} =		ation 25-2 or			L _{EQ} =			Equation 25-8		
P _{FM} =	_	Equation (E	xhibit 25-5)		P _{FD} =			.573 using Ed	juation (Exh	ibit 25-12)
V ₁₂ =	pc/h				V ₁₂ =			817 pc/h		
V ₃ or V _{av34}		(Equation 25	-4 or 25-5)		V ₃ or V _{av34}			290 pc/h (Equ	ation 25-15	or 25-16)
Is V_3 or $V_{av34} > 2,70$								Yes Mo		
Is V_3 or $V_{av34} > 1.5$					Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No					
If Yes,V _{12a} =		(Equation 25	-8)		If Yes,V _{12a} = pc/h (Equation 25-18)					
Capacity Che	1				Capacit	ty Ch	1			
	Actual	Ca	apacity	LOS F?	ļ .,		Actual		pacity	LOS F?
					V _F		6107	Exhibit 25-1		No
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	5367	Exhibit 25-1	4 6780	No
					V _R		740	Exhibit 25-3	2100	No
Flow Enterin	g Merge In	fluence A	rea		Flow Er	nterii	ng Dive	rge Influen	ce Area	
	Actual	Max I	Desirable	Violation?			Actual	Max Desirat	ole	Violation?
V _{R12}		Exhibit 25-7			V ₁₂		3817	Exhibit 25-14	4400:All	No
Level of Serv	vice Detern	nination (i	f not F)		Level o	f Ser	vice De	eterminatio	n (if not l	F)
$D_R = 5.475 + 0$.00734 v _R +	0.0078 V ₁₂ -	0.00627 L _A			$D_R =$	4.252 + 0).0086 V ₁₂ - 0.	009 L _D	
D _R = (pc/mi	/ln)				$D_R = 3$	3.9 (pd	c/mi/ln)			
LOS = (Exhib	it 25-4)				LOS = D	(Exh	ibit 25-4)			
Speed Deteri	mination				Speed I	Dete	rminati	on		
$M_S = (Exibit 2)$					$D_s = 0$.430 (E	xhibit 25	-19)		
ľ	nibit 25-19)					0.0 mp	h (Exhibit	25-19)		
	nibit 25-19)					-				
					S ₀ = 56.4 mph (Exhibit 25-19) S = 52.2 mph (Exhibit 25-15)					
S = mph (Exhibit 25-14)										

		MPS AND	RAMP JUNG			<u> </u>				
General Info	rmation			Site Infor	mation					
Analyst Agency or Company Date Performed Analysis Time Perio	9/08/		Jui Jui	eeway/Dir of Tr nction isdiction alysis Year		Northbou Exit 4 NB NYSDOT 2036 No-	On-Ra	mp		
Project Description	Exit 4			•						
nputs										
Jpstream Adj Ramp —		Terrain: Level							Downstre Ramp	am Adj
□ Yes □ O									✓ Yes	☐ On
™ No □ O	ff								□ No	✓ Off
- _{up} = ft									L _{down} =	3500 ft
/ _u = veh/	h	S	$S_{FF} = 56.0 \text{ mph}$ $S_{FR} = 40.0 \text{ mph}$ Sketch (show lanes, $L_{A'} L_{D'} V_{R'} V_{f'}$)						V _D =	470 veh/h
Conversion	to pc/h Und	der Base C	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _H	IV	f _p	v = V/PH	F x f _{HV} x f _p
Freeway	4600	0.86	Level	2	0	0.99	0	1.00		5402
Ramp	1500	0.88	Level	1	0	0.99	5	1.00		1713
UpStream	1					-				
DownStream	470	0.92	Level	3	0	0.98		1.00		519
Estimation o		Merge Areas			Estimati	ion of		Diverge Areas	5	
		' 5 \			LStillati	011 01	12			
	$V_{12} = V_F$	• • • • • • • • • • • • • • • • • • • •					V ₁₂ =	$V_R + (V_F - V_F)$	/ _R)P _{FD}	
-EQ =	2520.64 (Equation 25-2 or 25-3)							(Equation 2	5-8 or 25-	9)
P _{FM} =	0.603	using Equati	on (Exhibit 25-5)		P _{FD} =			using Equat	tion (Exhibit	25-12)
/ ₁₂ =	3256				V ₁₂ =			pc/h		
₃ or V _{av34}	2146 5)	pc/h (Equatio	n 25-4 or 25-		V ₃ or V _{av34}			pc/h (Equation	n 25-15 or 25	5-16)
Is V ₃ or V _{av34} > 2,7	,	s 🔽 No			Is V ₃ or V _{av3}	₃₄ > 2,700) pc/h?	□ Yes □ N	О	
ls V ₃ or V _{av34} > 1.5					Is V ₃ or V _{av3}	₃₄ > 1.5 *	V ₁₂ /2	□ Yes □ N	0	
f Yes,V _{12a} =		(Equation 25	-8)		If Yes, V _{12a} =			pc/h (Equat	ion 25-18)	
Capacity Ch		(Equation Eo	<u> </u>		Capacit	v Che	cks			
supuoity Oik	Actual	Ca	npacity	LOS F?	Joapaon	1	Actual		apacity	LOS F
		Ī			V _F			Exhibit 25		
V_{FO}	7115	Exhibit 25-7		Yes	$V_{FO} = V_{F}$	- V_		Exhibit 25	_	_
* FO	7113	EXHIBIT 25-7		103		*R		Exhibit 25		-
Tlave Fratarin	a Maras In	fluores A		<u> </u>	V _R	4	. Di			
Flow Enterin	Actual		r ea Desirable	Violation?	FIOW En	Act		erge Influe Max Des		Violation?
V _{R12}	4969	Exhibit 25-7	4600:All	Yes	V ₁₂	ACI	uai	Exhibit 25-14	an anic	violations
Level of Serv				163		Servi	ica D	eterminati	ion (if n)
	+ 0.00734 v _R + 0							0.0086 V ₁₂ -	<u> </u>	<i>,</i> (1)
	c/mi/ln)	12 0.0	A			c/mi/ln)		12	5.505 LD	
IX 4	bit 25-4)					xhibit 2				
					<u> </u>			On.		
Speed Deter					Speed E			UII		
3	ribit 25-19)				3	xhibit 25	-	١		
	(Exhibit 25-19)				L''	ph (Exhib				
	(F., L!L!L OF 10)				$S_0 = m_1$	ph (Exhib	or 25-19)		
	(Exhibit 25-19) (Exhibit 25-14)				I *	oh (Exhib				

		RAMPS	AND RAM	P JUNCTI	ONS WO	RKSH	IEET			
General Infor	mation		, , , , , , , , , , , , , , , , , , , ,	Site Infor						
Analyst Agency or Company Date Performed Analysis Time Period	SEB CHA 9/08/ I PM		Ju Ju	reeway/Dir of Tranction urisdiction nalysis Year	avel r E	Northbo Exit 5 NI NYSDO 2036 No	Т			
Project Description Inputs	EXIT 4									
_		Terrain: Level							Downstrea	m Adi
Upstream Adj Ramp —									Ramp	iii Auj
✓ Yes ✓ Or	1								□ Yes	□ On
□ No □ Of	f								✓ No	☐ Off
3500	£.									ft
L _{up} = 3500	π	S	_{FF} = 56.0 mph		S _{FR} = 3	5.0 mph	1		L _{down} =	
V _u = 1500 ·	/eh/h		•	show lanes, L _A ,		o.op.	•		$V_D =$	veh/h
Conversion t	o pc/h Und	der Base C		^	D K I					
(pc/h)	V	PHF	Terrain	%Truck	%Rv	f	HV	f _p	v = V/PHF	x f _{uv} x f _n
Freeway	(Veh/hr) 6050	0.86	Level	2	0	0.9		1.00	710	г
Ramp	470	0.80	Level	3	0	0.9		1.00	51	
UpStream	1500	0.88	Level	1	0	0.9		1.00	17	
DownStream										
Merge Areas					 = .: .:			Diverge Areas		
Estimation of	12 12				Estimati	on of	12 12			
	$V_{12} = V_F$	(P _{FM})					V ₁₂ =	= V _R + (V _F - V	_R)P _{FD}	
L _{EQ} = (Equation 25-2 or 25-3)				L _{EQ} =		8	785.92 (Equat	ion 25-8 or	25-9)	
P _{FM} =	using	Equation (E	xhibit 25-5)		P _{FD} =		0	.736 using Ed	juation (Exhi	bit 25-12)
V ₁₂ =	pc/h				V ₁₂ =		5	363 pc/h		
V ₃ or V _{av34}		(Equation 25	-4 or 25-5)		V_3 or V_{av34}			742 pc/h (Equ	ation 25-15	or 25-16)
Is V_3 or $V_{av34} > 2,70$								Yes Mo		
Is V_3 or $V_{av34} > 1.5$	· -							Yes ☑ No		
If Yes,V _{12a} =		(Equation 25-	-8)		If Yes,V _{12a} = pc/h (Equation 25-18)					
Capacity Che			9	1.00.50	Capacity	/ Che			11	Liocie
	Actual	La Ca	pacity	LOS F?	\/	\dashv	Actual	Exhibit 25-1	pacity	LOS F?
V		F.,L;L;L;2 OF 7			V _F	\ <u>\</u>	7105	_	_	Yes
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- v _R	6586	Exhibit 25-1	_	No
<u></u>				<u> </u>	V _R		519	Exhibit 25-3		No
Flow Entering	g Merge In Actual	1	rea Desirable	Violation?	Flow En		g Dive ctual	rge Influen Max Desiral		Violation?
V _{R12}	Actual	Exhibit 25-7	Jesilable	Violations	V ₁₂	_	363	Exhibit 25-14	4400:All	Yes
Level of Serv	ice Detern		f not F)		}			terminatio	l	
$D_R = 5.475 + 0.00$		•						0.0086 V ₁₂ - 0.		,
D _R = (pc/mi/	•••	12				.1 (pc/i		12	ооо -Б	
LOS = (Exhib	,				I		it 25-4)			
Speed Deterr					Speed D	`		on		
_										
M _S = (Exibit 2 S = mnh (Exh					D _s = 0.475 (Exhibit 25-19) S _R = 49.4 mph (Exhibit 25-19)					
S_R mph (Exhibit 25-19) S_0 mph (Exhibit 25-19)					S_0 = 58.5 mph (Exhibit 25-19)					
Lo_ mhu (⊏xi	S = mph (Exhibit 25-14)				S = 51.3 mph (Exhibit 25-15)					
S = mnh (Fxh	S = mpn (Exhibit 25-14) Copyright © 2007 University of Florida, All Rights Reserved				S = 51	3 mnh	(Exhihit	25-15)		

		RAMP	S AND RAI	/IP JUNCTI	ONS WO	RKS	HEET			
General Info	rmation			Site Infor						
Analyst Agency or Company Date Performed Analysis Time Perio	SEB / CHA 9/08/ d PM		J	Freeway/Dir of Tr lunction lurisdiction Analysis Year	avel S	Southb Exit 2V NYSD(2036 N	V Off			
Project Description	Exit 4									
Inputs		Terrain: Leve	I						Downstrea	m Adi
Upstream Adj Ramp									Ramp	
M No □ O									✓ Yes	☑ On
140	"								□ No	☐ Off
L _{up} = ft			E4.0 mnh		<u> </u>	0.0	. h		L _{down} =	1300 ft
V _u = veh/l	h	3	$_{FF}$ = 56.0 mph Sketch ((show lanes, L _A ,	$S_{FR} = 40$ $L_{D'}V_{R'}V_{f}$	u.u mp	OTI		V _D =	910 veh/h
Conversion t	to pc/h Und	der Base (Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	4100	0.92	Level	2	0	0	.990	1.00	45	01
Ramp	650	0.92	Level	2	0	0	.990	1.00	7	14
UpStream DownStream	910	0.92	Lovel	2	0		.990	1.00	00	99
Downstieam		Merge Areas	Level		0	0		Diverge Areas	9.	79
Estimation of v ₁₂					Estimati	on c		2.1.o. go 7.1. oao		
	V ₁₂ = V _F	(P.,,)			1			= V _R + (V _F - V _F)P-5	
L _{EQ} =	12 1	ation 25-2 or	25-3)		L _{FO} =			Equation 25-8		
P _{FM} =		using Equation (Exhibit 25-5)						.615 using Eq		nibit 25-12)
V ₁₂ =	pc/h	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		P _{FD} = V ₁₂ =			042 pc/h	ua (=	
V ₃ or V _{av34}	•	(Equation 25	5-4 or 25-5)		V ₃ or V _{av34}			459 pc/h (Equ	ation 25-1	5 or 25-16
Is V_3 or $V_{av34} > 2.79$						4 > 2,7		Tyes ☑ No		
Is V ₃ or V _{av34} > 1.5	* V ₁₂ /2	s 🗆 No			Is V ₃ or V _{av3}	· ₄ > 1.5	5 * V ₁₂ /2	Tyes ✓ No		
If Yes,V _{12a} =	pc/h	(Equation 25	5-8)		If Yes,V _{12a} =		ŗ	oc/h (Equation	25-18)	
Capacity Che	ecks				Capacity	/ Ch	ecks			
	Actual	С	apacity	LOS F?			Actual	Ca	pacity	LOS F
					V _F		4501	Exhibit 25-1	4 6780	No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	3787	Exhibit 25-1	4 6780	No
					V _R		714	Exhibit 25-3	2100	No
Flow Enterin	7	ır			Flow En	1		rge Influen		
\ / I	Actual		Desirable	Violation?	.,	1	Actual	Max Desirab		Violation
V _{R12}	ioo Data	Exhibit 25-7	if not T	1	V ₁₂		3042	Exhibit 25-14	4400:All	No
Level of Serv		•						terminatio	-	<u>r) </u>
$D_{R} = 5.475 + 0$	• •	0.0076 V ₁₂ -	0.00021 L _A					0.0086 V ₁₂ - 0.	ooa r ^D	
$D_R = (pc/mi)$ LOS = (Exhib	/in) oit 25-4)				1		/mi/ln)			
,						`	bit 25-4)	<u> </u>		
Speed Determ					Speed D					
M _S = (Exibit 2						•	xhibit 25	•		
S _R = mph (Exhibit 25-19)				S _R = 50.0 mph (Exhibit 25-19)						
					S_0 = 59.6 mph (Exhibit 25-19) S = 52.8 mph (Exhibit 25-15)					
S ₀ = mph (Exi	•									

		RAMP	S AND RAM	IP JUNCTI	ONS WO	RKS	HEET			
General Info	rmation			Site Infor						
Analyst Agency or Company Date Performed Analysis Time Perio	SEB / CHA 9/08/ d PM		J	reeway/Dir of Tr unction urisdiction analysis Year	ravel s	Exit 4 S NYSD(oound I-87 SB Off OT Io-Build			
Project Description Inputs	EXIL 4									
Upstream Adj Ramp	`	Terrain: Leve	I						Downstrea	ım Adi
☐ Yes ☐ O									Ramp	
M No □ O	ff								✓ Yes	☑ On ☐ Off
L _{up} = ft	_	S	_{FF} = 56.0 mph		S _{FR} = 4	0.0 mp	oh		L _{down} = V _D =	3100 ft 470 veh/h
V _u = veh/l				show lanes, L _A	$L_{D'}V_{R'}V_{f}$, D _	4/0 VEII/I
Conversion t		der Base (Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f_{HV}	f _p	v = V/PHF	$x \: f_{HV} \: x \: f_p$
Freeway	3100	0.92	Level	2	0	0	.990	1.00	34	03
Ramp	600	0.92	Level	2	0	0	.990	1.00	6	59
UpStream DownStream	470	0.07	Laval	1		+	005	1.00		42
Downstieam	470	0.87 Merge Areas	Level	1	0	0	.995	1.00 Diverge Areas	54	43
Estimation of v ₁₂					Estimati	on c		Divorgo 7 il odo		
	V ₁₂ = V _F	(P)			†			= V _R + (V _F - V _I		
L _{EQ} =	12 1	ation 25-2 or	25-3)		L _{FO} =			Equation 25-8	`	
P _{FM} =		using Equation (Exhibit 25-5)						.645 using Eq		nibit 25-12)
V ₁₂ =	pc/h	,	,		P _{FD} = V ₁₂ =			428 pc/h	ua.io.i (= /i.	
V ₃ or V _{av34}	pc/h	(Equation 25	5-4 or 25-5)		V ₃ or V _{av34}			75 pc/h (Equa	ition 25-15	or 25-16)
Is V_3 or $V_{av34} > 2.79$						₄ > 2,7		T Yes ▼ No		,
Is V ₃ or V _{av34} > 1.5	* V ₁₂ /2	s 🗆 No			Is V ₃ or V _{av3}	1.5 1.5	5 * V ₁₂ /2	Tyes ✓ No		
If Yes,V _{12a} =	pc/h	(Equation 25	5-8)		If Yes,V _{12a} =		ı	oc/h (Equation	25-18)	
Capacity Che	ecks				Capacity	y Ch	ecks			
	Actual	C	apacity	LOS F?			Actual	Ca	pacity	LOS F?
					V _F		3403	Exhibit 25-1	4 6780	No
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2744	Exhibit 25-1	4 6780	No
					V _R		659	Exhibit 25-3	2100	No
Flow Enterin	7	ı			Flow En	_		rge Influen		_
11	Actual	1	Desirable	Violation?		1	Actual	Max Desirat		Violation?
V _{R12}	ilaa Data	Exhibit 25-7	if not F		V ₁₂		2428	Exhibit 25-14	4400:All	No
Level of Serv		•						eterminatio	•	<u>r)</u>
$D_{R} = 5.475 + 0$	• •	0.0076 V ₁₂ -	0.00627 L _A).0086 V ₁₂ - 0.	009 L _D	
$D_R = (pc/mi)$ LOS = (Exhib	,				1 "		:/mi/ln)			
Speed Deteri	oit 25-4)					•	bit 25-4)	<u> </u>		
					Speed D D _s = 0.4					
M _S = (Exibit 2						•	xhibit 25 n (Exhibit	•		
$S_R = mph (Exl$	hibit 25-19)					•	,	*		
	h:h:+ OF 40\					S_0 = 61.4 mph (Exhibit 25-19) S = 52.9 mph (Exhibit 25-15)				
S ₀ = mph (Exi	•									

	RAI	MPS AND F	<u>RAMP JUN</u>	<u>CTIONS W</u>	<u>ORKSHE</u>	<u>ET </u>			
General Infor	mation			Site Infor	mation				
Analyst Agency or Company Date Performed	SEB CHA 9/08/		Ju	reeway/Dir of Tr unction urisdiction		Southbound I-8 Exit 4 SB On-F NYSDOT			
analysis Time Period	d PM	2011		nalysis Year		2036 No-Build			
Project Description	Exit 4								
nputs		Terrain: Level						Ъ.	A 1:
Jpstream Adj Ramp ☑ Yes ☑ Or		Terrain. Lever						Downstro Ramp	eam Adj
No Of								☐ Yes ☑ No	☐ On ☐ Off
_{up} = 2035								L _{down} =	ft
/ _u = 470 v		S _F	_F = 56.0 mph Sketch (show lanes, L _A ,	$S_{FR} = 4$ $L_{D'}V_{R'}V_{f}$	0.0 mph		V _D =	veh/h
Conversion t	o pc/h Un	der Base C	onditions	_					
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p
Freeway	2950	0.92	Level	2	0	0.990	1.00		3239
Ramp	1170	0.93	Level	4	0	0.980	1.00		1283
UpStream DownStream	470	0.87	Level	1	0	0.995	1.00	+	543
Downstieam	1	Merge Areas		<u> </u>			Diverge Area	 ns	
stimation o		Worge 7 ii ous			Estimati	ion of v ₁₂		13	
	V ₁₂ = V _F	(P _{EM})			1			\/ \D	
L _{EQ} = (Equation 25-2 or 25-3)					V ₁₂	$= V_R + (V_F - V_F)$		0)	
P _{FM} =		using Equation)	L _{EQ} =		(Equation :		
' ₁₂ =	1952		TT (EXTILOR 20 0)	•	P _{FD} =		using Equa	ation (Exnibi	[25-12)
		pc/h (Equatio	n 25-4 or 25-		V ₁₂ =		pc/h	25 15 2	Г 1/\
or V _{av34}	5)				V ₃ or V _{av34}	2 700 no/h	pc/h (Equatio		5-16)
s V_3 or $V_{av34} > 2,70$? Tyes TI		
s V_3 or $V_{av34} > 1.5$	· -						☐ Yes ☐ I		
Yes,V _{12a} =	<u>.</u>	(Equation 25-	8)		If Yes,V _{12a} =		pc/h (Equa	1001 25-18)
Capacity Che	ecks				Capacity	y Checks			
	Actual	Ca	pacity	LOS F?		Actu		Capacity	LOS F
					V _F		Exhibit 2	25-14	
V_{FO}	4522	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhibit 2	25-14	
					V _R		Exhibit 2	25-3	
low Enterin	g Merge In				Flow En	tering Div	erge Influ		
	Actual		esirable	Violation?		Actual		esirable	Violation?
V _{R12}	3235	Exhibit 25-7	4600:All	No	V ₁₂	<u> </u>	Exhibit 25-1		<u> </u>
evel of Serv		<u>-</u>					Determina		ot F)
		0.0078 V ₁₂ - 0.00	627 L _A			1.	+ 0.0086 V ₁₂	- 0.009 L _D	
$O_{R} = 24.5 \text{ (pc)}$. "	c/mi/ln)			
	bit 25-4)					xhibit 25-4)	4!		
Speed Deterr					 	etermina	tion		
$M_{\rm S} = 0.348 ({\rm Exi})$					3	xhibit 25-19)	10)		
	(Exhibit 25-19)				L."	oh (Exhibit 25-			
	(Exhibit 25-19)				S ₀ = mph (Exhibit 25-19)				
	(Exhibit 25-14)				S = mi	oh (Exhibit 25-			

		MPS AND	RAMP JUNG			EET				
General Info	rmation			Site Infor	mation					
Analyst Agency or Company Date Performed Analysis Time Perio	9/08/		Jui Jui	eeway/Dir of Tr nction risdiction alysis Year		Exit 5 S NYSDC	ound I-87 SB On-Rai OT o-Build	mp		
Project Description	Exit 4									
Inputs									,	
Jpstream Adj Ramp —		Terrain: Level							Downstre Ramp	am Adj
Yes O									✓ Yes	✓ On
☑ No ☐ O	ff								□ No	☐ Off
{-up} = ft		$S{FF} = 56.0 \text{ mph}$ $S_{FR} = 40.0 \text{ mph}$							L _{down} =	2035 ft
$V_{\rm u} = {\rm veh/I}$	า		Sketch (show lanes, $L_{A'}L_{D'}V_{P'}V_{P'}$)						V _D =	1170 veh/l
Conversion t	o pc/h Und	der Base C	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	1	f_{HV}	f_p	v = V/PHI	$= x f_{HV} x f_{p}$
Freeway	2750	0.92	Level	2	0	0.9	990	1.00		3019
Ramp	470	0.87	Level	1	0	0.9	995	1.00		543
UpStream						_			ļ	
DownStream	1170	0.93	Level	4	0	0.9	980	1.00		1283
Estimation o		Merge Areas			Estimati	ion o		Diverge Areas	S	
		/D)			Loamac		1 12			
	$V_{12} = V_F$		05.0\				V ₁₂ =	$V_R + (V_F - V_F)$	$V_R)P_{FD}$	
L _{EQ} = (Equation 25-2 or 25-3)					L _{EQ} =			(Equation 2	25-8 or 25-9	9)
P _{FM} =			on (Exhibit 25-5)		P _{FD} =			using Equa	tion (Exhibit	25-12)
/ ₁₂ =	1820				V ₁₂ =			pc/h		
V_3 or V_{av34}	1199 5)	pc/h (Equatio	n 25-4 or 25-		V_3 or V_{av34}			pc/h (Equatio	n 25-15 or 25	5-16)
Is V ₃ or V _{av34} > 2,7	,	s 🔽 No			Is V ₃ or V _{av3}	₃₄ > 2,7	00 pc/h?	☐ Yes ☐ N	lo	
Is V_3 or $V_{av34} > 1.5$					Is V ₃ or V _{av3}	₃₄ > 1.5	* V ₁₂ /2	□ Yes □ N	lo	
f Yes,V _{12a} =	· -	(Equation 25	-8)		If Yes,V _{12a} =			pc/h (Equat	tion 25-18)	
Capacity Che	<u>.</u>	(= 4===================================	-/		Capacit	v Ch	ecks			
o apraisa y	Actual	Ca	pacity	LOS F?		1	Actual		Capacity	LOS F
	Î			1	V _F	\Box		Exhibit 25		
V_{FO}	3562	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _D		Exhibit 25	5-14	
FO					V _R			Exhibit 2	_	
Flow Enterin	a Merae In	fluence A	roa	<u> </u>	-	torin	na Dive	erge Influe		 a
TOW LINCINI	Actual		Desirable	Violation?	I IOW EII	_	ctual	Max De		Violation?
V _{R12}	2363	Exhibit 25-7	4600:All	No	V ₁₂			Exhibit 25-14	1	
Level of Serv	rice Detern		f not F)			Serv	vice D	eterminat	ion (if no	ot F)
	- 0.00734 v _R + 0							0.0086 V ₁₂ -	<u> </u>	<i>(1)</i>
$P_{R} = 18.0 \text{ (p)}$	• • • • • • • • • • • • • • • • • • • •	12	A			c/mi/lı		12	U	
IX -	bit 25-4)						25-4)			
Speed Deteri					Speed D			on		
	ibit 25-19)				 '	xhibit 2				
-	•				1		nibit 25-19)		
	(Exhibit 25-19)						nibit 25-19			
v – b∢b mnh	(Exhibit 25-19)				1 ~0− 111	hii (EXI	IIDIL 23-19	,		
	(Exhibit 25-14)				S = mi	nh / [nibit 25-15	١		

			FREEWA	Y WEA\	/ING WOR	RKSHEE	T			
Genera	l Informat	tion			Site Info	rmation				
Date Perfor	Agency/Company CHA Date Performed 9/08/2011 Analysis Time Period PM				Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	Location	Exit 2 NYSE	I-87 Northbound Exit 2E on to 2W off NYSDOT 2036 No-Build		
Inputs					1					
Weaving nu Weaving se Terrain	ee-flow speed, umber of lanes, eg length, L (ft)	, N	56 4 815 Lev	el	Weaving type Volume ratio Weaving ratio	, VR		A 0.2 0.3		
Conver	sions to p	oc/h Unde	r Base C	ondition			_		_	
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f_{HV}	fp	V	
V_{o1}	3980	0.86	2	0	1.5	1.2	0.990	1.00	4674	
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0	
V_{w1}	860	0.92	2	0	1.5	1.2	0.990	1.00	944	
V_{w2}	470	0.92	2	0	1.5	1.2	0.990	1.00	515	
V _w	1	•		1459	V _{nw}			•	4674	
V	7			<u> </u>	1	ı			6133	
Weavin	g and No	n-Weavin	g Speeds	3						
			Unconstr	4				trained		
a /F.,hihia 2	4.7	Weaving	<u> </u>		ving (i = nw)	Weavii	ng (i = w)	Non-Wea	ving (= nw)	
a (Exhibit 2) b (Exhibit 2)		0.15 2.20		, 	.00					
c (Exhibit 2		0.97			.30					
d (Exhibit 2		0.80			.75					
Weaving intens		1.38		0	.75					
Weaving and no speeds, Si (mi/l		34.30)	41	.35					
Number of I Maximum n	anes required umber of lanes	s, Nw (max)			1.33 1.40			•		
	If Nw < Nw	<u> </u>					v (max) const	rained operati	on	
Weavin	g Segmei	nt Speed,			f Service,	and Cap	acity			
	egment speed,			39.42						
Weaving se Level of ser	egment density	, ט (pc/mi/ln)		38.90						
	base condition	n c (nc/h)		E 4522						
	a 15-minute fl		/h)	6533 6468						
	a full-hour vol			5660						
Notes	a iuii-iiuui VUI	wille, ch (veil/II	,	3000						
h40rG2										

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 1/9/2012 1:50 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

			FREEWA	Y WEAV	/ING WOR	KSHEE	Т			
Genera	l Informat	ion			Site Info	rmation				
Date Perfor	Analyst SEB Agency/Company CHA Date Performed 6/22/2011 Analysis Time Period PM				Freeway/Dir of Weaving Seg Jurisdiction Analysis Yea	Location	Exit 2 NYSE	I-87 Southbound Exit 2W on to 2E off NYSDOT 2036 No-Build		
Inputs										
Weaving nu Weaving se Terrain	ee-flow speed, Imber of lanes, eg length, L (ft)	N	56 4 810 Lev	el	Weaving type Volume ratio, Weaving ratio	VR		A 0.2 0.2		
 	sions to p	oc/h Unde	r Base C	onditio		r	1	î	1	
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f_{HV}	fp	V	
V_{o1}	3220	0.92	2	0	1.5	1.2	0.990	1.00	3534	
V_{02}	0	0.92	2	0	1.5	1.2	0.990	1.00	0	
V_{w1}	910	0.92	2	0	1.5	1.2	0.990	1.00	999	
V_{w2}	230	0.92	2	0	1.5	1.2	0.990	1.00	252	
V _w	1	,		1251	V _{nw}			Į.	3534	
v	7					l			4785	
Weavin	g and No	n-Weavin	g Speeds	<u> </u>						
			Unconstr					trained		
/E 1 !! !! 0	4.4	Weaving			aving (i = nw)	Weavii	ng (i = w)	Non-Wea	ving (= nw)	
a (Exhibit 2) b (Exhibit 2)		0.15 2.20		1	0035					
c (Exhibit 2		0.97		!	.30					
d (Exhibit 2		0.80			1.75					
Weaving intens		1.14		C	1.59					
Weaving and no speeds, Si (mi/l	on-weaving h)	36.50)	44	4.02					
Maximum n	anes required umber of lanes If Nw < Nw	s, Nw (max)	•		1.36 1.40	if Nw > N	v (max) consti	rained operati	on	
		` '			f Service,					
	egment speed,		<u>, , , , , , , , , , , , , , , , , , , </u>	41.77	,		<u> </u>			
Weaving se	egment density,	, D (pc/mi/ln)		28.64						
Level of ser	vice, LOS			D						
Capacity of	base condition	ı, c _b (pc/h)		6395						
Capacity as	a 15-minute fl	ow rate, c (ver	ı/h)	6332						
Capacity as	Capacity as a full-hour volume, c _h (veh/h) 5									
Notes										

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 1/9/2012 1:50 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

	BASIC FI	REEWAY SE	GMENTS W	ORKSHEET		
S0 Free-Flow Speed FFS = 75 mith 70 mith 70 mith 65 mith 60 mith 55 mith 70 Free-Flow Speed FFS = 75 mith 70 mit	B C C	450 (600 1750 0		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	Input FFS, N, FFS, LO: FFS, LO: FFS, LO: FFS, LO:	S, v _p N, S, D S, N v _p , S, D AADT LOS, S, D S, AADT N, S, D
0 400 800	1200 Flow Rate (pc/h/lin	1600 2000)	2400			
General Information			Site Inform			
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 12/13/2011 PM		Highway/Dire From/To Jurisdiction Analysis Yea	ection of Travel	Northbou Exit 4 off NYSDOT 2046 No-	to Exit 4 on
✓ Oper.(LOS)			Des.(N)		☐ Plan	ning Data
Flow Inputs Volume, V	4550	veh/h	Peak-Hour Fa	actor DHE	0.86	J
AADT	4000	veh/day	%Trucks and		2	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	%RVs, P _R General Terra Grade %	ain: Length Up/Down %	0 Level mi	
Calculate Flow Adjustr	nents			•		
f_p	1.00		E_R		1.2	
E_T	1.5		$f_{HV} = 1/[1+P_T(E)]$	T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs			Calc Spee	d Adj and FFS	6	
Lane Width	12.0	ft	f_{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
Interchange Density	0.50	I/mi	f _{ID}			mi/h
Number of Lanes, N	3		t .ID			
FFS (measured)	56.0	mi/h	'N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N			
Operational (LOS) v _p = (V or DDHV) / (PHF x N : f _p)	x f _{HV} x 1781	pc/h/ln	Design (N) Design LOS $v_p = (V \text{ or DD})$)HV) / (PHF x N x	f _{HV} x	pc/h
S	56.0 31.8	mi/h pc/mi/ln	f _p) S			mi/h
D = v _p / S LOS	31.8 D	ρο/πι/π	D = v _p / S Required Nu	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base freed our volume		E _R - Exhibits2 E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{ID} - Exhibit 23-7
Copyright © 2007 University of Florida				Varsian 5.2		rated: 12/16/2011 10:24

HCS+TM Version 5.3

Generated: 12/16/2011 10:24 AM

	BASIC FI	REEWAY SE	GMENTS W	ORKSHEET		
Wernige Passenger (mith) 20 20 20 20 20 20 20 20 20 2	B C C	450 600 1750 0		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, V FFS, LOS FFS, N, V FFS, LOS FFS, LOS	S, v _p N, S, D S, N v _p , S, D AADT LOS, S, D S, AADT N, S, D
0 400 800	1200 Flow Rate (pc/h/lin	1600 2000)	2400			
General Information			Site Inform			
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 12/13/2011 PM		Highway/Dire From/To Jurisdiction Analysis Yea	ection of Travel	Southbou Exit 5 on NYSDOT 2046 No-	to Exit 4 on
✓ Oper.(LOS)			Des.(N)		☐ Plan	ning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	3050	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra	Buses, P _T	0.92 2 0 Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade %	Length Up/Down %	mi	
Calculate Flow Adjustr	1.00		E _R		1.2	
f _p E _⊤	1.5			T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs	7.0			d Adj and FFS		
Lane Width	12.0	ft		a Auj ana 110		
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3	1/1111	f_{ID}			mi/h
FFS (measured)	<i>56.0</i>	mi/h	f_N			mi/h
	30.0	mi/h	FFS		56.0	mi/h
Base free-flow Speed, BFFS LOS and Performance	Moasuros	1111/11	Docian (N)	<u> </u>		
Operational (LOS) v _p = (V or DDHV) / (PHF x N :		pc/h/ln	Design (N) Design LOS v _p = (V or DD))HV) / (PHF x N x t	f _{HV} x	pc/h
ք _թ) Տ	56.0	mi/h	f _p)			ρο/11
D = v _p / S	19.9	pc/mi/ln	S			mi/h
LOS	C	I- 2	D = v _p / S Required Nu	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base freed to the second control of the sec		f _p - Page 23-	23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{ID} - Exhibit 23-7
Copyright © 2007 University of Florida			TM	Varaian F 2	0	ated: 12/16/2011 10:24

HCS+TM Version 5.3

Generated: 12/16/2011 10:24 AM

	BASIC F	REEWAY SI	EGMENTS W	ORKSHEET		
Wassengle Passengle Passen	By C.	1600 200	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, V _p FFS, LOS, V FFS, LOS, I FFS, N, AA FFS, LOS, I	vi v _p , S, D Dt LOS, S, D AADT N, S, D
General Information	riou rate (perim	V.;	Site Inform	nation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/15/12 AM		-	ection of Travel	Northbound Exit 2 to Ex NYSDOT 2016 Diame	it 4
Oper.(LOS)			Des.(N)		☐ Planni	ng Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	3300	veh/h veh/day veh/h	Peak-Hour Fa %Trucks and %RVs, P _R General Terra Grade %	Buses, P _T	0.92 2 0 Level mi	
Calculate Flow Adjustr				<u>оргионт 70</u>		
f _p E _T	1.00 1.5		E _R f _{HV} = 1/[1+P _T (E	_T - 1) + P _R (E _R - 1)]	1.2 0.990	
Speed Inputs				d Adj and FFS)	
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured) Base free-flow Speed, BFFS	12.0 6.0 0.50 3 56.0	ft ft I/mi mi/h mi/h	f _{LW} f _{LC} f _{ID} f _N FFS	•	56.0	mi/h mi/h mi/h mi/h mi/h
LOS and Performance		1111/11	Dosign (N)	\		
Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times N)$ f_p S $D = v_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	f_p) S $D = v_p / S$)HV) / (PHF x N x t	f _{HV} x	pc/h mi/h pc/mi/ln
				mber of Lanes, N		
Glossary N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flov BFFS - Base fr		f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1	1 f _L	_W - Exhibit 23-4 _C - Exhibit 23-5 ₁ - Exhibit 23-6 _D - Exhibit 23-7
Copyright © 2007 University of Florida,	All Pights Pasanyad		TA	Nersion 5.3	Conor	ated: 2/15/2012 2:06

HCS+TM Version 5.3

Generated: 2/15/2012 2:06 PM

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
Wassender Carlo Box Space FIS = 75 mith 70 mith 70 mith 65 mith 60 mith 55 mith 55 mith 60 mit	B. C.	1450 1600 1750 0 1600 200	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, V _p FFS, LOS, V FFS, LOS, N FFS, N, AAI FFS, LOS, A	v _p , S, D ot los, S, D adt N, S, D
General Information	Tion New (points	7.	Site Infori	mation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/15/12 AM			ection of Travel	Southbound Exit 4 to Exi NYSDOT 2016 Diamo	t 2
✓ Oper.(LOS)		П	Des.(N)		☐ Plannir	ng Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	5200	veh/h veh/day veh/h	Peak-Hour F %Trucks and %RVs, P _R General Terr Grade %	d Buses, P _T	0.92 2 0 Level mi	
Calculate Flow Adjustr				Op/Down 78		
f _p E _T	1.00 1.5		E _R f _{1.07} = 1/[1+P ₇ (E	E _T - 1) + P _R (E _R - 1)]	1.2 0.990	
Speed Inputs				ed Adj and FFS		
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured) Base free-flow Speed, BFFS	12.0 6.0 0.50 3 56.0	ft ft I/mi mi/h mi/h	f _{LW} f _{LC} f _{ID} f _N FFS	a rajuna i ro	56.0	mi/h mi/h mi/h mi/h mi/h
LOS and Performance	Moseuros	1111/11	Dosign (N	`		
Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times N f_p)$ S $D = v_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	f_p) S D = v_p / S	DHV) / (PHF x N x t	f _{HV} X	pc/h mi/h pc/mi/ln
Glossary				mber of Lanes, N		
Glossary N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flov BFFS - Base frour volume		f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-11	I f _L	N - Exhibit 23-4 C - Exhibit 23-5 - Exhibit 23-6 C - Exhibit 23-7
Copyright © 2007 University of Florida,			,,,,,, T	M Version 5.3	Gener	ated: 2/15/2012 2:06

HCS+TM Version 5.3

Generated: 2/15/2012 2:06 PM

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
So	B C	1600 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AA FFS, LOS, N	
General Information	· · · · · · · · · · · · · · · · · · ·	103	Site Inforn	nation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/15/12 AM			ction of Travel	Northbound I Exit 4 off to E NYSDOT 2016 Diamon	xit 4 on
✓ Oper.(LOS)		П	Des.(N)		☐ Planning	Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	2450	veh/h veh/day veh/h	Peak-Hour Fa %Trucks and %RVs, P _R General Terra Grade %	Buses, P _T	0.92 2 0 Level mi	
Calculate Flow Adjustn	nents					
f _p E _T	1.00 1.5		E_{R} $f_{HV} = 1/[1+P_{T}(E_{T})]$	_T - 1) + P _R (E _R - 1)]	1.2 0.990	
Speed Inputs			Calc Spee	d Adj and FFS	3	
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured) Base free-flow Speed, BFFS	12.0 6.0 0.50 3 56.0	ft ft I/mi mi/h mi/h	f _{LW} f _{LC} f _{ID} f _N FFS		56.0	mi/h mi/h mi/h mi/h mi/h
LOS and Performance	Massuras	1110/11	Design (N)	1		
Operational (LOS) $V_p = (V \text{ or DDHV}) / (PHF \times N)$ $f_p)$ S $D = V_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	$\begin{array}{l} \underline{\text{Design (N)}} \\ \underline{\text{Design LOS}} \\ v_p = (V \text{ or DD} \\ f_p) \\ \underline{\text{S}} \\ \underline{\text{D}} = v_p / \underline{\text{S}} \end{array}$	HV) / (PHF x N x	f _{HV} x	pc/h mi/h pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flov BFFS - Base fr		E _R - Exhibits2 E _T - Exhibits3 f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1	1 f _{LC}	- Exhibit 23-4 - Exhibit 23-5 Exhibit 23-6 - Exhibit 23-7
Copyright © 2007 University of Florida,			HCS+ TM	Version 5.3	Generate	ed: 2/15/2012 2:07 PI

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 mith 70 mith 70 mith 65 mith 55 mith 55 mith 40 mith 70 mi	B C	450 (600 1750 0 1600 200	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, N, FFS, LO	S, V _p N, S, D S, N V _p , S, D AADT LOS, S, D S, AADT N, S, D
General Information	Flow Rate (pc/h/lin)	Site Inforn	nation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/15/12 AM			ction of Travel	Southboo Exit 4 off NYSDOT 2016 Dia	to Exit 4 on
Oper.(LOS)			Des.(N)		☐ Plar	nning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	4700	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra	Buses, P _T	0.92 2 0 Level	
DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustr	1.00 nents	veh/h	Grade %	Length Up/Down %	mi	
fp	1.00		E _R		1.2	
E _T	1.5		$f_{HV} = 1/[1 + P_T(E_T)]$	r - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs			Calc Speed	d Adj and FFS	3	
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N	12.0 6.0 0.50 3	ft ft I/mi	f _{LW} f _{LC} f _{ID}			mi/h mi/h mi/h mi/h
FFS (measured)	56.0	mi/h	IN		<i>EC</i> 0	
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times N)$ f_p) S $D = v_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	f_p) S D = v_p / S	HV) / (PHF x N x	f _{HV} x	pc/h mi/h pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base front		E _R - Exhibits2 E _T - Exhibits2 f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
Copyright © 2007 University of Florida,			TM	Version 5.3		nerated: 2/15/2012 2:08

HCS+TM Version 5.3

Generated: 2/15/2012 2:08 PM

	BASIC F	REEWAY SE	GMENTS WORKSHEET		
80 Froe-Flow Speed FFS = 75 mith 70 mith 90 mi		1600 2000	Application Operational (LOS Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AADT FFS, LOS, N	Output LOS, S, D N, S, D v _p , S, D LOS, S, D N, S, D v _p , S, D
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/15/12 AM		Highway/Direction of Travel From/To Jurisdiction Analysis Year	Northbound I-8 Exit 4 to Exit 5 NYSDOT 2016 Diamond	7
✓ Oper.(LOS)			Des.(N)	☐ Planning □)ata
Flow Inputs Volume, V	2500	veh/h	Peak-Hour Factor, PHF	0.92	
AADT Peak-Hr Prop. of AADT, K	2000	veh/day	%Trucks and Buses, P_T %RVs, P_R	2 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjust n	1.00	veh/h	General Terrain: Grade % Length Up/Down %	Level mi	
	1.00		E _R	1.2	
f _p E _T	1.00 1.5		$f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]$	0.990	
-⊤ Speed Inputs	1.0		Calc Speed Adj and Fl		
Lane Width	12.0	ft	1		://-
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}		mi/h
nterchange Density	0.50	I/mi	f _{LC}		mi/h
Number of Lanes, N	3		f _{ID}		mi/h
FFS (measured)	56.0	mi/h	f _N		mi/h
Base free-flow Speed, BFFS		mi/h	FFS	56.0	mi/h
LOS and Performance	Measures		Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x N x	x f _{HV} x 915	pc/h/ln	Design (N) Design LOS v _p = (V or DDHV) / (PHF x N	x f _{HV} x	n a //a
r _p) S	EC O	mi/h	f_p		pc/h
S D = v _p / S	56.0 16.3	mi/h pc/mi/In	S		mi/h
LOS	10.3 B	ρωπι/π	$D = v_p / S$ Required Number of Lanes,	N	pc/mi/ln
Glossary			Factor Location		
N - Number of lanes	S - Speed				Fullible 00 4
V - Hourly volume	D - Density		E _R - Exhibits 23-8, 23-10		Exhibit 23-4
v _p - Flow rate	FFS - Free-flo	w speed	E _T - Exhibits 23-8, 23-10, 23		Exhibit 23-5
LOS - Level of service DDHV - Directional design ho		ree-flow speed	f _p - Page 23-12 LOS, S, FFS, v _p - Exhibits 2	• •	xhibit 23-6 xhibit 23-7
ויסכ די א די א די א די א די א די א די א די	ui voiuille		1		

HCS+TM Version 5.3

Generated: 2/15/2012 2:09 PM

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
South Sout	-/	450 (600) 1750		Application Operational (LOS) Design (N) Design (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N	Output LOS, S, D N, S, D v _p , S, D
D-segment of the segment of the segm		Religion -		Planning (LOS) Planning (N) Planning (v _p)	FFS, N, AADT FFS, LOS, AAD FFS, LOS, N	LOS, S, D N, S, D v _p , S, D
0 400 800	1200 Filow Rate (pc/h/lin	1600 200 0)	2400			
General Information			Site Inform	nation		
Analyst	CLD			ction of Travel	Northbound I-	-
Agency or Company	CHA		From/To		Exit 5 to Exit 6	•
Date Performed Analysis Time Period	07/29/13		Jurisdiction		NYSDOT 2016 Diamond	ı
Project Description Exit 4	AM		Analysis Year	I	2016 Diamond	1
✓ Oper.(LOS)			Des.(N)		☐ Planning	Data
Flow Inputs			()			
Volume, V	2400	veh/h	Peak-Hour Fa	actor, PHF	0.92	
AADT		veh/day	%Trucks and	Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R		0	
Peak-Hr Direction Prop, D		le /le	General Terra		Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade %	Length Up/Down %	mi	
Calculate Flow Adjustr				оргосин 70		
f _p	1.00		E _R		1.2	
E _T	1.5			_T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs				d Adj and FFS	1	
Lane Width	12.0	ft		<u></u>		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	4		f_{ID}			mi/h
FFS (measured)	56.0	mi/h	f_N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N))		
Operational (LOS) V _p = (V or DDHV) / (PHF x N x			Design (N) Design LOS			
f _p)	039	pc/h/ln	$v_p = (V \text{ or DD} f_p)$	PHV) / (PHF x N x	f _{HV} x	pc/h
S C	56.0	mi/h	S S			mi/h
$D = v_p / S$	11.8	pc/mi/ln	$D = v_p / S$			pc/mi/ln
LOS	В			mber of Lanes, N		·
Glossary			Factor Loc			
N - Number of lanes	S - Speed		1		t	Euleileit 00 4
V - Hourly volume	D - Density		E _R - Exhibits2		=	Exhibit 23-4
v _p - Flow rate	FFS - Free-flow	/ speed	·	23-8, 23-10, 23-1		Exhibit 23-5
LOS - Level of service	BFFS - Base fro		f _p - Page 23-			Exhibit 23-6
DDHV - Directional design ho		·	LOS, S, FFS,	, v _p - Exhibits 23-2	2, 23-3 t _{ID} -	Exhibit 23-7
Copyright © 2007 University of Florida,	All Rights Reserved		HCS+TN	^{//} Version 5.3	Generated	d: 8/12/2013 2:51 Pl

	BASIC FI	REEWAY SE	GMENTS V	VORKSHEET		
No. No.	B C C	150 600 1750		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AAI FFS, LOS, N	Output LOS, S, D N, S, D v _p , S, D LOS, S, D N, S, D v _p , S, D
0 400 800) 1200 Flow Rate (pc/h/ln)	1600 2000	2400			
General Information			Site Infor	mation		
Analyst Agency or Company Date Performed Analysis Time Period	CLD CHA 07/29/13 AM		Highway/Dire From/To Jurisdiction Analysis Yea	ection of Travel ar	Southbound I Exit 6 to Exit S NYSDOT 2016 Diamon	5
Project Description Exit 4 Oper.(LOS)		Г	Des.(N)		☐ Planning	Data
Flow Inputs			Des.(11)		- i laililling	Data
Volume, V AADT Peak-Hr Prop. of AADT, K	6100	veh/h veh/day	Peak-Hour F %Trucks and %RVs, P _R	d Buses, P _T	0.92 2 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustr	1.00	veh/h	General Terr Grade %		Level mi	_
	1.00		E _R		1.2	
f _p E _⊤	1.5			E _T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs			-	ed Adj and FFS		
Lane Width	12.0	ft		za Aaj ana 11 c	<u> </u>	://-
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	4		f _{ID}			mi/h
FFS (measured)	56.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N	1)		
Operational (LOS) V _p = (V or DDHV) / (PHF x N : f _p)	x f _{HV} x 1674	pc/h/ln	Design (N) Design LOS v _p = (V or DI	-	f _{HV} x	pc/h
S D = v _p / S LOS	56.0 29.9 D	mi/h pc/mi/ln	t _p) S D = v _p / S Required Nu	umber of Lanes, N		mi/h pc/mi/ln
Glossary			Factor Lo			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits E _T - Exhibits f _p - Page 23	s23-8, 23-10 s 23-8, 23-10, 23-1°	1 f _{LC}	- Exhibit 23-4 - Exhibit 23-5 Exhibit 23-6 Exhibit 23-7
Copyright © 2007 University of Florida,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	M Version 5.3	Concrete	d: 8/12/2013 2:52 F

HCS+TM Version 5.3

	RAI	WPS AND	RAMP JUNG	SHONS W	ORKSHE	<u>:EI</u>					
General Info	rmation			Site Infor	mation						
Analyst Agency or Company Date Performed Analysis Time Perio	02/15 d AM	5/12	Ju Ju	eeway/Dir of Tr nction risdiction alysis Year	E N	Northbound I- Exit 2W On-R NYSDOT 2016 Diamon	amp				
Project Description	Exit 4										
Inputs		<u> </u>									
Upstream Adj Ramp		Terrain: Level						Downstr Ramp	eam Adj		
Yes O								☐ Yes	□ On		
No ✓ Of								I −	☐ Off		
$J_{u} = 1100$ $J_{u} = 660 \text{ V}$		S	FF = 56.0 mph	show lanes, L _A ,	$S_{FR} = 40.0 \text{ mph}$ $V_D = \text{veh/h}$						
Conversion t	to pc/h Und	der Base C		. A	D' R' I'						
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	fp	v = V/Ph	HF x f _{HV} x f _p		
Freeway	2900	0.92	Level	2	0	0.990		3184			
Ramp	380	0.92	Level	2	0	0.990	1.00		417		
UpStream	660	0.92	Level	2	0	0.990	1.00		725		
DownStream											
		Merge Areas			Diverge Areas Estimation of v 12						
Estimation o	f V ₁₂				Estimati	on of v ₁₂	?				
	V ₁₂ = V _F	(P _{FM})				٧	= V ₂ + (\	V _F - V _R)P _{FD}			
L _{EQ} =	837.81	(Equation 2	5-2 or 25-3)		=	- 12		ion 25-8 or 25	-0)		
P _{FM} =	0.601	using Equati	on (Exhibit 25-5)		L _{EQ} = D _			Equation (Exhib			
/ ₁₂ =	1915		,		P _{FD} =		pc/h	-quation (Exhib	11 25-12)		
			n 25-4 or 25-		V ₁₂ =		-		NF 1/\		
/ ₃ or V _{av34}	5)				V ₃ or V _{av34}	2 700 //		quation 25-15 or 2	(3-10)		
Is V_3 or $V_{av34} > 2,70$					Is V ₃ or V _{av3}	-					
Is V_3 or $V_{av34} > 1.5$	* V ₁₂ /2	s 🗹 No			Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No If Yes, $V_{12a} =$ pc/h (Equation 25-18)						
Yes,V _{12a} =	pc/h	(Equation 25	-8)		If Yes,V _{12a} =		pc/h (E	equation 25-18	·)		
Capacity Che	ecks				Capacity	/ Checks	;				
	Actual	Ca	pacity	LOS F?		Act	ual	Capacity	LOS F?		
					V_{F}		Exh	ibit 25-14			
V_{FO}	3601	Exhibit 25-7		No	$V_{FO} = V_{F}$	· V _R	Exh	ibit 25-14			
					V _R		Exh	ibit 25-3			
Flow Enterin	a Merae In	fluence A	rea	<u> </u>	•	terina Di		nfluence Ar	 ea		
	Actual		Desirable	Violation?		Actual		ax Desirable	Violation?		
V _{R12}	2332	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 2	_			
Level of Serv	J	nination (i	f not F)			Service		ination (if n	ot F)		
	- 0.00734 v _R + 0							V ₁₂ - 0.009 L _D			
$P_{R} = 18.1 \text{ (p)}$	**	12	А			c/mi/ln)		12 · · · · · D			
	bit 25-4)					xhibit 25-4)	١				
Speed Deteri					Speed D						
•					_	khibit 25-19)	acion .				
$M_S = 0.293 \text{ (Ex}$		3		10)							
	(Exhibit 25-19)				''	oh (Exhibit 25					
	(Exhibit 25-19)				$S_0 = mp$	h (Exhibit 25	-19)				
	(Exhibit 25-19)					oh (Exhibit 25					

			RAMPS	AND RAM	P JUNCTI	ONS WO	RKS	HEET				
General	Informat	ion			Site Infor							
Analyst Agency or Co Date Perform Analysis Time	ompany ed e Period	SEB CHA 02/15 AM	5/12	Ju Ju	eeway/Dir of Tr inction irisdiction nalysis Year	avel r E	Exit 4 N NYSDC					
Project Descr	iption Exit 4											
Inputs			Terrain: Level							<u> </u>	A 1:	
Upstream Adj Yes	∏ On		Terrain. Lever							Downstrea Ramp	m Aaj	
	Off									✓ Yes	✓ On	
INO	III OII									□ No	☐ Off	
L _{up} =	ft		S	$S_{FF} = 56.0 \text{ mph}$ $S_{FR} = 40.0 \text{ mph}$						L _{down} =	1850 ft	
V _u =	veh/h				show lanes, L _A ,					V _D =	560 veh/h	
Convers	ion to po	/h Und	der Base C	Conditions								
(pc/h)	(V	V 'eh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	3	300	0.92	Level	2	0 0.990 1.00				36	23	
Ramp	8	350	0.82	Level	2	0	0.	990	1.00	10-	47	
UpStream			<u> </u>		<u> </u>	_	-					
DownStream	1 !	560	0.92 Merge Areas	Level	2	0	0.	990	1.00	61	5	
Estimation		Diverge Areas Estimation of v ₁₂										
LStillati			/5)			LStillati	011 0		., ,, ,,	`-		
$V_{12} = V_F (P_{FM})$									= V _R + (V _F - V			
L _{EQ} = (Equation 25-2 or 25-3)						L _{EQ} =			Equation 25-8			
P _{FM} =		using	Equation (E	khibit 25-5)		P _{FD} =			.621 using Ed	quation (Exh	ibit 25-12)	
V ₁₂ =		pc/h				V ₁₂ =			647 pc/h			
V_3 or V_{av34}			(Equation 25	-4 or 25-5)		V_3 or V_{av34}			76 pc/h (Equa	ation 25-15	or 25-16)	
Is V ₃ or V _{av34}	-								Yes 🗹 No			
Is V ₃ or V _{av34}	₄ > 1.5 * V ₁₂ /2								TYes ✓ No			
If Yes,V _{12a} =		pc/h ((Equation 25	-8)		If Yes,V _{12a} = pc/h (Equation 25-18)						
Capacity	Checks					Capacity	y Ch	ecks				
	ŀ	Actual	Ca	pacity	LOS F?			Actual		pacity	LOS F?	
						V _F		3623	Exhibit 25-1	4 6780	No	
V_{FO}			Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2576	Exhibit 25-1	4 6780	No	
						V _R		1047	Exhibit 25-3	3 2100	No	
Flow Ent	tering Me	erge In	fluence A	rea		Flow En	terin	g Dive	rge Influen	ce Area		
		ctual	ľ)esirable	Violation?		1	Actual	Max Desiral		Violation?	
V _{R12}			Exhibit 25-7			V ₁₂	2	2647	Exhibit 25-14	4400:All	No	
Level of	Service I	Detern	nination (i	f not F)		Level of	Serv	∕ice De	terminatio	n (if not	F)	
$D_{R} = 5.47$	75 + 0.0073	4 v _R + (0.0078 V ₁₂ -	0.00627 L _A			$O_R = 4$.252 + 0	.0086 V ₁₂ - 0.	009 L _D		
D _R = (pc/mi/ln)					D _R = 20	.9 (pc	/mi/ln)				
LOS = (I	Exhibit 25-	4)				LOS = C	(Exhil	oit 25-4)				
Speed D	etermina	tion				Speed D	eter	minatio	on			
M _S = (E)	xibit 25-19)					$D_{S} = 0.4$	457 (E	xhibit 25	-19)			
_	h (Exhibit 2	5-19)				S _R = 49	.6 mph	(Exhibit	25-19)			
	h (Exhibit 2						.4 mph	(Exhibit	25-19)			
-	•	,					-					
S = mp	h (Exhibit 2	5-14)				S = 52	.3 mph	(Exhibit	25-15)			

		MPS AND	NAIVIE JUIN			<u> </u>					
General Infor	mation			Site Infor							
Analyst	SEB			reeway/Dir of Tr		Northbound I-8					
Agency or Company	CHA			unction		Exit 4 NB On-F	Ramp				
Date Performed	02/1!	5/12		urisdiction		NYSDOT					
Analysis Time Period			A	nalysis Year		2016 Diamond					
Project Description	EXIL 4										
Inputs		Terrain: Level									
Jpstream Adj Ramp		Terrain. Lever						Downstre Ramp	eam Adj		
Yes On	ı							☐ Yes	□ On		
□ No Off	:							✓ No	☐ Off		
- _{up} = 1850	ft							L _{down} =	ft		
		S	$_{\rm F} = 56.0 \; {\rm mph}$		$S_{FR} = 4$	10.0 mph		\ ,	/ -		
$v_{\rm u} = 850 \text{ v}$	eh/h		Sketch (show lanes, L _A ,	$L_{D'}V_{R'}V_{f}$			V _D =	veh/h		
Conversion to	pc/h Un	der Base C	onditions			_					
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f_{HV}	f _p	v = V/PH	F x f _{HV} x f _p		
Freeway	2450	0.92	Level	2	0	0.990	1.00		2690		
Ramp	560	0.92	Level	2	0	0.990	1.00		615		
UpStream	850	0.96	Level	2	0	0.990	1.00		894		
DownStream											
		Merge Areas				-	Diverge Area	as			
Estimation of	v ₁₂			Estimat	ion of v ₁₂						
	V ₁₂ = V _F	(P _{EM})				\/	\/ . (\/	\/ \D			
F0 =		• • • • • • • • • • • • • • • • • • • •	5-2 or 25-3)			V ₁₂	$= V_R + (V_F -$		- \		
-EQ = O _		978.71 (Equation 25-2 or 25-3) 0.614 using Equation (Exhibit 25-5) P===						25-8 or 25-			
) FM =			ON (EXHIBIT 52-5)	P _{FD} =		using Equ	ation (Exhibit	25-12)		
/ ₁₂ =	1652		05.4.05		V ₁₂ =		pc/h				
1 ₃ or V _{av34}	1038 5)	pc/h (Equatio	n 25-4 or 25-		V_3 or V_{av34}		pc/h (Equati	on 25-15 or 2	5-16)		
s V ₃ or V _{av34} > 2,70		s 🔽 No			Is V ₃ or V _{av3}	₃₄ > 2,700 pc/h	? ☐ Yes ☐	No			
s V ₃ or V _{av34} > 1.5 *					Is V ₃ or V _{av}	₃₄ > 1.5 * V ₁₂ /2	☐ Yes ☐	No			
	·=	S M NO (Equation 25-	0)		If Yes, V _{12a} = pc/h (Equation 25-18)						
Yes,V _{12a} =	· ·	(Equation 25-	-0)		120						
Capacity Che	Actual	Ca	pacity	LOS F?	Capacity Checks Actual Capacity LO						
	Actual		pacity	1031:	V _F	Actu	Exhibit 2		LOS F		
											
V_{FO}	3305	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhibit 2	25-14			
					V _R		Exhibit 2	25-3			
Flow Entering	g Merge In	· ·			Flow En	tering Div	verge Influ				
	Actual		esirable	Violation?		Actual		esirable	Violation		
V _{R12}	2267	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-1	4			
Level of Serv	ice Deterr	nination (it	not F)		Level of	Service I	Determina	tion (if n	ot F)		
$D_R = 5.475 +$	0.00734 v _R + 0	0.0078 V ₁₂ - 0.00)627 L _A			$D_R = 4.252 +$	+ 0.0086 V ₁₂	- 0.009 L _D	· ·		
$O_{R} = 14.7 \text{ (pc)}$	/mi/ln)				$D_R = (p$	c/mi/ln)					
.OS = B (Exhib	it 25-4)				LOS = (E	Exhibit 25-4)					
Speed Detern	nination				Speed D	Determina	tion				
M _S = 0.254 (Exil	oit 25-19)				$D_s = (E$	xhibit 25-19)					
-	Exhibit 25-19)					ph (Exhibit 25-	19)				
**	Exhibit 25-17)				1	,					
S ₀ = 54.1 mph (S = mph (Exhibit 25-15)						
S = 52.9 mph (EVAINIT 15-1/11										

		RAMPS	S AND RAN	IP JUNCTI	ONS WO	RKS	HEET				
General Infor	mation			Site Infor							
Analyst Agency or Company Date Performed Analysis Time Period	SEB CHA 02/1! I AM		J J	reeway/Dir of Tr unction urisdiction Analysis Year	avel [I	Exit 5 I					
Project Description	Exit 4										
Inputs		Itania (1								
Upstream Adj Ramp		Terrain: Leve							Downstrea Ramp	m Adj	
▼ Yes ▼ Or	1									□ On	
□ No □ Of	f								Yes		
I NO I OI	ı								™ No	☐ Off	
L _{up} = 7810	ft		F/ 0 I		•				L _{down} =	ft	
$V_u = 560 \text{ V}$	≏h/h	5	FF = 56.0 mph	/ -h l l	$S_{FR} = 3$	5.0 mp	n		V _D =	veh/h	
				(show lanes, L _A	L _D ,V _R ,V _f)						
Conversion t	o pc/n Und I ∨	der Base (conditions	1	1	1		<u> </u>			
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv		f_{HV}	f _p	v = V/PHF	$x f_{HV} x f_{p}$	
Freeway	2500	0.92	Level	2	0	0	1.00	27-	45		
Ramp	490	0.96	Level	2	0	0	.990	1.00	51	6	
UpStream	560	0.92	Level	2	0	0	.990	1.00	61	5	
DownStream		Merge Areas						Diverge Areas			
Estimation of		Estimati	ion c		Diverge Areas						
		(D)						= V _R + (V _F - V _I	\D		
$V_{12} = V_F (P_{FM})$								- v _R + (v _F - v _I 479.21 (Equati	`	25.0)	
L_{EQ} = (Equation 25-2 or 25-3) P_{EM} = using Equation (Exhibit 25-5)											
P _{FM} = V ₁₂ =	pc/h	Lquation (L	.XIIIDIL 25-5)		P _{FD} = V ₁₂ =			.668 using Eq 004 pc/h	uation (Exil	IDIL 23-12)	
V ₁₂ = V ₃ or V _{av34}	•	(Equation 25	-4 or 25-5)		V ₁₂ = V ₃ or V _{av34}			004 рс/п 41 pc/h (Equa	tion 25-15	or 25-16\	
Is V_3 or $V_{av34} > 2,70$			-4 01 23-3)			>27		T Yes ☑ No	111011 23-13	01 25-10)	
Is V_3 or $V_{av34} > 1.5$											
If Yes,V _{12a} =	· -	(Equation 25	-8)		Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No If Yes, $V_{12a} =$ pc/h (Equation 25-18)						
Capacity Che		(1	- /		Capacity			(1	/		
	Actual	C	apacity	LOS F?			Actual	Ca	pacity	LOS F	
					V _F		2745	Exhibit 25-1	4 6780	No	
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2229	Exhibit 25-1	4 6780	No	
					V _R	- '`	516	Exhibit 25-3	2000	No	
Flow Entering	a Merae In	fluence A	rea			terir	na Dive	rge Influen	ce Area		
	Actual	1	Desirable Desirable	Violation?			Actual	Max Desirat		Violation	
V _{R12}		Exhibit 25-7			V ₁₂		2004	Exhibit 25-14	4400:All	No	
Level of Serv	ice Detern	nination (i	f not F)			Ser	vice De	eterminatio	n (if not	F)	
$D_R = 5.475 + 0.1$	00734 v _R +	0.0078 V ₁₂ -	0.00627 L _A			O _R = 4	4.252 + 0).0086 V ₁₂ - 0.	009 L _D		
D _R = (pc/mi/	ln)				D _R = 19	.2 (pc	/mi/ln)				
LOS = (Exhib	t 25-4)				LOS = B	(Exhi	bit 25-4)				
Speed Deterr	nination				Speed D	eter	minati	on			
$M_S = $ (Exibit 2					D _s = 0.4	474 (E	xhibit 25	-19)			
	ibit 25-19)				S _R = 49	.4 mpł	n (Exhibit	25-19)			
	ibit 25-19)					.4 mpł	i (Exhibit	25-19)			
	,				S = 52.1 mph (Exhibit 25-15)						
S = mph (Exh	ibit 25-14)				S = 52	!.1 mpł	n (Exhibit	25-15)			

		KAMP	S AND RAM			NNO	IILLI				
General Info				Site Infor							
Analyst Agency or Compan Date Performed Analysis Time Peric	02/1	ı	J	reeway/Dir of Tr unction urisdiction .nalysis Year		Southb Exit 2V NYSD(2016 F	V Off				
Project Description				a.yo.o . oa.	•	2010 2	, idiniona				
Inputs											
Upstream Adj Ram	כ	Terrain: Leve	I						Downstrea Ramp	m Adj	
☐ Yes ☐ O	n								✓ Yes	☑ On	
™ No □ O	ff								□ No	☐ Off	
L _{up} = ft		S	$S_{FF} = 56.0 \text{ mph}$ $S_{FR} = 40.0 \text{ mph}$							1300 ft	
V _u = veh/			Sketch (show lanes, L _A					V _D =	340 veh/l	
Conversion		der Base (Conditions		1	,					
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	5200	0.92	Level	2	0 0.990 1.00				570)9	
Ramp	930	0.92	Level	2	0	0	.990	1.00	102	21	
UpStream						+					
DownStream	340	0.92	Level	2	0	0	.990	1.00	37	3	
Estimation a		Merge Areas			Estimati	ion		Diverge Areas			
Estimation of v ₁₂						ion c					
$V_{12} = V_F (P_{FM})$							V ₁₂ =	= V _R + (V _F - V _I	_R)P _{FD}		
L _{EQ} = (Equation 25-2 or 25-3)							(Equation 25-8	3 or 25-9)		
P _{FM} = using Equation (Exhibit 25-5)							0	.570 using Ed	juation (Exhi	bit 25-12)	
V ₁₂ =	pc/h				P _{FD} = V ₁₂ =		3	695 pc/h			
V ₃ or V _{av34}	pc/h	(Equation 25	-4 or 25-5)		V ₃ or V _{av34}		2	014 pc/h (Equ	ation 25-15	or 25-16	
Is V_3 or $V_{av34} > 2.7$,			, > 2,7		Tyes ✓ No			
Is V_3 or $V_{av34} > 1.5$											
If Yes,V _{12a} =	· =	(Equation 25	(-8)		Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No If Yes, $V_{12a} = $ pc/h (Equation 25-18)						
Capacity Ch		(Equation 20			Capacity			John (Equation	120 10)		
Capacity Cit	Actual	T	apacity	LOS F?	Capacity	y Cii	Actual	Ca	pacity	LOS F	
	Actual	 ĭ	арасну	1031:	V _F		5709	Exhibit 25-1	· ·	No	
.,,		E 1 11 11 0E 7			\vdash					+	
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- v _R	4688	Exhibit 25-1	-	No	
					V _R		1021	Exhibit 25-3	3 2100	No	
Flow Enterin	g Merge In	ifluence A	rea		Flow En	terir	ng Dive	rge Influen	ce Area		
	Actual	1	Desirable	Violation?		\bot	Actual	Max Desirat	ole	Violation	
V _{R12}		Exhibit 25-7			V ₁₂		3695	Exhibit 25-14	4400:All	No	
Level of Ser	vice Deterr	mination (i	f not F)		Level of	Ser	vice De	terminatio	n (if not l	-)	
$D_R = 5.475 + 0$	0.00734 v _R +	0.0078 V ₁₂ -	0.00627 L _A			D _R = 4	4.252 + 0	.0086 V ₁₂ - 0.	009 L _D		
D _R = (pc/m	i/ln)	· -			D _R = 33	8.3 (pc	:/mi/ln)	· -	_		
LOS = (Exhib	oit 25-4)				LOS = D	(Exhi	bit 25-4)				
Speed Deter					Speed D	•		on			
•					' 		xhibit 25				
$M_S = (Exibit 2)$,	n (Exhibit	*			
	hibit 25-19)					-					
	hibit 25-19) hibit 25-14)				1.	-	n (Exhibit				
S = mph (Ex	DIDIT 16 1/1				IN _ F1	17 mnl	الأحالحان الم	25-15)			

General In Analyst Agency or Comp Date Performed Analysis Time P	formation SEB		S AND RAM								
Agency or Comp Date Performed	SEB			Site Infor	mation						
	02/15 Period AM		Ju Ju	eeway/Dir of Tr inction irisdiction nalysis Year	avel	Exit 4 NYSD	oound I-87 SB Off OT Diamond				
Project Descripti	ion Exit 4										
Inputs		Terrain: Leve	<u> </u>						D	A .I:	
Upstream Adj Ra	amp On		•						Downstrea Ramp	•	
	Off								✓ Yes	☑ On	
140	Oli								No L _{down} =	☐ Off	
L _{up} = ft	t	<u> </u>	$S_{FF} = 56.0 \text{ mph}$ $S_{FR} = 40.0 \text{ mph}$							1820 ft	
$V_u = v\epsilon$	eh/h		• •	show lanes, L _A		10.0 111	νii		V _D =	510 veh/h	
Conversio	n to pc/h Und	der Base (Conditions	•							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	5350	0.92	Level	2	0 0.990 1.00				58	373	
Ramp	630	0.92	Level	2	0 0.990 1.00				6	92	
UpStream DownStream	F10	0.02	Laval	-		+	.976	1.00		(2)	
Downsteam	510	0.93 Merge Areas	Level	5	0	5	62				
Estimation			Estimat	ion (Diverge Areas					
	V ₁₂ = V _F	(P)						= V _R + (V _F - V _I			
L _{EO} = (Equation 25-2 or 25-3)								Equation 25-8			
$P_{FM} = $ using Equation (Exhibit 25-5)								581 using Eq		nihit 25-12)	
V ₁₂ =	pc/h	Lqualion (E	-XIII 20 0)		P _{FD} = V ₁₂ =			704 pc/h	dation (Exi	IIDI(25-12)	
V ₃ or V _{av34}	•	(Equation 25	i-4 or 25-5)		V ₃ or V _{av34}			169 pc/h (Equ	ation 25-1	5 or 25-16	
	2,700 pc/h?		,			> 2.		Yes 🗹 No	01101120 1	0 01 20 10	
	1.5 * V ₁₂ /2 Yes										
If Yes,V _{12a} =	: -	Equation 25	i-8)		Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No If Yes, $V_{12a} = $ pc/h (Equation 25-18)						
Capacity C		(1	- /		Capacit			. (,		
	Actual	C	apacity	LOS F?	10 11/2 11011		Actual	Ca	pacity	LOS F	
			-		V _F		5873	Exhibit 25-1	4 6780	No	
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	5181	Exhibit 25-1	4 6780	No	
					V _R		692	Exhibit 25-3	3 2100	No	
Flow Enter	ring Merge In	fluence A	rea			terii	na Dive	rge Influen	ce Area		
77011 =1110	Actual	1	Desirable	Violation?		T	Actual	Max Desiral		Violation	
V _{R12}		Exhibit 25-7			V ₁₂		3704	Exhibit 25-14	4400:All	No	
Level of S	ervice Detern	nination (i	if not F)		Level of	Ser	vice De	terminatio	n (if not	F)	
D _R = 5.475	+ 0.00734 v _R +	0.0078 V ₁₂ -	0.00627 L _A			D _R =	4.252 + 0	.0086 V ₁₂ - 0.	009 L _D		
D _R = (pc	:/mi/ln)				$D_R = 29$	9.8 (pc	c/mi/ln)				
LOS = (Ex	khibit 25-4)				LOS = D	(Exh	bit 25-4)				
Speed Det	termination				Speed L)ete	rminatio	on			
M _S = (Exib	oit 25-19)				D _s = 0.	425 (E	xhibit 25	-19)			
_	(Exhibit 25-19)				$S_R = 50$).0 mp	h (Exhibit	25-19)			
	(Exhibit 25-19)				$S_0 = 56$	5.9 mp	h (Exhibit	25-19)			
	(Exhibit 25-14)				S = 52	2.4 mp	h (Exhibit	25-15)			
Copyright © 2007	University of Florida, A	All Rights Reserv	ved		HCS+ [™]	Versio	on 5.3	Ge	enerated: 2/15	5/2012 2:11	

	RAI	MPS AND	RAMP JUNG	CHONS W	ORKSHE	<u>:EI</u>			
General Infor	mation			Site Infor	mation				
Analyst	SEB		Fre	eeway/Dir of Tra	avel	Southbound I-8	37		
gency or Company	CHA		Ju	nction	İ	Exit 4 SB On-F	Ramp		
ate Performed	02/1!	5/12	Ju	risdiction		NYSDOT			
nalysis Time Period	l AM		An	nalysis Year	:	2016 Diamond			
roject Description	Exit 4								
nputs		1						1	
pstream Adj Ramp		Terrain: Level						Downstre Ramp	eam Adj
Yes On	l							☐ Yes	□ On
No ✓ Off	f							☑ No	☐ Off
up = 1820	ft		F/ 0 mmh		<u> </u>	0.0 mmh		L _{down} =	ft
$v_{u} = 630 \text{ v}$	ah/h	5	_{=F} = 56.0 mph		$S_{FR} = 4$	u.u mpn		V _D =	veh/h
				show lanes, L _A ,	$L_{D'}V_{R'}V_{f}$				
Conversion to	p pc/h Un	der Base C	Conditions		_				
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	${\sf f}_{\sf HV}$	fp	v = V/PH	$F \times f_{HV} \times f_{p}$
reeway	4700	0.92	Level	2	0	0.990	1.00		5160
Ramp	510	0.93	Level	5	0	0.976	1.00		562
JpStream .	630	0.92	Level	2	0	0.990	1.00		692
DownStream		1				1	1		
		Merge Areas					Diverge Are	as	
stimation of	v ₁₂				Estimati	ion of v ₁₂			
	V ₁₂ = V _F	(P ₅₁₄)					M . (M	\/ \D	
_	12 1	(Equation 2	05 2 or 25 2)			V ₁₂	$= V_R + (V_F - V_F)$		
EQ =					L _{EQ} =		n 25-8 or 25-9)		
FM =			on (Exhibit 25-5)		P _{FD} =	ation (Exhibit	t 25-12)		
12 =	3168			V ₁₂ =		pc/h			
₃ or V _{av34}	1992 pc/h (Equation 25-4 or 25-				V_3 or V_{av34}		pc/h (Equat	ion 25-15 or 2	5-16)
	5)					> 2.700 pc/h	? ☐ Yes ☐		•
s V_3 or $V_{av34} > 2,70$							□ Yes □		
s V_3 or $V_{av34} > 1.5$ *					If Yes, V _{12a} =				
Yes,V _{12a} =	pc/h	(Equation 25-	·8)		120		pc/ii (⊏qu	ation 25-18)	
Capacity Che	cks				Capacity	y Checks			
	Actual	Ca	pacity	LOS F?		Actu	al	Capacity	LOS F?
					V _F		Exhibit	25-14	
V_{FO}	5722	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _D	Exhibit	25-14	
- FO	0722	Exilion 20 7		110		- K	Exhibit	_	_
	<u> </u>	<u></u>			V _R				
low Entering		T .			Flow En		erge Influ		
.,	Actual	1	esirable	Violation?	 	Actual		Desirable	Violation?
V _{R12}	3730	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-1		
evel of Serv					Level of	Service I	Determina	tion (if n	ot F)
$D_R = 5.475 +$	0.00734 v _R + 0	0.0078 V ₁₂ - 0.00	0627 L _A			$O_R = 4.252 -$	- 0.0086 V ₁₂	- 0.009 L _D	
_R = 26.1 (pc	/mi/ln)				$D_R = (p)$	c/mi/ln)			
OS = C (Exhib	oit 25-4)					xhibit 25-4)			
Speed Detern	· ·				`	Petermina	tion		
POGG BOTOLI						xhibit 25-19)			
	oit 25-19)				3		10)		
-	S _R = 50.7 mph (Exhibit 25-19)				S _R = mph (Exhibit 25-19)				
3	(Exhibit 25-19)				., .				
R= 50.7 mph ((Exhibit 25-19) (Exhibit 25-19)				., .	oh (Exhibit 25-			

		MPS AND				<u>. L I </u>			
General Info	rmation			Site Infor	mation				
Analyst Agency or Compan Date Performed Analysis Time Peric	02/15		Ju Ju	eeway/Dir of Tr nction risdiction alysis Year	E N	Southbound I- Exit 5 SB On-F NYSDOT 2016 Diamond	Ramp		
Project Description	Exit 4								
nputs									
Jpstream Adj Ramı		Terrain: Level						Downstr Ramp	eam Adj
□ Yes □ O								✓ Yes	□ On
™ No □ O	ff							□ No	✓ Off
${up} = ft$ $/_{u} = veh/$	h	S	_{FF} = 56.0 mph		S _{FR} = 40	0.0 mph		L _{down} = V _D =	6100 ft 630 veh/h
		<u> </u>		show lanes, L _A	L_{D}, V_{R}, V_{f}				
Conversion	1	der Base (conditions	<u> </u>	1	Γ			
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	IF x f _{HV} x f _p
Freeway	5100	0.92	Level	2	0	0.990	1.00		5599
Ramp	250	0.93	Level	3	0	0.985	1.00		273
UpStream	100						1		
DownStream	630	0.92	Level	2	0	0.990	1.00	\	692
Estimation o		Merge Areas			Ectimati	on of v ₁₂	Diverge A	Areas	
-Sumation o					ESuman	011 01 V ₁₂			
	$V_{12} = V_F$	(P _{FM})				V ₁₂	= V _R + (V	F - V _R)P _{FD}	
-EQ =	2782.47	(Equation	25-2 or 25-3)		L _{EQ} =	12		on 25-8 or 25	-9)
P _{FM} =	0.614	using Equati	on (Exhibit 25-5)		P _{FD} =	using Equation (Exhibit 25-12)			
/ ₁₂ =	3437	pc/h			V ₁₂ =		pc/h	qua (=	20 .2,
/ ₃ or V _{av34}	2162	pc/h (Equatio	n 25-4 or 25-		V ₁₂ – V ₃ or V _{av34}		-	uation 25-15 or 2	5 16)
	5)					> 2.700 pc/b			5-10)
Is V_3 or $V_{av34} > 2.7$						4 > 2,700 pc/h			
Is V_3 or $V_{av34} > 1.5$	* V ₁₂ /2	s 🗹 No				₄ > 1.5 * V ₁₂ /2			
Yes,V _{12a} =	pc/h	(Equation 25	-8)		If Yes,V _{12a} =		pc/h (Ed	quation 25-18)
Capacity Ch	ecks				Capacity	/ Checks			
	Actual	Ca	apacity	LOS F?		Actu	ıal	Capacity	LOS F
					V _F		Exhi	bit 25-14	
V_{FO}	5872	Exhibit 25-7		No	$V_{FO} = V_{F}$	· V _D	Exhi	bit 25-14	
FO					V _R	K	_	bit 25-3	_
Tlavy Entarin	a Maraa In	fluores A			<i>-</i>	tarina Di			
Flow Enterin	_		rea Desirable	Violation?	FIOW EIT			fluence Are x Desirable	Violation?
V	Actual 3710	Exhibit 25-7	4600:All	Violation? No	V	Actual	Exhibit 2		vioid(IUI1?
V _{R12}				INU	V ₁₂	Comitee			1 Ct F
Level of Serv		<u>-</u>						nation (if n	ot F)
• • • • • • • • • • • • • • • • • • • •	+ 0.00734 v _R + (υ.υυ/8 V ₁₂ - 0.0	uoz/ L _A				+ U.UU86 V	′ ₁₂ - 0.009 L _D	
IX .	c/mi/ln) ibit 25-4)				"	c/mi/ln) xhibit 25-4)			
					,		tion		
Speed Deter						etermina	uon		
$M_{S} = 0.376 (E)$	ribit 25-19)				3	(hibit 25-19)			
	(Exhibit 25-19)				S _R = mp	h (Exhibit 25-	19)		
S_{R} = 50.7 mph	(Extribit 20 17)								
	(Exhibit 25-19)					h (Exhibit 25-	19)		

			FREEWA	Y WEAV	ING WOR	KSHEE	Т			
General	Informat	ion			Site Info	rmation				
Analyst SEB Agency/Company CHA Date Performed 02/15/12 Analysis Time Period AM				Weaving Seg Location Exit 2 Jurisdiction NYS			Northbound 2E on to 2W off DOT Diamond			
Inputs					•					
Weaving nu	e-flow speed, mber of lanes, g length, L (ft)	11	56 4 815 Lev		Weaving type Volume ratio, VR Weaving ratio, R			A 0.27 0.31		
Convers	sions to p	c/h Unde	r Base C	ondition	าร				_	
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f_{HV}	fp	V	
V_{o1}	2600	0.92	2	0	1.5	1.2	0.990	1.00	2854	
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0	
V_{w1}	660	0.92	2	0	1.5	1.2	0.990	1.00	724	
V_{w2}	300	0.92	2	0	1.5	1.2	0.990	1.00	329	
V _w	<u> </u>			1053	V_{nw}		•	Ņ	2854	
V	1				,	ı			3907	
Weaving	g and No	n-Weavin	g Speeds	3						
			Unconstr					trained		
- /F.,hihik 0./	. ()	Weaving			ving (i = nw)	Weavir	ng (i = w)	Non-Wea	ving (= nw)	
a (Exhibit 24 b (Exhibit 24		0.15 2.20			.00					
c (Exhibit 24		0.97		}	.30			1		
d (Exhibit 24		0.80		}	.75			1		
Weaving intensi		0.94		0.	.46					
Weaving and no speeds, Si (mi/h		38.6	5	46	.52					
Number of I	anes required	for unconstrair	ned operation,	Nw	1.36					
1	umber of lanes	, ,		:	1.40	■ :€ NI NI	()		·	
		(max) uncons			f Service,		v (max) consti	rained operali	on	
				44.10	i Service,	anu Cap	Jacity			
Weaving segment speed, S (mi/h) Weaving segment density, D (pc/mi/ln)			22.15							
Level of service, LOS			C C							
	base condition	n, c _h (pc/h)		6357						
		ow rate, c (veh	n/h)	6294						
		ume, c _h (veh/h		5790						
Notes										

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 2/15/2012 2:13 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

			FREEWA	Y WEAV	ING WOR	KSHEE	Т			
General	Informat	ion			Site Info	rmation				
Analyst SEB Agency/Company CHA Date Performed 02/15/12 Analysis Time Period AM				Weaving Seg Location Exit 2 Jurisdiction NYS			Southbound 2W on to 2E off DOT Diamond			
Inputs										
Weaving nu Weaving se Terrain	e-flow speed, mber of lanes, g length, L (ft)	N	56 4 810 Lev	el	Weaving type Volume ratio, VR Weaving ratio, R			A 0.23 0.32		
Convers	sions to p	oc/h Unde	er Base C	ondition	1	r		î		
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f _{HV}	fp	V	
V_{o1}	3530	0.92	2	0	1.5	1.2	0.990	1.00	3875	
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0	
V_{w1}	720	0.92	2	0	1.5	1.2	0.990	1.00	790	
V_{w2}	340	0.92	2	0	1.5	1.2	0.990	1.00	373	
V _w	1	,	•	1163	V_{nw}		•	Ņ	3875	
V	7				,	ı			5038	
Weaving	g and No	n-Weavin	g Speeds	3						
			Unconstr					trained		
o /Fubibit 0	1.()	Weaving			ving (i = nw)	Weavir	ng (i = w)	Non-Wea	ving (= nw)	
a (Exhibit 24 b (Exhibit 24		0.15 2.20			.00					
c (Exhibit 24		0.97		<u> </u>	.30			1		
d (Exhibit 24		0.80			.75			1		
Weaving intensi	ty factor, Wi	1.13	3	0	.57					
Weaving and no speeds, Si (mi/h		36.5	5	44	.35					
Number of I	anes required		ned operation,	Nw	1.27			ļ.		
1	umber of lanes	, ,		:	1.40	■ :€ NI NI	()		·	
	If Nw < Nw	· · ·			f Service,		v (max) consti	iaineu operati	IUII	
Weaving se	g Segiller nment sneed	s (mi/h)	Density,	42.27	i Service,	anu Cap	Jacity			
Weaving segment speed, S (mi/h) Weaving segment density, D (pc/mi/ln)			29.80							
Level of service, LOS			D D							
	base condition	ı, c _h (pc/h)		6565						
	a 15-minute fl	<u> </u>	n/h)	6500						
	a full-hour vol			5980						
Notes										

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 2/15/2012 2:14 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 mith 70 mith 65 mith 65 mith 55 mith 55 mith 55 mith 60 mith 60 mith 65 mith 60 mi	B C C	1500 2000	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v FFS, LOS FFS, LOS FFS, LOS FFS, LOS	, v _p N, S, D , N v _p , S, D , ADT LOS, S, D , AADT N, S, D
General Information	Flow Rate (pc/h/lin)	Site Inforn	nation		
Analyst	SEB			ction of Travel	Northbou	nd I-87
Agency or Company	CHA		From/To	onon or mavor	Exit 2 to E	-
Date Performed	02/15/12		Jurisdiction		NYSDOT	
Analysis Time Period	AM		Analysis Year	•	2026 Diai	mond
Project Description Exit 4						
✓ Oper.(LOS)			Des.(N)		☐ Plan	ning Data
Flow Inputs Volume, V	3500	veh/h	Peak-Hour Fa	otor DUE	0.00	
AADT	3500	ven/n veh/day	%Trucks and	•	0.92 2	
Peak-Hr Prop. of AADT, K		veri/day	%RVs, P _R	Du303, 1 T	0	
Peak-Hr Direction Prop, D			General Terra	ain:	Level	
DDHV = AADT x K x D		veh/h	Grade %	Length	mi	
Driver type adjustment	1.00			Up/Down %		
Calculate Flow Adjustr	nents					
f_p	1.00		E _R		1.2	
E _T	1.5		$f_{HV} = 1/[1 + P_T(E_T)]$	r - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs				d Adj and FFS	<u> </u>	
Lane Width	12.0	ft		•		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			
Interchange Density	0.50	l/mi	f_{LC}			mi/h
Number of Lanes, N	3		f_ID			mi/h
FFS (measured)	56.0	mi/h	f_N			mi/h
Base free-flow Speed, BFFS	30.0	mi/h	FFS		56.0	mi/h
LOS and Performance	Moscuros	1111/11	Docian (N)			
LOS and Performance	Weasures		Design (N) Design (N)	1		
Operational (LOS) v _p = (V or DDHV) / (PHF x N	x f _{HV} x 1281	pc/h/ln	Design LOS	HV) / (PHF x N x	f _{⊢∨} x	
t _p)	_	•	f _p)			pc/h
S	56.0	mi/h	S S			mi/h
$D = v_p / S$	22.9	pc/mi/ln	$D = v_p / S$			pc/mi/ln
LOS	С		F	mber of Lanes, N		L
Glossary			Factor Loc			
N - Number of lanes	S - Speed					
V - Hourly volume	D - Density		E _R - Exhibits2			f _{LW} - Exhibit 23-4
v _p - Flow rate	FFS - Free-flow	/ speed	I .	23-8, 23-10, 23-1		f _{LC} - Exhibit 23-5
LOS - Level of service	BFFS - Base fr		f _p - Page 23-1			f _N - Exhibit 23-6
DDHV - Directional design ho		oo now speed	LOS, S, FFS,	v _p - Exhibits 23-2	2, 23-3	f _{ID} - Exhibit 23-7
Copyright © 2007 University of Florida,				Version 5.3		erated: 2/16/2012 9:30

HCS+TM Version 5.3

Generated: 2/16/2012 9:30 AM

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 mith 70 mith 65 mith 65 mith 60 mith 65 mith 60 mith 65 mith 60 mith 65 mith 60 mith 65 mith 60 mith 65 mith 60 mi	B C C	150 (600) 1750 (1750) 1600 200	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, FFS, LOS, FFS, LOS, FFS, LOS,	v _p N, S, D N v _p , S, D ADT LOS, S, D AADT N, S, D
General Information	Flow Rate (pc/h/lin)	Site Inform	nation		
Analyst	SEB			ction of Travel	Southbour	nd I-87
Agency or Company	CHA		From/To	olion of mavor	Exit 4 to E	-
Date Performed	02/15/12		Jurisdiction		NYSDOT	=
Analysis Time Period	AM		Analysis Year	r	2026 Diam	nond
Project Description Exit 4						
Oper.(LOS)			Des.(N)		☐ Planr	ing Data
Flow Inputs						
Volume, V	5250	veh/h	Peak-Hour Fa	•	0.92	
AADT		veh/day	%Trucks and	buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R General Terra	-i	0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	Grade %	Length	Level mi	
Driver type adjustment	1.00	VOI WIT		Up/Down %	****	
Calculate Flow Adjustr	ments			•		
f_p	1.00		E _R		1.2	
E _T	1.5		• •	_r - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs				d Adj and FFS	}	
Lane Width	12.0	ft				://-
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f_{LC}			mi/h
Number of Lanes, N	3	,,,,,	f_ID			mi/h
FFS (measured)	<i>56.0</i>	mi/h	f_N			mi/h
·	30.0		FFS		56.0	mi/h
Base free-flow Speed, BFFS	Manageman	mi/h				
LOS and Performance	weasures		Design (N)			
Operational (LOS) v _p = (V or DDHV) / (PHF x N	x f _{HV} x 1921	pc/h/ln	Design (N) Design LOS v _p = (V or DD)	HV) / (PHF x N x	f _{HV} x	
t _p)	<i>55.</i> 0		f _p)			pc/h
S D	55.6	mi/h	S			mi/h
$D = v_p / S$	34.6	pc/mi/ln	$D = v_p / S$			pc/mi/ln
LOS	D		· ·	mber of Lanes, N		•
Glossary			Factor Loc			
N - Number of lanes	S - Speed					
V - Hourly volume	D - Density		E _R - Exhibits2			LW - Exhibit 23-4
v _p - Flow rate	FFS - Free-flow	/ speed	I '	23-8, 23-10, 23-1		LC - Exhibit 23-5
LOS - Level of service	BFFS - Base from		f _p - Page 23-1			_N - Exhibit 23-6
DDHV - Directional design ho		opood	LOS, S, FFS,	v _p - Exhibits 23-2	2, 23-3	_{ID} - Exhibit 23-7
Copyright © 2007 University of Florida,				Version 5.3		erated: 2/16/2012 9:31

HCS+TM Version 5.3

Generated: 2/16/2012 9:31 AM

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 mith 70 mith	-/	/		Application	<u> Input</u>	Output
S 60 60 min 55 min 65 m	B, C.	450 (600 (750		Operational (LOS) Design (N) Design (v _p)	FFS, N, v FFS, LOS FFS, LOS	S, v _p N, S, D S, N v _p , S, D
Los A Los A	And the Section of th	Kingle		Planning (LOS) Planning (N) Planning (v _p)	FFS, N, A FFS, LOS FFS, LOS	S, AADT N, S, D
30 400 800		1600 2000	2400			
General Information			Site Inform	nation		
Analyst	SEB		Highway/Dire	ection of Travel	Northbou	nd I-87
Agency or Company	CHA		From/To			to Exit 4 on
Date Performed	02/15/12		Jurisdiction		NYSDOT	
Analysis Time Period Project Description Exit 4	AM		Analysis Yea	r	2026 Diar	mona
Oper.(LOS)		П	Des.(N)		☐ Plan	ning Data
Flow Inputs			200.(. 1)			g 2 a.u.
Volume, V	2550	veh/h	Peak-Hour Fa	actor, PHF	0.92	
AADT		veh/day	%Trucks and	Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R		0	
Peak-Hr Direction Prop, D			General Terra		Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade %	Length Up/Down %	mi	
Calculate Flow Adjustr				Op/Down /6		
f _p	1.00		E _R		1.2	
E _T	1.5			T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs				d Adj and FFS		
Lane Width	12.0	ft				mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3		f_ID			mi/h
FFS (measured)	<i>56.0</i>	mi/h	f_N			mi/h
Base free-flow Speed, BFFS	30.0	mi/h	FFS		56.0	mi/h
LOS and Performance	Measures	1111/11	Design (N	1		
Loo and i criormance	Measures		Design (N)	<i>)</i>		
Operational (LOS)			Design LOS			
v _p = (V or DDHV) / (PHF x N : f _p)	x f _{HV} x 933	pc/h/ln	$v_p = (V \text{ or } DD)$	PHV) / (PHF x N x 1	f _{HV} x	pc/h
S	56.0	mi/h	f _p)			mi/h
$D = v_p / S$	16.7	pc/mi/ln	$D = v_p / S$			pc/mi/ln
LOS	В		· ·	mber of Lanes, N		po/m/m
Glossary			Factor Loc			
N - Number of lanes	S - Speed		1			
V - Hourly volume	D - Density		E _R - Exhibits:			f _{LW} - Exhibit 23-4
v _p - Flow rate	FFS - Free-flow	/ speed		23-8, 23-10, 23-11		f _{LC} - Exhibit 23-5
LOS - Level of service	BFFS - Base from		f _p - Page 23-	12		f _N - Exhibit 23-6
DDHV - Directional design ho		ee-now speed	LOS, S, FFS	, v _p - Exhibits 23-2	, 23-3	f _{ID} - Exhibit 23-7
Copyright © 2007 University of Florida				M Varsian 5.2	0	perated: 2/16/2012 9:31 /

HCS+TM Version 5.3

Generated: 2/16/2012 9:31 AM

HCS+TM Version 5.3

Generated: 2/16/2012 9:32 AM

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 mith 70 mith 65 mith 65 mith 55 mith 55 mith 50 LOS A 70	B C C S	1450 (600 1750 1750 1600 200	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v FFS, LOS FFS, LOS FFS, LOS FFS, LOS	, v _p N, S, D , N v _p , S, D , ADT LOS, S, D , AADT N, S, D
General Information	Flow Rate (pc/h/lir	1)	Site Inform	nation		
Analyst	SEB			ction of Travel	Northbou	nd I-87
Agency or Company	CHA		From/To	otion of mavor	Exit 4 to E	
Date Performed	02/15/12		Jurisdiction		NYSDOT	
Analysis Time Period	AM		Analysis Year		2026 Diar	nond
Project Description Exit 4						
Oper.(LOS)			Des.(N)		☐ Plan	ning Data
Flow Inputs						
Volume, V	2600	veh/h	Peak-Hour Fa %Trucks and	•	0.92	
AADT		veh/day		buses, r _T	2	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D			%RVs, P _R General Terra	in.	0 Level	
DDHV = AADT x K x D		veh/h	Grade %	Length	mi	
Driver type adjustment	1.00			Jp/Down %		
Calculate Flow Adjustr	nents					
f_p	1.00		E _R		1.2	
E _T	1.5		$f_{HV} = 1/[1 + P_{T}(E_{T})]$	1) + P _R (E _R - 1)]	0.990	
Speed Inputs				d Adj and FFS	3	
Lane Width	12.0	ft		•		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3		f_ID			mi/h
FFS (measured)	56.0	mi/h	f_N			mi/h
Base free-flow Speed, BFFS	00.0	mi/h	FFS		56.0	mi/h
LOS and Performance	Measures	1111/11	Design (N)			
LOS and renormance	Wicasures		Design (N) Design (N)			
Operational (LOS)						
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 951	n a /h /l n	Design LOS	U\/\	f v	
f _p)	951	pc/h/ln	. 5	HV) / (PHF x N x	I _{HV} X	pc/h
S	56.0	mi/h	f _p)			1 B
$D = v_p / S$	17.0	pc/mi/ln	S D :: / C			mi/h
LOS	В		$D = v_p / S$			pc/mi/ln
01				nber of Lanes, N		
Glossary	0 0 1		Factor Loc	ation		
N - Number of lanes	S - Speed		E _R - Exhibits2	23-8, 23-10		f _{LW} - Exhibit 23-4
V - Hourly volume	D - Density		1 * *	23-8, 23-10, 23-1 ⁻		f _{LC} - Exhibit 23-5
v _p - Flow rate	FFS - Free-flov		f _p - Page 23-1			f _N - Exhibit 23-6
LOS - Level of service	BFFS - Base fr	ee-flow speed		v _p - Exhibits 23-2		f _{ID} - Exhibit 23-7
DDHV - Directional design ho	our volume			р 3 2 2 3 2		עו
Copyright © 2007 University of Florida,	All Pights Pasanyad		uoo TM	Version 5.3	Con	erated: 2/16/2012 9:32

HCS+TM Version 5.3

Generated: 2/16/2012 9:32 AM

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
Wassender Car Speed FFS = 75 mith 70 mith 70 mith 70 mith 60 mith 60 mith 55 mith 60 mith 65 m	B C C	1450 (600 1750 0 1600 200	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v FFS, LOS, N FFS, LOS, A FFS, LOS, A	v _p , S, D ot los, S, D adt N, S, D
General Information	Tion rue (periin	74.	Site Infori	mation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/15/12 AM		-	ection of Travel	Southbound Exit 5 to Exi NYSDOT 2026 Diamo	t 4
✓ Oper.(LOS)			Des.(N)		☐ Plannir	ng Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	5600	veh/h veh/day veh/h	Peak-Hour F %Trucks and %RVs, P _R General Terr Grade %	I Buses, P _T ain: Length	0.92 2 0 Level mi	
Driver type adjustment Calculate Flow Adjustr	1.00 nonts			Up/Down %		
					1.2	
f _p E _T	1.00 1.5		E _R		0.990	
Speed Inputs	1.5			ed Adj and FFS		
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 3 56.0	ft ft I/mi mi/h	f _{LW} f _{LC} f _{ID} f _N FFS	a Adjana i i o	56.0	mi/h mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS		mi/h				,
LOS and Performance Operational (LOS) v _p = (V or DDHV) / (PHF x N x f _p) S D = v _p / S LOS		pc/h/ln mi/h pc/mi/ln	f_p) S D = v_p / S) DHV) / (PHF x N x t mber of Lanes, N	f _{HV} x	pc/h mi/h pc/mi/ln
Glossary			Factor Lo			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flov BFFS - Base fr		E_R - Exhibits E_T - Exhibits f_p - Page 23-	23-8, 23-10 23-8, 23-10, 23-11	I f _L	N - Exhibit 23-4 C - Exhibit 23-5 - Exhibit 23-6 C - Exhibit 23-7
Copyright © 2007 University of Florida,				M Version 5.3	0	ited: 2/16/2012 9:32

HCS+TM Version 5.3

Generated: 2/16/2012 9:32 AM

	BASIC FI	REEWAY SE	GMENTS W	ORKSHEET		
Free-Flow Speed FFS = 75 mith 70	B C	150 1750 1750 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, vp FFS, LOS, vp FFS, LOS, N FFS, N, AADT FFS, LOS, AADT FFS, LOS, N	Output LOS, S, D N, S, D v _p , S, D LOS, S, D N, S, D v _p , S, D
General Information	Flow Rate (pc/h/ln)	į.	Site Inform	mation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	CLD CHA 7/30/13 AM			ection of Travel	Northbound I-8 Exit 5 to Exit 6 NYSDOT 2026 Diamond	7
Oper.(LOS)			Des.(N)		Planning [Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	2550	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra	Buses, P _T	0.92 2 0 Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade %	Length Up/Down %	mi	
Calculate Flow Adjustr						
f _p	1.00		E _R		1.2	
E _T	1.5			$T - 1 + P_R(E_R - 1)$	0.990	
Speed Inputs Lane Width	12.0	ft		d Adj and FFS)	mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	4		f _{ID}			mi/h
FFS (measured)	56.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N			
Operational (LOS) v _p = (V or DDHV) / (PHF x N : f _p)	x f _{HV} x 700	pc/h/ln	L.S.	9HV) / (PHF x N x t	f _{HV} x	pc/h
S D = v _p / S LOS	56.0 12.5 B	mi/h pc/mi/ln	r _p) S D = v _p / S Required Nu	mber of Lanes, N		mi/h pc/mi/ln
Glossary			Factor Loc	· · · · · · · · · · · · · · · · · · ·		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base freedour volume	•	E _R - Exhibits: E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1	1 f _{LC} - f _N - E	Exhibit 23-4 Exhibit 23-5 xhibit 23-6 Exhibit 23-7
Copyright © 2007 University of Florida,	All Rights Reserved		ucs.TN	Version 5.3	Generated	8/12/2013 3:06 PM

HCS+TM Version 5.3

Generated: 8/12/2013 3:06 PM

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
So	B C	1600 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	Input FFS, N, Vp FFS, LOS, Vp FFS, LOS, N FFS, N, AADT FFS, LOS, AADT FFS, LOS, N	Output LOS, S, D N, S, D v _p , S, D LOS, S, D N, S, D v _p , S, D
General Information		¢3	Site Inform	nation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	CLD CHA 07/30/13 AM			ection of Travel	Southbound I-87 Exit 6 to Exit 5 NYSDOT 2026 Diamond	,
✓ Oper.(LOS)			Des.(N)		☐ Planning Da	ata
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	6200	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra	Buses, P _T	0.92 2 0 Level	
DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustn	1.00	veh/h	Grade %	Length Up/Down %	mi	
f _p	1.00		E _R		1.2	
E _T	1.5				0.990	
Speed Inputs			10.00	d Adj and FFS		
Lane Width	12.0	ft		<u> </u>		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	4		f _{ID}			mi/h
FFS (measured)	56.0	mi/h	f_N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N)		
Operational (LOS) V _p = (V or DDHV) / (PHF x N x f _p)	x f _{HV} x 1702	pc/h/ln	$\frac{\text{Design (N)}}{\text{Design LOS}}$ $v_p = (V \text{ or DD})$	0HV) / (PHF x N x f _I	_{HV} X	pc/h
S D = v _p / S LOS	56.0 30.4 D	mi/h pc/mi/ln	f_p) S $D = v_p / S$ Required Nu	mber of Lanes, N		mi/h pc/mi/ln
Glossary			Factor Loc	<u> </u>		
N - Number of lanes	S - Speed					
V - Hourly volume	D - Density		E _R - Exhibits:		=	xhibit 23-4
v _p - Flow rate	FFS - Free-flow	speed		23-8, 23-10, 23-11		xhibit 23-5
LOS - Level of service	BFFS - Base fre	•	f _p - Page 23-			hibit 23-6
DDHV - Directional design ho		•	LOS, S, FFS	, v _p - Exhibits 23-2,	, 23-3 f _{ID} - Ex	chibit 23-7
Copyright © 2007 University of Florida,			HCS_TN	M Version 5.3	Generated:	8/12/2013 3:07 PM

		MPS AND				<u></u>				
General Infor	mation			Site Infor	mation					
Analyst Agency or Company Date Performed Analysis Time Period	02/15		Jui Jui	eeway/Dir of Tr nction isdiction alysis Year	Exit 2W On-Ramp NYSDOT					
Project Description			All	aiysis i cai		2020 Dia	IIIUIIU			
nputs	LAIC I									
Jpstream Adj Ramp		Terrain: Level							Downstre	am Adj
Yes Or	1								Ramp ☐ Yes	□ On
□ No Of	f								☑ No	☐ Off
_{up} = 1100	ft								L _{down} =	ft
$v_{u} = 670 \text{ v}$	eh/h	S	$_{FF} = 56.0 \text{ mph}$ Sketch (s	show lanes, L _a ,	$S_{FR} = 4$ $L_{D_i}V_{R_i}V_{f}$	0.0 mph			V _D =	veh/h
Conversion t	o pc/h Und	der Base C	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _H	V	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	3100	0.92	Level	2	0	0.99	0	1.00	3	3403
Ramp	390	0.92	Level	2	0	0.99	0	1.00		428
UpStream	670	0.92	Level	2	0	0.99	0	1.00		736
DownStream		M A			<u> </u>			D: A		
Estimation o		Merge Areas			Estimati	ion of		Diverge Areas		
_Stimation of					LStillati	011 01	12			
	$V_{12} = V_F$						V ₁₂ =	$V_R + (V_F - V_F)$	′ _R)P _{FD}	
-EQ =		(Equation 2			L _{EQ} =			(Equation 2	5-8 or 25-9))
P _{FM} =	0.601	using Equation	on (Exhibit 25-5)		P _{FD} =			using Equat	ion (Exhibit	25-12)
/ ₁₂ =	2046				V ₁₂ =			pc/h		
7 ₃ or V _{av34}		oc/h (Equatio	n 25-4 or 25-		V ₃ or V _{av34}			pc/h (Equation	25-15 or 25	-16)
s V ₃ or V _{av34} > 2,70	5) 00 nc/h? □ ∨o.	e 🔽 No				₈₄ > 2,700		□ Yes □ N		
s V_3 or $V_{av34} > 2,76$								□ Yes □ N		
f Yes,V _{12a} =	·=	Equation 25	-8)		If Yes,V _{12a} =			pc/h (Equati		
Capacity Che		(Lqualion 25	-0)		Capacit					
Sapacity Cite	Actual	I Ca	pacity	LOS F?	Capacit	y Crie	Actual	1 c	apacity	LOS F
	Actual		ipacity	L031;	V _F		Actual	Exhibit 25		1 2031
V	2021	Evhibit 2E 7		No	$V_{FO} = V_{F}$	- \/		Exhibit 25		
V_{FO}	3831	Exhibit 25-7		No		- VR			_	_
	<u> </u>	<u> </u>			V _R			Exhibit 25		
low Entering				\/:-I-#0	Flow En			erge Influe		
V	Actual 2474	Exhibit 25-7	Desirable 4600:All	Violation?	\/	Act	ual	Max Des	ii avie	Violation?
V _{R12}				No	V ₁₂	 			on (!f ==	<u></u>
evel of Serv								eterminati	_	ι <i>Γ)</i>
		0.0078 V ₁₂ - 0.00	JUZI LA					0.0086 V ₁₂ -	0.009 L _D	
) _R = 19.2 (pc						c/mi/ln)				
OS = B (Exhil						xhibit 2				
Speed Deterr	nination				Speed L			on		
$M_{\rm S} = 0.299 (Exi$	bit 25-19)				,	xhibit 25	-			
	(Evhibit 25 10)				$S_R = m_I$	ph (Exhib	it 25-19)		
$S_R = 51.8 \text{ mph}$	(LAHIDIL 25-14)									
$S_0 = 52.9 \text{ mph}$	(Exhibit 25-19) (Exhibit 25-19) (Exhibit 25-14)					ph (Exhib	it 25-19)		

		IVAIMI (S AND RAN			NNO				
General Info	rmation			Site Infor						
Analyst Agency or Company Date Performed Analysis Time Perio	02/15		J	reeway/Dir of Tr unction urisdiction .nalysis Year	! 1	Exit 4 N NYSD(
Project Description	Exit 4									
Inputs										
Upstream Adj Ramp		Terrain: Leve							Downstrea Ramp	m Adj
☐ Yes ☐ O									✓ Yes	✓ On
✓ No ☐ O	ff								□ No	☐ Off
L _{up} = ft		S	_{FF} = 56.0 mph		S _{FR} = 4	0 0 mr	h		L _{down} =	1850 ft
V _u = veh/l			Sketch (show lanes, L _A		0.0 mp			V _D =	570 veh /
Conversion t		der Base (Conditions		•			Y	T .	
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	3500	0.92	Level	2	0	_	990	1.00	384	
Ramp	950	0.82	Level	2	0	0.	990	1.00	117	70
UpStream DownStream	570	0.92	Lovel	2	0	_	990	1.00	62	
Downstieam		Merge Areas	Level		U	0.		Diverge Areas	02	0
Estimation o		orgo7odo			Estimati	ion c		21101g07110u0		
	V ₁₂ = V _F	(D)			 			= V _R + (V _F - V	\D	
_		(' _{FM}) ation 25-2 or	25.2\		_			Equation 25-8		
L _{EQ} = D _		Equation (E			L _{EQ} =			-		Ь∷ ЭГ 1 Э\
P _{FM} =	pc/h	Lquation (L	.XIIIDIL 25-5)		P _{FD} = V ₁₂ =			.610 using Ed 800 pc/h	quation (EXIII	DIL 25-12)
V ₁₂ = V ₃ or V _{av34}	•	(Equation 25	4 or 25 5)		V ₁₂ – V ₃ or V _{av34}			•	otion OF 15	o= 0E 40
Is V_3 or $V_{av34} > 2.79$			-4 01 25-5)			< 2.7		042 pc/h (Equ	ialion 25-15	01 25-16
Is V_3 or $V_{av34} > 2,75$ Is V_3 or $V_{av34} > 1.5$								Yes Mo		
If Yes,V _{12a} =	·=	S I NO (Equation 25	-8)		If Yes, $V_{12a} =$			oc/h (Equation	25-18)	
Capacity Che		(Equation 23	-0)		Capacity			on (Equation	123-10)	
Сараспу Спе	Actual		apacity	LOS F?	Capacity	y CII	Actual	Ca	pacity	LOS F
	Actual		арасну	LUST:	V _F	\neg	3842	Exhibit 25-1	1	No
V		Exhibit 25-7			-	\/			_	+
V _{FO}		EXHIBIT 23-7			$V_{FO} = V_{F}$	- v _R	2672	Exhibit 25-1		No
					V _R		1170	Exhibit 25-3		No
Flow Enterin	1	1		\/!:=!=±!	Flow En	1		rge Influen		\B-1-1'
V	Actual	Exhibit 25-7	Desirable	Violation?	\/	_	Actual	Max Desiral		Violation
V _{R12} Level of Serv	ioo Doto		if not El		V ₁₂		2800	Exhibit 25-14	4400:All	No
								terminatio	-)
$D_{R} = 5.475 + 0$		0.0076 V ₁₂ -	0.00021 L _A			•••		0.0086 V ₁₂ - 0.	oos L _D	
D _R = (pc/mi							/mi/ln)			
•	it 25-4)					•	oit 25-4)	<u> </u>		
Speed Deter					Speed D					
M _S = (Exibit 2					1. "	•	xhibit 25	*		
	nibit 25-19)					-	(Exhibit			
S ₀ = mph (ExI	nibit 25-19)				$S_0 = 61$.3 mph	(Exhibit	25-19)		
	nibit 25-14)				S = 52		(Exhibit			

		MPS AND	KAMP JUN						
General Infor	mation			Site Infor	mation				
Analyst Agency or Company Date Performed	SEB CHA 02/1!		Ju	reeway/Dir of Tra unction urisdiction		Northbound I-8 Exit 4 NB On-R NYSDOT			
nalysis Time Period			A	nalysis Year		2026 Diamond			
Project Description	Exit 4								
nputs								1	
Jpstream Adj Ramp ✓ Yes		Terrain: Level						Downstre Ramp	eam Adj
▼ Yes								☐ Yes	□ On
INO P OI	l							✓ No	☐ Off
_{up} = 1850	ft				_			L _{down} =	ft
' _u = 950 v	eh/h	S	$_{\text{FF}} = 56.0 \text{ mph}$ Sketch (show lanes, L _{A'}	$S_{FR} = 4$ $L_{D'}V_{R'}V_{f}$	0.0 mph		V _D =	veh/h
Conversion t	o pc/h Un	der Base C	onditions					•	
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p
Freeway	2550	0.92	Level	2	0	0.990	1.00		2799
Ramp	570	0.92	Level	2	0	0.990	1.00	_	626
JpStream DownStream	950	0.96	Level	2	0	0.990	1.00	-	999
Jownstieam		Merge Areas					Diverge Are	as	
stimation of		werge / weds			Estimat	ion of v ₁₂	Divergeriie	u3	
	V ₁₂ = V _F	(D)							
_	· - ·)E 0 ~ 0E 0\			V ₁₂	$= V_R + (V_F -$		
EQ =		(Equation 2			L _{EQ} =			25-8 or 25-	
FM =			on (Exhibit 25-5))	P _{FD} =			ation (Exhibi	t 25-12)
12 =	1719 1090	pc/n pc/h (Equatio	n 25-4 or 25-		V ₁₂ =		pc/h		
or V _{av34}	5)	pc/ii (Equatio	11 23-4 01 23-		V ₃ or V _{av34}			on 25-15 or 2	5-16)
s V_3 or $V_{av34} > 2,70$	00 pc/h?	s 🗹 No				₃₄ > 2,700 pc/h ²			
s V_3 or $V_{av34} > 1.5$	[*] V ₁₂ /2	s 🗹 No			0 0	$_{34} > 1.5 * V_{12}/2$			
Yes,V _{12a} =	pc/h	(Equation 25-	8)		If Yes,V _{12a} =	:	pc/h (Equa	ation 25-18)	
Capacity Che	cks				Capacit	y Checks			
	Actual	Ca	pacity	LOS F?		Actu	al	Capacity	LOS F
					V _F		Exhibit :	25-14	
V_{FO}	3425	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhibit :	25-14	
					V _R		Exhibit	25-3	
low Entering	a Merae In	fluence A	rea		'	tering Div	erge Influ	ience Are	
	Actual		esirable	Violation?		Actual		esirable	Violation?
V _{R12}	2345	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-1	i i	
evel of Serv	ice Deterr	nination (i	not F)			Service L			ot F)
		0.0078 V ₁₂ - 0.00			1	D _R = 4.252 +			
) _R = 15.3 (pc	.,	12	,,			c/mi/ln)	12	5	
OS = B (Exhil	oit 25-4)				LOS = (E	xhibit 25-4)			
Speed Deterr	nination					Determina	tion		
M _S = 0.257 (Exi					 	xhibit 25-19)			
=	(Exhibit 25-19)					ph (Exhibit 25-1	9)		
	(Exhibit 25-19)					ph (Exhibit 25-1			
	(Exhibit 25-14)				ľ	ph (Exhibit 25-1	•		
5 = 52.9 mph									

		RAMPS	S AND RAI	IP JUNCTI	ONS WO	RKS	HEET			
General Infor	mation			Site Infor						
Analyst Agency or Company Date Performed Analysis Time Period	SEB CHA 02/1! I AM			Freeway/Dir of Tr Junction Jurisdiction Analysis Year	avel [Exit 5 N				
Project Description	Exit 4									
Inputs		Terrain: Leve	ı						_	
Upstream Adj Ramp		Terrain. Leve	l						Downstrea Ramp	ım Adj
✓ Yes ✓ Or	1								☐ Yes	□ On
□ No □ Of	f								✓ No	Off
L _{up} = 7810	ft	9	_{FF} = 56.0 mph		S _{FR} = 3	E O mr	h		L _{down} =	ft
$V_u = 570 \text{ v}$	eh/h		• •	(show lanes, L _A ,		o.u iiip	VIII		V _D =	veh/h
Conversion t		der Rase ((SHOW lattes, LA	D' R' V f'					
	<i>y</i>			0/ Truck	0/ Du	Т	f	,	V - V/DUE	v f v f
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv	+	f _{HV}	-	v = V/PHF	*** F
Freeway	2600	0.92	Level	2	0	-	990	1.00	28	
Ramp	490	0.96	Level	2	0	+	990	1.00	51	
UpStream DownStream	570	0.92	Level	2	0	0.	990	1.00	62	26
		Merge Areas		1				Diverge Areas		
Estimation of	f v ₁₂				Estimati	ion c	of v ₁₂			
	V ₁₂ = V _F	(P _{FM})					V ₁₂ =	= V _R + (V _F - V _I	R)P _{ED}	
L _{EQ} =	(Equ	ation 25-2 or	25-3)		L _{FO} =		6	425.39 (Equati	on 25-8 or	25-9)
P _{FM} =	using	Equation (E	xhibit 25-5)		P _{FD} =			.665 using Eq		
V ₁₂ =	pc/h				V ₁₂ =		2	071 pc/h		
V ₃ or V _{av34}	pc/h	(Equation 25	-4 or 25-5)		V_3 or V_{av34}		7	83 pc/h (Equa	tion 25-15	or 25-16)
Is V_3 or $V_{av34} > 2,70$	00 pc/h?	s 🗆 No			Is V ₃ or V _{av3}	$_{34} > 2.7$	'00 pc/h?	☐ Yes 🗹 No		
Is V_3 or $V_{av34} > 1.5$	· -							☐ Yes 🗹 No		
If Yes,V _{12a} =		(Equation 25	-8)		If Yes,V _{12a} =			oc/h (Equation	25-18)	
Capacity Che	cks				Capacity	y Ch	ecks			
	Actual	Ci	apacity	LOS F?	,,		Actual	i	pacity	LOS F
.,					V _F		2854	Exhibit 25-1		No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2338	Exhibit 25-1		No
					V _R		516	Exhibit 25-3		No
Flow Entering		1		\P_1=0	Flow En	_		rge Influen		1 1/2 1
W	Actual	Exhibit 25-7	Desirable	Violation?	\/	_	Actual	Max Desirat		Violation
V _{R12} Level of Serv	ica Dotorr		f not E)	1	V ₁₂		2071 vice D e	Exhibit 25-14 eterminatio	4400:All	No No
$D_{R} = 5.475 + 0.00$		•).0086 V ₁₂ - 0.	•	<u>r) </u>
	•••	0.0070 v ₁₂	0.00021 LA			1.	/232 + C /mi/ln)	12 - 0.	000 <u>-</u> D	
$D_R = (pc/mi/s)$ LOS = (Exhib	,				I ''		/mi/in) oit 25-4)			
Speed Deteri					Speed D	`				
_					 		xhibit 25			
$M_S = (Exibit 2)$ $S_R = mph (Exhole)$					1 ~	,	xriibit 25 ı (Exhibit	,		
ເລ _ກ = mnn (⊢xr	ibit 25-19)					•	•	: 25-19)		
	ibit 0E 40\									
S ₀ = mph (Exh	iibit 25-19) iibit 25-14)				1 -		ı (Exhibit ı (Exhibit			

		KAWIP	S AND RAM			NNO	IILL I			
General Info	rmation			Site Infor						
Analyst Agency or Compan Date Performed Analysis Time Peric	02/1!		Ji Ji	reeway/Dir of Tr unction urisdiction nalysis Year	! 1	Southb Exit 2V NYSD(2026 D	V Off			
Project Description				a.joio . oui	•	2020 0	namona –			
Inputs										
Upstream Adj Ramı)	Terrain: Leve							Downstrea Ramp	m Adj
☐ Yes ☐ O	n								✓ Yes	☑ On
™ No □ O	ff								□ No	☐ Off
L _{up} = ft		S	_{FF} = 56.0 mph		S _{FR} = 4	0.0 mp	oh .		down	1300 ft
V _u = veh/			Sketch (show lanes, L _A					V _D =	340 veh/h
Conversion	to pc/h Un	der Base (Conditions			1				
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	5250	0.92	Level	2	0	0.	.990	1.00	576	54
Ramp	940	0.92	Level	2	0	0.	.990	1.00	103	32
UpStream	1	 				4				
DownStream	340	0.92	Level	2	0	0.	.990	1.00	37	3
Estimation o		Merge Areas			Fotimoti	ion		Diverge Areas		
Estimation o					Estimati	on c				
	$V_{12} = V_{F}$	(P _{FM})					V ₁₂ =	= V _R + (V _F - V	_R)P _{FD}	
L _{EQ} =	(Equ	ation 25-2 or	25-3)		L _{EQ} =		(Equation 25-8	3 or 25-9)	
P _{FM} =	using	Equation (E	xhibit 25-5)		P _{FD} =		0	.568 using Ed	quation (Exhi	bit 25-12)
V ₁₂ =	pc/h				V ₁₂ =		3	722 pc/h		
V ₃ or V _{av34}	pc/h	(Equation 25	-4 or 25-5)		V ₃ or V _{av34}		2	042 pc/h (Equ	ation 25-15	or 25-16
Is V_3 or $V_{av34} > 2.7$	00 pc/h?	s 🗆 No				$_{24} > 2.7$		TYes ✓ No		
Is V_3 or $V_{av34} > 1.5$								Tyes ✓ No		
If Yes,V _{12a} =	· -	(Equation 25	-8)		If Yes,V _{12a} =			oc/h (Equation	25-18)	
Capacity Ch		(1	-,		Capacity			(1	/	
Capacity City	Actual	C.	apacity	LOS F?	Joapaon	, 0	Actual	Ca	pacity	LOS F
	7101441	† Ť	apaonj	1 20011	V _F		5764	Exhibit 25-1	1	No
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V	4732	Exhibit 25-1	_	No
Y FO		LAHIDIT 25-7				^v R				
	<u> </u>				V _R		1032	Exhibit 25-3		No
Flow Enterin	1	1		1 , , , , , =	Flow En	-1		rge Influen		10.00
	Actual	_	Desirable	Violation?	1		Actual	Max Desiral		Violation ²
V _{R12}	<u> </u>	Exhibit 25-7			V ₁₂		3722	Exhibit 25-14	4400:All	No
Level of Serv					+			eterminatio		-)
$D_R = 5.475 + 0$		0.0078 V ₁₂ -	0.00627 L _A			O _R = 4	4.252 + 0	0.0086 V ₁₂ - 0.	.009 L _D	
$D_R = (pc/m)$	i/ln)				$D_R = 33$.6 (pc	:/mi/ln)			
LOS = (Exhib	oit 25-4)				LOS = D	(Exhi	bit 25-4)			
Speed Deter	mination				Speed D)eter	minatio	on		
$M_S = (Exibit 2)$	 25-19)				D _s = 0.4	456 (E	xhibit 25	-19)		
· ·	hibit 25-19)					•	n (Exhibit	,		
	hibit 25-19)				1	-	(Exhibit			
	hibit 25-19)				1.	-	i (Exhibit			
S = mph(Ex)										

General Infor	mation			Site Infor						
Analyst Agency or Company Date Performed Analysis Time Perioc	02/15		J	reeway/Dir of Tr unction urisdiction .nalysis Year	! 1	Exit 4 S NYSD(
Project Description	Exit 4									
Inputs		,								
Upstream Adj Ramp		Terrain: Leve							Downstrea Ramp	m Adj
☐ Yes ☐ Or									✓ Yes	☑ On
✓ No ☐ Of	f								□ No	☐ Off
L _{up} = ft		S	_{FF} = 56.0 mph		S _{FR} = 4	0 0 mr	ıh		L _{down} =	1820 ft
V _u = veh/h			Sketch (show lanes, L _A		0.0 111			V _D =	510 veh /l
Conversion to		der Base (Conditions		•	-		Y	•	
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	<u> </u>	f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	5600	0.92	Level	2	0	_	990	1.00	614	
Ramp UpStream	690	0.92	Level	2	0	0.	990	1.00	75	7
DownStream	510	0.93	Level	5	0		976	1.00	56	2
Downoulean		Merge Areas	LCVCI	J		0.		Diverge Areas	30	
Estimation of	f v ₁₂	<u> </u>			Estimati	ion c	of V ₁₂	<u> </u>		
	V ₁₂ = V _F	(P _{EM})			†			= V _R + (V _F - V	D)P_D	
L _{EQ} =		、 ™ ⁄ ation 25-2 or	25-3)		L _{EQ} =			Equation 25-8		
P _{FM} =		Equation (E			P _{FD} =			.571 using Ed		bit 25-12)
V ₁₂ =	pc/h	. ,	,		V ₁₂ =			838 pc/h	,	
V ₃ or V _{av34}	pc/h	(Equation 25	-4 or 25-5)		V ₃ or V _{av34}			310 pc/h (Equ	ation 25-15	or 25-16
Is V_3 or $V_{av34} > 2,70$						₈₄ > 2,7		Tyes ☑ No		
Is V_3 or $V_{av34} > 1.5$								Tyes ✓ No		
If Yes,V _{12a} =	pc/h	(Equation 25	-8)		If Yes,V _{12a} =			oc/h (Equation	25-18)	
Capacity Che	cks				Capacity		ecks			
	Actual	C	apacity	LOS F?			Actual	Ca	pacity	LOS F
					V _F		6148	Exhibit 25-1	4 6780	No
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	5391	Exhibit 25-1	4 6780	No
					V _R		757	Exhibit 25-3	3 2100	No
Flow Entering	a Merae In	fluence A	rea	<u> </u>	Flow En	terir	a Dive	rge Influen	ce Area	
	Actual	1	Desirable	Violation?		1	Actual	Max Desiral		Violation
V _{R12}		Exhibit 25-7			V ₁₂	;	3838	Exhibit 25-14	4400:All	No
Level of Serv	ice Detern	nination (i	f not F)		Level of	Ser	vice De	eterminatio	n (if not l	F)
$D_R = 5.475 + 0.$	00734 v _R +	0.0078 V ₁₂ -	0.00627 L _A			$D_R = 4$	1.252 + 0	0.0086 V ₁₂ - 0.	009 L _D	
D _R = (pc/mi/	ln)				D _R = 31	.0 (pc	/mi/ln)			
LOS = (Exhib i	t 25-4)				LOS = D	(Exhi	bit 25-4)			
Speed Detern	nination		•		Speed D	eter	minati	on		
$M_S = $ (Exibit 2	5-19)				$D_S = 0.2$	431 (E	xhibit 25	-19)		
o .	ibit 25-19)				$S_R = 50$	0.0 mph	(Exhibit	25-19)		
					$S_0 = 56$	3 mnh	(Exhibit	25-19)		
$S_0 = mph (Exh$	IIDIL 25-19)				-0 30	.J IIIpi	(EXIIIDI	=0 .0,		

	RAI	MPS AND I	RAMP JUN	CTIONS W	ORKSHE	ET			
General Infor			. 30.1	Site Infor					
Analyst Agency or Company Date Performed Analysis Time Perioo	SEB CHA 02/15 I AM		Ju Ju	eeway/Dir of Tr inction irisdiction nalysis Year	avel	Southbound I-8 Exit 4 SB On-R NYSDOT 2026 Diamond			
Project Description	Exit 4								
Inputs		Terrain: Level						D	A -I:
Jpstream Adj Ramp		Torium. Lovor						Downstre Ramp	am Adj
Yes Or	1							☐ Yes	□ On
□ No Of	f							✓ No	☐ Off
								1	
_{-up} = 1820	ft		_F = 56.0 mph		S _{FR} = 4	10 0 mnh		L _{down} =	ft
$V_{u} = 690 \text{ v}$	eh/h		•	show lanes, L _A ,		o.o mpn		$V_D =$	veh/h
Conversion t	o pc/h Uni	der Base C		_A	-D' - R' - 1'				
(pc/h)	V	PHF	Terrain	%Truck	%Rv	f _{HV}	fp	v = V/PHF	x f _{HV} x f _p
• •	(Veh/hr)				0	0.990		+	<u>'</u>
Freeway Ramp	4900 510	0.92	Level Level	5	0	0.990	1.00		5379 562
UpStream	690	0.73	Level	2	0	0.990	1.00		757
DownStream									
		Merge Areas					Diverge Areas	3	
Estimation of	12 12				Estimat	ion of v ₁₂			
	$V_{12} = V_F$	(P _{FM})				V ₁₂	= V _R + (V _F - \	/ _R)P _{FD}	
-EQ =	1540.59	(Equation 2	25-2 or 25-3)		L _{EQ} =		(Equation 2		9)
P _{FM} =	0.614	using Equation	on (Exhibit 25-5)		P _{FD} =		using Equa	tion (Exhibit	25-12)
/ ₁₂ =	3303				V ₁₂ =		pc/h		
₃ or V _{av34}	2076 5)	pc/h (Equation	n 25-4 or 25-		V_3 or V_{av34}		pc/h (Equation	n 25-15 or 25	-16)
ls V ₃ or V _{av34} > 2,70		s 🗹 No			Is V ₃ or V _{av3}	$_{34} > 2,700 \text{ pc/h}^{\circ}$? ☐ Yes ☐ N	lo	
Is V ₃ or V _{av34} > 1.5							☐ Yes ☐ N		
f Yes,V _{12a} =	pc/h	(Equation 25-	8)		If Yes,V _{12a} =	:	pc/h (Equat	ion 25-18)	
Capacity Che	cks				Capacit	y Checks			
	Actual	Ca	pacity	LOS F?	ļ	Actu		apacity	LOS F
					V _F		Exhibit 25	5-14	
V_{FO}	5941	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhibit 25	5-14	
					V _R		Exhibit 2		
Flow Entering				T	Flow En		erge Influe		
W	Actual		esirable	Violation?		Actual	Max De	sirable 	Violation ²
V _{R12}	3865	Exhibit 25-7	4600:All	No	V ₁₂	Comitee t	Exhibit 25-14	ion /if :::	<u> </u>
Level of Serv					1		Determinat		or r)
••		0.0078 V ₁₂ - 0.00	OZILA				- 0.0086 V ₁₂ -	o.oos L _D	
$O_R = 27.2 \text{ (pc)}$ OS = C (Exhil)						c/mi/ln) Exhibit 25-4)			
Speed Deterr						Determina	tion		
						xhibit 25-19)			
$M_S = 0.403 \text{ (Exi}$						ph (Exhibit 25-	19)		
	(Exhibit 25-19) (Exhibit 25-19)					ph (Exhibit 25-			
	(Exhibit 25-19)					ph (Exhibit 25-	•		
S = 50.4 mph									

		RAI	MPS AND	RAMP JUNG	TIONS W	OKKSHE	<u> </u>				
General	Inforn	nation			Site Infor	mation					
Analyst Agency or C Date Perforr Analysis Tim	med	SEB CHA 02/15 AM	/12	Jui Jui	eeway/Dir of Tr nction risdiction alysis Year	E N			mp		
Project Desc	cription E	xit 4									
Inputs											
Jpstream A	•		Terrain: Level							Downstre Ramp	eam Adj
Yes	□ On									✓ Yes	☐ On
™ No	☐ Off									□ No	✓ Off
-up =	ft		S	_{FF} = 56.0 mph		S _{FR} = 40	0.0 mp	h		L _{down} =	6100 ft
√ _u =	veh/h			Sketch (s	show lanes, L _A ,	$L_{D'}V_{R'}V_{f}$				$V_D =$	690 veh/h
Convers	sion to	pc/h Unc	ler Base C	Conditions							
(pc/h	h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f	HV	f _p	v = V/PH	F x f _{HV} x f _p
Freeway		5300	0.92	Level	2	0	0.9	90	1.00		5818
Ramp		300	0.93	Level	3	0	0.9	85	1.00	<u> </u>	327
UpStream											
DownStrear	m	690	0.92	Level	2	0	0.9		1.00		757
Estimat	ion of		Merge Areas			Estimati	on o		Diverge Area	S	
_Sumat	ion or					ESumau	OII O	1 V ₁₂			
		$V_{12} = V_{F}$	(P _{FM})					V ₁₂ =	V _R + (V _F -	V _R)P _{ED}	
-EQ =		3043.83	(Equation :	25-2 or 25-3)		L _{EQ} =			(Equation 2		9)
P _{FM} =		0.614	using Equati	on (Exhibit 25-5)		P _{FD} =			using Equa		
/ ₁₂ =		3572 p	oc/h			V ₁₂ =			pc/h	(=,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. 20 . 2,
/ ₃ or V _{av34}		2246 p	oc/h (Equatio	n 25-4 or 25-		V ₃ or V _{av34}			pc/h (Equation	n 25-15 or 21	5-16)
		5)	_				< 2.7I		Yes I		5-10)
		pc/h? ☐ Yes									
Is V ₃ or V _{av}	₃₄ > 1.5 * \	$I_{12}/2 \square \text{ Yes}$	s 🗹 No						☐ Yes ☐ N		
Yes,V _{12a} =	=	pc/h (Equation 25	-8)		If Yes,V _{12a} =			pc/h (Equa	tion 25-18)	
Capacit	y Chec	ks				Capacity	/ Che	ecks			
		Actual	Ca	ıpacity	LOS F?			Actual	(Capacity	LOS F
						V_{F}			Exhibit 2	5-14	
V _{FC}	,	6145	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		Exhibit 2	5-14	
						V _R			Exhibit 2	5-3	
Elow En	toring	Morgo In	fluence A		<u>. </u>		torin	a Dive	rge Influ		<u></u>
10 W EI	Termy	Actual		Desirable	Violation?	I IOW EII	1	ctual	Max De		Violation?
V _{R1}	_	3899	Exhibit 25-7	4600:All	No	V ₁₂		Judi	Exhibit 25-14		violation:
YR1	f Sonii		nination (i		140		Sor	ice D	eterminat) of F)
			0.0078 V ₁₂ - 0.0								<i>J(1)</i>
			1.0070 V ₁₂ - 0.0	JUZI LA			• •		0.0086 V ₁₂	- 0.009 L _D	
IX.	27.6 (pc/n	•					c/mi/lr	•			
	C (Exhibit						xhibit				
Speed L	Determ	ination				Speed D			on		
$M_{\rm S} = 0.$	409 (Exibi	t 25-19)				$D_s = (E)$	xhibit 2	5-19)			
-	0.3 mph (E	xhibit 25-19)				S _R = mp	oh (Exh	ibit 25-19)		
	-	xhibit 25-19)				S ₀ = mp	h (Exh	ibit 25-19)		
U		xhibit 25-14)					h (Exh	ibit 25-15)		
		/									

Conversions to pc/h Under Base Conditions Far Residence Resi				FREEWA	Y WEAV	/ING WOR	KSHEE	Т				
Conversions to pc/h Under Base Conditions Far Residence Resi	Genera	Informat	ion			Site Info	rmation					
Veaving sequence Normal	Date Perfor	med	CHA 02/15/	12		Weaving Seg Jurisdiction	Location	Exit 2 NYSD	Exit 2E on to 2W off NYSDOT			
Veaving number of lanes, N A State Volume ratio, VR Weaving ratio, R O.26	Inputs											
Crith V	Weaving nu	mber of lanes,	11 .	4 815	Volume ratio, VR Weaving ratio, R				0.26			
1.5	Conver	sions to p	c/h Unde	r Base C	onditio					_		
1.00 0 0.92 2 0 1.5 1.2 0.990 1.00 0 0 0.92 2 0 1.5 1.2 0.990 1.00 735 0.92 2 0 1.5 1.2 0.990 1.00 340 0.92 0 0.975 0.990 0.99	(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	${\sf f}_{\sf HV}$	fp	٧		
1.00 0 0.92 2 0 1.5 1.2 0.990 1.00 0 0 0.92 2 0 1.5 1.2 0.990 1.00 735 0.92 2 0 1.5 1.2 0.990 1.00 340 0.92 0 0.975 0.990 0.99	V_{o1}	2790	0.92	2	0	1.5	1.2	0.990	1.00	3062		
March 670 0.92 2 0 1.5 1.2 0.990 1.00 735 March 2 310 0.92 2 0 1.5 1.2 0.990 1.00 340 March 2 1075 V _{nw} 3062 March 3062 4137 Veaving and Non-Weaving Speeds Unconstrained Weaving (i = w) Non-Weaving (i = mw) Weaving (i = w) Non-Weaving (i = mw) (Exhibit 24-6) 0.15 0.0035 (Exhibit 24-6) 0.20 4.00 (Exhibit 24-6) 0.97 1.30 (Exhibit 24-6) 0.98 0.48 eaving and non-weaving 38.21 46.09 eaving and non-weaving 38.21 46.09 eaving and non-weaving 38.21 46.09 eaving and non-weaving 38.21 46.09 eaving and non-weaving 38.21 46.09 eaving and non-weaving 38.21 46.09 eaving and non-weaving 38.21 46.09 eaving segment Speed, Density, Level of Service, and Capacity	V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0		
March 1075 V Nu	V _{w1}	670	0.92	2	0	1.5	1.2	0.990	1.00	735		
1075 V _{nw} 3062 4137	V _{w2}	310	0.92	2	0	1.5	1.2	0.990	1.00	340		
Veaving and Non-Weaving Speeds Unconstrained Constrained Weaving (i = w) Non-Weaving (i = nw) Weaving (i = w) Non-Weaving (i = nw) Weaving (i = w) Non-Weaving (i = nw) Non-Weaving (i =	V _w				1075	V _{nw}				3062		
Unconstrained Constrained Weaving (i = w) Non-Weaving (i = nw) Weaving (i = w) Non-Weaving (= nw) (Exhibit 24-6) 0.15 0.0035 (Exhibit 24-6) 2.20 4.00 (Exhibit 24-6) 0.97 1.30 (Exhibit 24-6) 0.80 0.75 eaving intensity factor, Wi 0.98 0.48 eaving and non-weaving eads, S (mi/h) umber of lanes required for unconstrained operation, Nw 1.33 laximum number of lanes, Nw (max) 1.40 If Nw < Nw(max) unconstrained operation Veaving Segment Speed, Density, Level of Service, and Capacity //eaving segment density, D (pc/mi/ln) 23.64 evel of service, LOS apacity as a 15-minute flow rate, c (veh/h) 6348 apacity as a full-hour volume, c _h (veh/h) 5840	V					TIW				4137		
Weaving (i = w) Non-Weaving (i = nw) Weaving (i = w) Non-Weaving (= nw)	Weavin	g and No	n-Weavin	g Speeds	<u> </u>							
(Exhibit 24-6) 0.15 0.0035 (Exhibit 24-6) 2.20 4.00 (Exhibit 24-6) 0.97 1.30 (Exhibit 24-6) 0.80 0.75 eaving intensity factor, Wi 0.98 0.48 eaving and non-weaving eachs, Si (mi/h) 38.21 46.09 umber of lanes required for unconstrained operation, Nw aximum number of lanes, Nw (max) 1.33 laximum number of lanes, Nw (max) 1.40 If Nw < Nw(max) unconstrained operation												
(Exhibit 24-6) (Exhi	/E 13330	4.()			4		Weavi	ng (i = w)	Non-Wea	ving (= nw)		
(Exhibit 24-6) 0.97 1.30 (Exhibit 24-6) 0.80 0.75 eaving intensity factor, Wi 0.98 0.48 eaving and non-weaving eeds, Si (mi/h) 38.21 46.09 eeds, Si (mi/h) 1.33 1.40 If Nw < Nw(max) unconstrained operation If Nw > Nw (max) constrained operation If Nw >			-		1							
(Exhibit 24-6) 0.80 0.75 eaving intensity factor, Wi 0.98 0.48 eaving and non-weaving eeds, Si (mi/h) 38.21 46.09 umber of lanes required for unconstrained operation, Nw 1.33 laximum number of lanes, Nw (max) 1.40 If Nw < Nw(max) unconstrained operation Veaving Segment Speed, Density, Level of Service, and Capacity //eaving segment density, D (pc/mi/ln) 23.64 evel of service, LOS apacity of base condition, c _b (pc/h) 6411 apacity as a 15-minute flow rate, c (veh/h) 6348 apacity as a full-hour volume, c _h (veh/h) 5840			-		1				1			
eaving intensity factor, Wi 0.98 0.48 eaving and non-weaving eeds, Si (mi/h) 38.21 46.09 umber of lanes required for unconstrained operation, Nw 1.33 laximum number of lanes, Nw (max) 1.40 If Nw < Nw(max) unconstrained operation if Nw > Nw (max) constrained operation Veaving Segment Speed, Density, Level of Service, and Capacity /eaving segment speed, S (mi/h) 43.74 /eaving segment density, D (pc/mi/ln) 23.64 evel of service, LOS apacity of base condition, c_b (pc/h) 6411 apacity as a 15-minute flow rate, c (veh/h) 6348 apacity as a full-hour volume, c_h (veh/h) 5840	_		-		1							
umber of lanes required for unconstrained operation, Nw 1.33 laximum number of lanes, Nw (max) 1.40 If Nw < Nw(max) unconstrained operation if Nw > Nw (max) constrained operation Veaving Segment Speed, Density, Level of Service, and Capacity /eaving segment speed, S (mi/h) 43.74 /eaving segment density, D (pc/mi/ln) 23.64 evel of service, LOS apacity of base condition, c_b (pc/h) 6411 apacity as a 15-minute flow rate, c (veh/h) 6348 apacity as a full-hour volume, c_h (veh/h) 5840	•		0.98	}	<u> </u>							
umber of lanes required for unconstrained operation, Nw 1.33 laximum number of lanes, Nw (max) 1.40 If Nw < Nw(max) unconstrained operation if Nw > Nw (max) constrained operation Veaving Segment Speed, Density, Level of Service, and Capacity /eaving segment speed, S (mi/h) 43.74 /eaving segment density, D (pc/mi/ln) 23.64 evel of service, LOS C C apacity of base condition, c_b (pc/h) 6411 apacity as a 15-minute flow rate, c (veh/h) 6348 apacity as a full-hour volume, c_h (veh/h) 5840			38.2	1	40	5.09						
Veaving Segment Speed, Density, Level of Service, and Capacity/eaving segment speed, S (mi/h) 43.74 /eaving segment density, D (pc/mi/ln) 23.64 evel of service, LOSCapacity of base condition, c_b (pc/h) 6411 apacity as a 15-minute flow rate, c (veh/h) 6348 apacity as a full-hour volume, c_h (veh/h) 5840	Number of I Maximum n	anes required umber of lanes	s, Nw (max)			1.40	_					
/eaving segment speed, S (mi/h) 43.74 /eaving segment density, D (pc/mi/ln) 23.64 evel of service, LOS C apacity of base condition, c _b (pc/h) 6411 apacity as a 15-minute flow rate, c (veh/h) 6348 apacity as a full-hour volume, c _h (veh/h) 5840			• •					<u> </u>	rained operati	ion		
/eaving segment density, D (pc/mi/ln) 23.64 evel of service, LOS apacity of base condition, c _b (pc/h) apacity as a 15-minute flow rate, c (veh/h) apacity as a full-hour volume, c _h (veh/h) 5840	weavin	g Segmer	nt Speed,	Density,		T Service,	and Cap	pacity				
evel of service, LOS apacity of base condition, c _b (pc/h) apacity as a 15-minute flow rate, c (veh/h) apacity as a full-hour volume, c _h (veh/h) 5840												
apacity of base condition, c _b (pc/h) 6411 apacity as a 15-minute flow rate, c (veh/h) 6348 apacity as a full-hour volume, c _h (veh/h) 5840		<u> </u>	, в (релили)		 							
apacity as a 15-minute flow rate, c (veh/h) 6348 apacity as a full-hour volume, c _h (veh/h) 5840			ı. c. (pc/h)									
apacity as a full-hour volume, c _h (veh/h) 5840			D -	n/h)								
The second secon												
A JI E S	Notes		- , - N (, n,	,	1 55.5							

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 2/16/2012 9:34 AM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

			FREEWA	Y WEAV	ING WOR	KSHEE	Τ			
General	Informat	ion			Site Info	rmation				
Analyst Agency/Com Date Perform Analysis Tim	ned	SEB CHA 02/15/ AM	12		Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	Location	Exit 2' NYSD	I-87 Southbound Exit 2W on to 2E off NYSDOT 2026 Diamond		
Inputs										
	e-flow speed, s nber of lanes, length, L (ft)	11	56 4 810 Lev		Weaving type Volume ratio, Weaving ratio	, VR		A 0.: 0.:		
Convers	ions to p	c/h Unde	r Base C	ondition	าร					
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f_{HV}	fp	V	
V_{o1}	3550	0.92	2	0	1.5	1.2	0.990	1.00	3897	
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0	
V_{w1}	750	0.92	2	0	1.5	1.2	0.990	1.00	823	
V_{w2}	340	0.92	2	0	1.5	1.2	0.990	1.00	373	
V _w	1			1196	V_{nw}		•	•	3897	
V	1				,	ı			5093	
Weaving	and No	n-Weavin	g Speeds	3						
			Unconstr					trained		
o /F.,b;b;t 0.4	()	Weaving			ving (i = nw)	Weavir	ng (i = w)	Non-Wea	ving (= nw)	
a (Exhibit 24 b (Exhibit 24		0.15 2.20			.00			 		
c (Exhibit 24-		0.97		<u> </u>	.30					
d (Exhibit 24	<u>, </u>	0.80			.75					
Weaving intensity		1.16)	1	.58					
Weaving and nor speeds, Si (mi/h)		36.3	5	44	1.06					
Number of la	nes required	for unconstrair	ned operation,	Nw	1.29					
	mber of lanes	, ,			1.40	= 36 N N				
		(max) unconst					v (max) constr	rained operati	on	
Weaving seg	J Segmen	S (mi/h)	Density,	41.97	f Service,	anu Cap	acity			
	ment density,			30.34						
Level of serv		, D (pomini)		D						
	ase condition	n, c _h (pc/h)		6543						
		ow rate, c (veh	n/h)	6478						
		ume, c _h (veh/h		5960						
Notes		.1								

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 2/16/2012 9:35 AM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 mith 70 mith 70 mith 65 mith 55 mith 55 mith 40	B C C	150 1750 1750 1750 1600 2000	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	Input FFS, N, v _p FFS, LOS, FFS, N, AA FFS, LOS, FFS, LOS,	v _p N, S, D N v _p , S, D .DT LOS, S, D AADT N, S, D
General Information	Flow Rate (pc/h/lin		Site Inforn	nation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/15/12 AM			ction of Travel	Northbound Exit 2 to Ex NYSDOT 2036 Diam	kit 4
Oper.(LOS)			Des.(N)		☐ Plann	ing Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	3650	veh/h veh/day veh/h	Peak-Hour Fa %Trucks and %RVs, P _R General Terra Grade %	Buses, P _T	0.92 2 0 Level mi	
Driver type adjustment	1.00			Up/Down %		
Calculate Flow Adjustr	1.00		Е		1.2	
f _p E _⊤	1.50		E _R	_T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs	7.0			d Adj and FFS		
Lane Width Rt-Shoulder Lat. Clearance	12.0 6.0	ft ft	f _{LW}	a Auj ana i i c	<u>, </u>	mi/h
Interchange Density Number of Lanes, N	0.50 3	I/mi	f _{LC} f _{ID}			mi/h mi/h
FFS (measured) Base free-flow Speed, BFFS	56.0	mi/h mi/h	f _N FFS		56.0	mi/h mi/h
LOS and Performance	Measures	1111/11	Design (N)	\		
Operational (LOS) v _p = (V or DDHV) / (PHF x N) f _p) S	x f _{HV} x 1336 56.0	pc/h/ln mi/h	<u>Design (N)</u> Design LOS	HV) / (PHF x N x	f _{HV} x	pc/h mi/h
D = v _p / S LOS	23.9 C	pc/mi/ln	$D = v_p / S$	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc	ation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base free		f _p - Page 23-	23-8, 23-10, 23-1°	1 f f	LW - Exhibit 23-4 LC - Exhibit 23-5 N - Exhibit 23-6 D - Exhibit 23-7
DDHV - Directional design ho				Version 5.3		rated: 2/17/2012 1:19

HCS+TM Version 5.3

Generated: 2/17/2012 1:19 PM

HCS+TM Version 5.3

Generated: 2/17/2012 1:20 PM

HCS+TM Version 5.3

Generated: 2/17/2012 1:20 PM

HCS+TM Version 5.3

Generated: 2/17/2012 1:20 PM

HCS+TM Version 5.3

Generated: 2/17/2012 1:21 PM

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 mith 70 mith 65 mith 60 mith 55 mith 55 mith 50 LOS A 10 LOS A 20 0 400 800	B C C S	1500 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v FFS, LOS FFS, LOS FFS, LOS FFS, LOS	, v _p N, S, D , N v _p , S, D ADT LOS, S, D , AADT N, S, D
General Information	Flow Rate (pc/h/lir)	Site Inforn	nation		
Analyst	SEB			ction of Travel	Southbou	nd I-87
Agency or Company Date Performed	CHA 02/15/12		From/To Jurisdiction		Exit 5 to E NYSDOT 2036 Dian	xit 4
Analysis Time Period Project Description Exit 4	AM		Analysis Yea	I	2030 Dian	ТОПИ
✓ Oper.(LOS)			Des.(N)		☐ Planı	ning Data
Flow Inputs			. ,			
Volume, V AADT Peak-Hr Prop. of AADT, K	5850	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R	,	0.92 2 0	
Peak-III Flop, of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustr				<u>оргионт 70</u>		
f _p	1.00		E _R		1.2	
E _T	1.5		• •	_T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs				d Adj and FFS		
Lane Width	12.0	ft		<u> </u>		:/b
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3		f_ID			mi/h
FFS (measured)	56.0	mi/h	f_N			mi/h
Base free-flow Speed, BFFS	00.0	mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N)	<u> </u>		
Operational (LOS) $V_p = (V \text{ or DDHV}) / (PHF x N)$	x f x		<u>Design (N)</u> Design LOS			
f _p)	2141	pc/h/ln	1.5	HV) / (PHF x N x	t _{HV} x	pc/h
S	53.0	mi/h	f _p)			:/l-
$D = v_p / S$	40.4	pc/mi/ln	S D = v / S			mi/h
LOS	E		D = v _p / S	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flov BFFS - Base fr		E _R - Exhibits2 E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1 12	1	f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6
DDHV - Directional design ho	our volume		105, 5, FFS	, v _p - Exhibits 23-2	2, 23-3	f _{ID} - Exhibit 23-7
Copyright © 2007 University of Florida,			,,,,,, TM	Version 5.3	Gen	erated: 2/17/2012 1:21

HCS+TM Version 5.3

Generated: 2/17/2012 1:21 PM

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
_ 00						
Froe-Flow Speed FFS = 75 mith 70 mith	B, C	450 (600 1750 0		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v FFS, LOS, N FFS, N, AAU FFS, LOS, N	V _P , S, D DT LOS, S, D ADT N, S, D
0 400 800	1200 Flow Rate (pc/h/lin	1600 200 0)	2400			
General Information		-,-	Site Inform	nation		
Analyst Agency or Company Date Performed Analysis Time Period	CLD CHA 07/30/13 AM		Highway/Dire From/To Jurisdiction Analysis Yea	ection of Travel	Northbound Exit 5 to Exi NYSDOT 2036 Diamo	t 6
Project Description Exit 4			Dog (NI)		□ Dlannir	na Data
✓ Oper.(LOS) Flow Inputs			Des.(N)		□ Plannir	ng Data
Volume, V AADT Peak-Hr Prop. of AADT, K	2550	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.92 2 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustr	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
•	1.00		E _R		1.2	
f _p E _⊤	1.50			1) . D /E 1)]	0.990	
Speed Inputs	1.5			_T - 1) + P _R (E _R - 1)] d Adj and FFS		
Lane Width	12.0	ft		u Auj anu 113)	
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	4		f_{ID}			mi/h
FFS (measured)	56.0	mi/h	f_N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N))		
Operational (LOS) v _p = (V or DDHV) / (PHF x N : f_)	x f _{HV} x 700	pc/h/ln	$\frac{\text{Design (N)}}{\text{Design LOS}}$ $v_p = (V \text{ or DD})$)HV) / (PHF x N x	f _{HV} x	pc/h
S	56.0	mi/h	f _p)			·
$D = v_p / S$	12.5	pc/mi/ln	S / C			mi/h
LOS	В		D = v _p / S	mbor of Lanca N		pc/mi/ln
Glossary			Factor Loc	mber of Lanes, N		
N - Number of lanes	S - Speed		1			
V - Hourly volume	D - Density		E _R - Exhibits2		_	_W - Exhibit 23-4
v _o - Flow rate	FFS - Free-flow	/ speed	·	23-8, 23-10, 23-1	_	_C - Exhibit 23-5
LOS - Level of service	BFFS - Base fr		f _p - Page 23-			- Exhibit 23-6
DDHV - Directional design ho		-1,	LOS, S, FFS,	, v _p - Exhibits 23-2	2, 23-3 f _{IC}	o - Exhibit 23-7
Copyright © 2007 University of Florida,			HCS+ ^{TN}	Nersion 5.3	Genera	ated: 8/12/2013 3:28 Pt

	DASIC F	REEWAY SE	EGMENTS V	VORKSHEET		
No. No.	By C.	450 (600 1750 0		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, Vp FFS, LOS, Vp FFS, LOS, N FFS, N, AADT FFS, LOS, AADT FFS, LOS, N	Output LOS, S, D N, S, D v _p , S, D LOS, S, D N, S, D v _p , S, D
0 400 800) 1200 Flow Rate (pc/h/lin	1600 200)	0 2400			
General Information			Site Infor	mation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	CLD CHA 07/30/13 AM		Highway/Dire From/To Jurisdiction Analysis Yea	ection of Travel	Southbound I-8 Exit 6 to Exit 5 NYSDOT 2036 Diamond	37
✓ Oper.(LOS)		Г	Des.(N)		☐ Planning I	Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K	6300	veh/h veh/day	Peak-Hour F %Trucks and %RVs, P _R	d Buses, P _T	0.92 2 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjusti	1.00 ments	veh/h	General Teri Grade %		Level mi	
f _p	1.00		E _R		1.2	
E _T	1.5		-	E _T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs			Calc Spee	ed Adj and FFS	3	
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 4 56.0	ft ft I/mi mi/h	f_{LW} f_{LC} f_{ID} f_{N} FFS		56.0	mi/h mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS		mi/h			36.0	1111/11
LOS and Performance Operational (LOS) $V_p = (V \text{ or DDHV}) / (PHF \times N f_p)$ S $D = V_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	f_p^r) S D = v_p / S	DHV) / (PHF x N x	f _{HV} x	pc/h mi/h pc/mi/ln
Glossary			Factor Lo	umber of Lanes, N		
Glossary N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho			E _R - Exhibits E _T - Exhibits f _p - Page 23 LOS, S, FFS	s23-8, 23-10 s 23-8, 23-10, 23-1	1 f _{LC} - f _N - E 2, 23-3 f _{ID} - I	Exhibit 23-4 Exhibit 23-5 Exhibit 23-6 Exhibit 23-7 8/12/2013 3:28 F

HCS+TM Version 5.3

		MPS AND	KAMP JUN							
General Infor	mation			Site Infor	mation					
Analyst Agency or Company Date Performed Analysis Time Perioc	02/1		Jı Jı	reeway/Dir of Tr unction urisdiction nalysis Year		Northbound I-8 Exit 2W On-Ra NYSDOT 2036 Diamond				
Project Description										
nputs										
Jpstream Adj Ramp		Terrain: Level						Downstre Ramp	eam Adj	
Yes Cor								☐ Yes	□ On	
□ No Of	f							✓ No	☐ Off	
up = 1100	ft							L _{down} =	ft	
$V_{\rm u} = 680 \text{ v}$				show lanes, L _A ,	$S_{FR} = 4$ $L_{D'}V_{R'}V_{f}$	10.0 mph	V _D =	veh/h		
Conversion t	o pc/h Und	der Base C	onditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	${\sf f}_{\sf HV}$	f _p	v = V/PH	$F \times f_{HV} \times f_{p}$	
Freeway	3250	0.92	Level	2	0	0.990	1.00		3568	
Ramp	400	0.92	Level	2	0	0.990	1.00		439	
UpStream	680	0.92	Level	2	0	0.990	1.00		747	
DownStream		Merge Areas		<u> </u>		J	Diverge Are	25		
Estimation of V ₁₂						ion of v ₁₂	Diverge Are	<u>as</u>		
		(D)								
$V_{12} = V_F (P_{FM})$ $L_{FO} = 924.70 $ (Equation 25-2 or 25-3)						V ₁₂	$= V_R + (V_F -$	$V_R)P_{FD}$		
EQ =					L _{EQ} =			25-8 or 25-		
FM =			on (Exhibit 25-5))	P _{FD} =			ation (Exhibi	t 25-12)	
12 =	2145		n 05 4 nr 05		V ₁₂ =		pc/h			
or V _{av34}	5)	pc/h (Equatio	11 23-4 01 23-		V_3 or V_{av34}			ion 25-15 or 2	5-16)	
s V ₃ or V _{av34} > 2,70	0 pc/h?	s 🗹 No				$_{34} > 2,700 \text{ pc/h}^2$				
s V ₃ or V _{av34} > 1.5	V ₁₂ /2	s 🗹 No			0 0	$_{34} > 1.5 * V_{12}/2$				
Yes,V _{12a} =	pc/h	(Equation 25-	8)		If Yes,V _{12a} =	:	pc/h (Equa	ation 25-18))	
Capacity Che	cks				Capacit	y Checks				
	Actual	Ca	pacity	LOS F?		Actu	al	Capacity	LOS F	
				1	V _F		Exhibit	25-14		
V_{FO}	4007	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhibit	25-14		
					V _R		Exhibit	25-3		
low Entering	n Merae In	fluence A				tering Div			 ea	
	Actual		esirable	Violation?		Actual		esirable	Violation?	
V _{R12}	2584	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-1	_		
Level of Serv	ice Deterr	nination (i	not F)	•		Service L			ot F)	
		0.0078 V ₁₂ - 0.00			1	D _R = 4.252 +				
) _R = 20.1 (pc		12	,,			c/mi/ln)				
OS = C (Exhib	oit 25-4)				LOS = (E	xhibit 25-4)				
Speed Deterr	nination					Determina	tion			
$M_{\rm S} = 0.305 (Exi)$						xhibit 25-19)				
-	(Exhibit 25-19)					ph (Exhibit 25-1	9)			
					1	ph (Exhibit 25-1				
U i i i i i i i i i i i i i i i i i i i					ľ	ph (Exhibit 25-1	•			
S = 52.1 mph (Exhibit 25-14)										

		IXAIIII	S AND RAM							
General Ir	nformation			Site Infor	mation					
Analyst Agency or Com Date Performed Analysis Time F	02	HA /15/12	Ji Ji	reeway/Dir of Tr unction urisdiction nalysis Year	avel					
Project Descrip	tion Exit 4									
Inputs										
Upstream Adj R	•	Terrain: Leve	·l						Downstrea Ramp	m Adj
	On								✓ Yes	✓ On
✓ No	Off								□ No	☐ Off
L _{up} = f	t		_{FF} = 56.0 mph		S _{FR} = 4	10 0 mi	n h		L _{down} =	1850 ft
u	eh/h		Sketch (show lanes, L _A		10.0 III	γπ		V _D =	590 veh /
Conversion	on to pc/h U	nder Base	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f_{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	3650	0.92	Level	2	0	0	.990	1.00	400)7
Ramp	1060	0.82	Level	2	0	0	.990	1.00	130)6
UpStream				 		+				
DownStream	590	0.92	Level	2	0	0	.990	1.00	64	8
Estimatio	n of v	Merge Areas			Estimati	ion		Diverge Areas		
LSumano					LSuman	1011				
	$V_{12} = V_{12}$	V _F (P _{FM})					V ₁₂ =	= V _R + (V _F - V	_R)P _{FD}	
L _{EQ} = (Equation 25-2 or 25-3)					L _{EQ} =		(Equation 25-8	3 or 25-9)	
P _{FM} = using Equation (Exhibit 25-5)							0	.600 using Ed	quation (Exhi	bit 25-12)
V ₁₂ =	pc/	h			V ₁₂ =		2	926 pc/h		
V_3 or V_{av34}	pc/	h (Equation 25	5-4 or 25-5)		V ₃ or V _{av34}		1	081 pc/h (Equ	ation 25-15	or 25-16
Is V ₃ or V _{av34} >	- 2,700 pc/h? ☐ Ŋ	∕es			Is V ₃ or V _{av3}	34 > 2,	700 pc/h?	Tyes ✓ No		
Is V ₃ or V _{av34} >	· 1.5 * V ₁₂ /2 🔲 \	∕es			Is V ₃ or V _{av3}	₃₄ > 1.!	5 * V ₁₂ /2	Tyes ✓ No		
If Yes,V _{12a} =	pc/	h (Equation 25	5-8)		If Yes,V _{12a} =	=		oc/h (Equation	25-18)	
Capacity (Checks		-		Capacit					
,	Actual	С	apacity	LOS F?	† ' '		Actual	Ca	pacity	LOS F
				1	V _F		4007	Exhibit 25-1	1	No
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- Vp	2701	Exhibit 25-1	4 6780	No
- FO		Eximple 20 7			V _R	·R		Exhibit 25-3		_
		161			<u> </u>		1306			No
riow Ente	ring Merge	1		Violation?	riow En	iterii		rge Influen Max Desiral		Violation
\/	Actual	Exhibit 25-7	Desirable	Violation?	\/	+	Actual	Exhibit 25-14	4400:All	
V _{R12}	ervice Dete		if not F\	1	V ₁₂		2926	eterminatio		No
		•								-)
	+ 0.00734 v _R	+ 0.0078 V ₁₂ -	0.00027 L _A			• • •		0.0086 V ₁₂ - 0.	oos L _D	
	c/mi/ln)				I ''		/mi/ln)			
`	xhibit 25-4)					•	bit 25-4)			
Speed De	termination				Speed L	Dete	rminati	on		
M _S = (Exil	bit 25-19)				$D_s = 0.4$	481 (E	xhibit 25	-19)		
S _R = mph (Exhibit 25-19)					S _R = 49	9.3 mpl	h (Exhibit	25-19)		
	(Exhibit 25-19)					1.1 mp	h (Exhibit	25-19)		
1					1.	-	` h (Exhibit			
S = mph (Exhibit 25-14)				. 52	~ mp	. ,	,			

		MPS AND	NAME JON						
General Infor	mation			Site Infor	mation				
Analyst Agency or Company Date Performed Analysis Time Period	02/1		Ju Ju	reeway/Dir of Tra unction urisdiction nalysis Year		Northbound I-8 Exit 4 NB On-R NYSDOT 2036 Diamond			
Project Description			2 31	narysis i cai		2000 Diamona			
nputs									
Jpstream Adj Ramp		Terrain: Level						Downstre	eam Adi
✓ Yes ☐ Or	1							Ramp □ Yes	, ☐ On
■ No Of	f						✓ No	□ Off	
_{rup} = 1850	ft							L _{down} =	ft
/ _u = 1060 v		$S_{FF} = 56.0 \text{ mph}$ $S_{FR} = 40.0 \text{ mph}$ Sketch (show lanes, $L_{A'} L_{D'} V_{R'} V_{P'}$)						V _D =	veh/h
Conversion t	o pc/h Un	c/h Under Base Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	fp	v = V/PH	F x f _{HV} x f _p
reeway	2560	0.92	Level	2	0	0.990	1.00		2810
Ramp	590	0.92	Level	2	0	0.990	1.00		648
UpStream	1060	0.96	Level	2	0	0.990	1.00		1115
DownStream		Morgo Aroas					Diverge Are	200	
Merge Areas Estimation of v ₁₂						ion of v ₁₂	Diverge Are	as	
		/D)			Lotimat	<u></u>			
$V_{12} = V_F (P_{FM})$						V ₁₂	= V _R + (V _F -	$V_R)P_{FD}$	
EQ =		(Equation 2			L _{EQ} =		(Equation	25-8 or 25-	9)
r _{FM} =			on (Exhibit 25-5))	P _{FD} =		using Equ	ation (Exhibi	t 25-12)
12 =	1726		- 05 4 05		V ₁₂ =		pc/h		
or V _{av34}	5)	pc/h (Equatio	11 25-4 01 25-		V_3 or V_{av34}			ion 25-15 or 2	5-16)
s V ₃ or V _{av34} > 2,70	,	s 🗹 No				₃₄ > 2,700 pc/h ²			
s V ₃ or V _{av34} > 1.5	[*] V ₁₂ /2	s 🗹 No				$_{34} > 1.5 * V_{12}/2$			
Yes,V _{12a} =	pc/h	(Equation 25-	·8)		If Yes,V _{12a} =	:	pc/h (Equ	ation 25-18))
Capacity Che	cks				Capacit	y Checks			
•	Actual	Ca	pacity	LOS F?		Actu	al	Capacity	LOS F?
					V _F		Exhibit	25-14	
V_{FO}	3458	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhibit	25-14	
					V _R		Exhibit	25-3	
low Entering	a Merae In	fluence A	rea			tering Div	rerae Influ	ience Are	<u>''''</u> ea
	Actual		esirable	Violation?		Actual		esirable	Violation?
V _{R12}	2374	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-1	4	
Level of Serv	ice Deterr	nination (i	not F)			Service L	Determina	tion (if n	ot F)
D _R = 5.475 +	0.00734 v _R + 0	0.0078 V ₁₂ - 0.00)627 L _A			D _R = 4.252 +	· 0.0086 V ₁₂	- 0.009 L _D	
) _R = 15.5 (pc	:/mi/ln)	-			D _R = (p	oc/mi/ln)		_	
OS = B (Exhil	oit 25-4)					Exhibit 25-4)			
Speed Deterr	-					Determina	tion		
						xhibit 25-19)			
$M_S = 0.258$ (Exibit 25-19) $S_R = 52.4$ mph (Exhibit 25-19)						ph (Exhibit 25-1	9)		
					1	ph (Exhibit 25-1			
S ₀ = 53.9 mph (Exhibit 25-19)					ľ	ph (Exhibit 25-1	-		
S = 52.9 mph (Exhibit 25-14)									

		RAMPS	S AND RAN	IP JUNCTI	ONS WO	RKS	HEET				
General Infor	mation			Site Infor							
Analyst Agency or Company Date Performed Analysis Time Period	SEB CHA 02/1! I AM		J	reeway/Dir of Tr lunction lurisdiction Analysis Year	avel [Exit 5 N					
Project Description	Exit 4										
Inputs		Terrain: Leve	1								
Upstream Adj Ramp		Terrain: Leve							Downstrea Ramp	m Adj	
☑ Yes ☑ Or	1								☐ Yes	□ On	
□ No □ Of	f										
	•								™ No	☐ Off	
L _{up} = 7810	ft		E4.0 mnh		C 1	Γ Λ mm	h		L _{down} =	ft	
$V_{u} = 590 \text{ v}$	eh/h	3	FF = 56.0 mph	(show lanes, L _a ,	$S_{FR} = 3$	o.u mp	ın		V _D =	veh/h	
Conversion t		dor Raso ((SHOW lattes, L _A	D' R' Vf						
	<i>V</i>			0/ TI-	0/ D	Т	ſ	,	v V/DUE	v f v f	
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv	+	f _{HV}	-	v = V/PHF	· · · · ·	
Freeway	2650	0.92	Level	2	0	-	990	1.00	29		
Ramp	500	0.96	Level	2	0	+	990	1.00	52	-	
UpStream DownStream	590	0.92	Level	2	0	0.	990	1.00	64	ł	
		Merge Areas		'				Diverge Areas			
Estimation of		Estimati	ion c	of v ₁₂							
	V ₁₂ = V _F	(P _{FM})			1		V ₁₂ =	= V _R + (V _F - V _I	R)P _{FD}		
L _{EQ} = (Equation 25-2 or 25-3)					L _{FO} =		6	616.90 (Equati	on 25-8 or	25-9)	
P _{FM} =	using	Equation (E	xhibit 25-5)		P _{FD} =			.663 using Eq			
V ₁₂ =	pc/h				V ₁₂ =		2	106 pc/h			
V ₃ or V _{av34}	pc/h	(Equation 25	-4 or 25-5)		V_3 or V_{av34}		8	03 pc/h (Equa	tion 25-15	or 25-16)	
Is V_3 or $V_{av34} > 2,70$	00 pc/h?	s 🗆 No			Is V ₃ or V _{av3}	$_{34} > 2.7$	00 pc/h?	☐ Yes 🗹 No			
Is V_3 or $V_{av34} > 1.5$	· -							☐ Yes 🗹 No			
If Yes,V _{12a} =		(Equation 25	-8)		If Yes,V _{12a} = pc/h (Equation 25-18)						
Capacity Che	cks				Capacity	y Ch	ecks				
	Actual	Ci	apacity	LOS F?	,,		Actual	i	pacity	LOS F	
.,					V _F		2909	Exhibit 25-1	_	No	
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2383	Exhibit 25-1		No	
					V _R		526	Exhibit 25-3		No	
Flow Entering		1		Afficial C	Flow En	_		rge Influen		VE-1-11 - 2	
W	Actual	Exhibit 25-7	Desirable	Violation?	\/		Actual	Max Desirat		Violation	
V _{R12} Level of Serv	ica Dotorr		f not E)		V ₁₂		2106	Exhibit 25-14 eterminatio	4400:All	No E)	
$D_R = 5.475 + 0.00$).0086 V ₁₂ - 0.	•		
D _R = 0.475 1 0. D _R = (pc/mi/	•••	0.0070 V ₁₂	0.00027 L _A			1.	/mi/ln)	7.0000 v ₁₂ 0.	003 LD		
LOS = (Exhib	,				1		oit 25-4)				
Speed Deterr					Speed D	•		on			
_					 		xhibit 25				
					1 ~	,		,			
S _R = mph (Exhibit 25-19)				$S_R^{=}$ 49.3 mph (Exhibit 25-19) $S_0^{=}$ 61.4 mph (Exhibit 25-19)							
S = mnh /Evh	, , ,										
	,						(Exhibit				

mation			Site Infor	mation					
02/15		J	unction urisdiction	! !	Exit 2V NYSD	V Off OT			
Exit 4									
	Terrain: Leve							Downstrea Ramp	m Adj
								✓ Yes	✓ On
f								□ No	☐ Off
	9	- 56 0 mnh		9 - 1	0 0 m	nh.		L _{down} =	1300 ft
ı		• •	show lanes, L _A		0.0 111	JII		V _D =	350 veh/l
o pc/h Und	der Base (Conditions							
V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f_{HV}	f _p	v = V/PHF	x f _{HV} x f _p
5300	0.92	Level	2	0	0	.990	1.00	58	18
960	0.92	Level	2	0	0	.990	1.00	105	54
250	0.00	1 1			+	000	1.00	20	.4
		Level	2	0	0			38	4
Estimation of v ₁₂							Diverge Areas		
	/D \				-		\/ . (\/ \/	\D	
	• • • • • • • • • • • • • • • • • • • •	05.0)							
1							•		
_	Equation (E	XNIDIT 25-5)					=	quation (Exh	ibit 25-12)
•	/F /: 05	4 05 5\		·-			•		
		-4 or 25-5)			. 1			ation 25-15	or 25-16
· -		0)		0 0.0				05 40)	
	(Equation 25	-8)					oc/n (Equation	1 25-18)	
1	1 0	10	1 100 50	Capacity	y Ch	1		11	Lioce
Actual		apacity	LOS F?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			ì	1	LOS F
	<u> </u>			_	.,				No
	Exhibit 25-7				- V _R	4764	_		No
<u> </u>				V _R		1054	Exhibit 25-3	3 2100	No
	1			Flow En	1		,		
Actual	`	Desirable	Violation?	 ,.	_				Violation
<u> </u>		·							No
	•								F)
	0.0078 V ₁₂ -	0.00627 L _A					0.0086 V ₁₂ - 0.	.009 L _D	
						,			
					•				
nination				Speed D)eter	minati	on		
5-19)				$D_s = 0.4$	458 (E	xhibit 25	-19)		
S _R = mph (Exhibit 25-19)					.6 mpl	n (Exhibit	25-19)		
S ₀ = mph (Exhibit 25-19)				$S_0 = 57$	'.3 mpl	n (Exhibit	25-19)		
S = mph (Exhibit 25-14)									
	SEB CHA 02/1! d AM Exit 4 Co pc/h Und V	SEB CHA 02/15/12 d AM Exit 4 Terrain: Level of S o pc/h Under Base (V(veh/hr) PHF 5300 0.92 960 0.92 960 0.92 Merge Areas f V ₁₂ V ₁₂ = V _F (P _{FM}) (Equation 25-2 or using Equation (Epc/hpc/h (Equation 25-2 or using Equation (Epc/hpc/h (Equation 25-2 or using Equation (Epc/hpc/h (Equation 25-2 or using Equation (Epc/hpc/h (Equation 25-2 or using Equation (Epc/hpc/h (Equation 25-2 or using Equation (Epc/hpc/h (Equation 25-2 or using Equation (Epc/hpc/h (Equation 25-2 or using Equation (Epc/hpc/h (Equation 25-2 or using Equation (Epc/hpc/h (Equation 25-2 or using Equation (Epc/hpc/h (Equation 25-2 or using Equation (Epc/hpc/h (Equation 25-2 or using Equation (Epc/hpc/h (Equation 25-2 or using Equation (Epc/hpc/h (Equation 25-2 or using Equation (Epc/hpc/h (Equation 25-2 or using Equation (Epc/hpc/h (Equation 25-2 or using Equation (Epc/hpc/h (Equation 25-2 or using Equation (Epc/hpc/h (Equation 25-2 or using Equation (Epc/hpc/hpc/h (Equation 25-2 or using Equation (Epc/hpc/hpc/hpc/hpc/hpc/hpc/hpc/hpc/hpc/h	SEB	SEB	SEB	SEB	SEB	SEB	SEB

		NAIVIE	S AND RAM			IXIXO				
General In	nformation			Site Infor						
Analyst Agency or Com Date Performed Analysis Time F	02/	IA /15/12	Ji Ji	reeway/Dir of Tr unction urisdiction nalysis Year	avel S					
Project Descript	tion Exit 4			•						
Inputs										
Upstream Adj R	•	Terrain: Leve	I						Downstrea Ramp	m Adj
	On								✓ Yes	☑ On
™ No	Off								□ No	☐ Off
L _{up} = f	ft	S	_{FF} = 56.0 mph		S _{FR} = 4	0.0 mi	oh		L _{down} =	1820 ft
u	eh/h		Sketch (show lanes, L _A					V _D =	510 veh /l
Conversion	on to pc/h U	nder Base	Conditions		1	,				
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	5850	0.92	Level	2	0	-	.990	1.00	642	
Ramp UpStream	760	0.92	Level	2	0	0	.990	1.00	83	4
DownStream	510	0.93	Level	5	0	+	.976	1.00	56	2
Dominotioum.	310	Merge Areas	LCVCI	<u> </u>				Diverge Areas	30	
Estimation of v ₁₂						ion d	of v ₁₂	<u> </u>		
		/ _F (P _{FM})						= V _R + (V _F - V		
L _{EQ} = (Equation 25-2 or 25-3)					L _{EQ} =			Equation 25-8		
P _{FM} = using Equation (Exhibit 25-5)								.561 using Ed		bit 25-12)
V ₁₂ =	pc/l		,		P _{FD} = V ₁₂ =			969 pc/h	,	
V ₃ or V _{av34}	pc/l	h (Equation 25	-4 or 25-5)		V ₃ or V _{av34}			453 pc/h (Eq u	ation 25-15	or 25-16
	> 2,700 pc/h?					34 > 2,		TYes ☑ No		
0 4,0,1	→ 1.5 * V ₁₂ /2							Tyes ✓ No		
If Yes,V _{12a} =	pc/	h (Equation 25	i-8)		If Yes,V _{12a} =			c/h (Equation	25-18)	
Capacity (Checks				Capacity		ecks			
	Actual	С	apacity	LOS F?			Actual	Ca	pacity	LOS F
					V _F		6422	Exhibit 25-1	4 6780	No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	5588	Exhibit 25-1	4 6780	No
					V _R		834	Exhibit 25-3	3 2100	No
Flow Ente	ring Merge	Influence A	rea			terir	ng Dive	rge Influen	ce Area	
	Actual	1	Desirable	Violation?		ı	Actual	Max Desiral		Violation
V _{R12}		Exhibit 25-7			V ₁₂		3969	Exhibit 25-14	4400:All	No
	ervice Dete	rmination (if not F)		Level of	Ser	vice De	terminatio	n (if not l	=)
$D_{R} = 5.475$	+ 0.00734 v _R	+ 0.0078 V ₁₂ -	0.00627 L _A			$D_R = \frac{1}{2}$	4.252 + 0	.0086 V ₁₂ - 0.	009 L _D	
D _R = (po	c/mi/ln)				D _R = 32	2.1 (pc	:/mi/ln)			
LOS = (Ex	xhibit 25-4)				LOS = D	(Exhi	bit 25-4)			
Speed De	termination				Speed D)eter	minati	on		
M _s = (Exil	bit 25-19)				$D_s = 0.2$	438 (E	xhibit 25	-19)		
S_{R} = mph (Exhibit 25-19)).9 mpl	n (Exhibit	25-19)		
	(Exhibit 25-19)					i.8 mpl	n (Exhibit	25-19)		
1	(Exhibit 25-14)				1.	-	n (Exhibit			
Copyright © 2007 University of Florida, All Rights Reserved						•	· · · · · · · · · · · · · · · · · · ·			

	RA	MPS AND I	RAMP JUN	CTIONS W	/ORKSHE	EET				
General Infor		•		Site Infor						
Analyst Agency or Company Date Performed Analysis Time Period	SEB CHA 02/1! I AM		Ju Ju	eeway/Dir of Tr Inction Irisdiction nalysis Year	avel	Southbound I-8 Exit 4 SB On-R NYSDOT 2036 Diamond				
Project Description	Exit 4									
Inputs		Torrain, Lovel						L		
Jpstream Adj Ramp		Terrain: Level						Downstre Ramp	am Adj	
✓ Yes ☐ On	1							☐ Yes	□ On	
□ No Off	f							✓ No	Off	
- _{up} = 1820	ft							L _{down} =	ft	
$V_{\rm u} = 760 \text{ Ve}$		SF	F = 56.0 mph Sketch (show lanes, L _A	S _{FR} = 4	0.0 mph		V _D =	veh/h	
Conversion to	o pc/h Uni	l der Base C		Silow larros, EA	' -D' R' F'					
(pc/h)	V	PHF	Terrain	%Truck	%Rv	f	fp	v = V/PHF	x f _{HV} x f _p	
	(Veh/hr)	 		-		f _{HV}	 			
Freeway	5100	0.92	Level	2	0	0.990	1.00		5599	
Ramp UpStream	510 740	0.93	Level	5 2	0	0.976	1.00		562 834	
DownStream	760	0.92	Level	2	0	0.990	1.00	 	034	
Journal of the state of the sta		Merge Areas				•	Diverge Areas	5		
Estimation of v ₁₂						ion of v ₁₂				
	V ₁₂ = V _F	(P _{EM})			†	·-	\/ . (\/ \	/ \D		
L _{EQ} = 1587.67 (Equation 25-2 or 25-3)						V 12	$= V_R + (V_F - V_F)$		n)	
P _{FM} =			on (Exhibit 25-5)	1	L _{EQ} =		(Equation 2			
/ ₁₂ =	3438		(=		P _{FD} =		using Equat	.IOII (EXIIIDIL	23-12)	
/ ₃ or V _{av34}		pc/h (Equatio	n 25-4 or 25-		V ₁₂ =		pc/h (Equation	25 15 or 25	14)	
	5)	_			V ₃ or V _{av34}	< 2.700 nc/h	? Tes N		- 10)	
Is V_3 or $V_{av34} > 2,70$							Yes N			
Is V_3 or $V_{av34} > 1.5$	· -				If Yes, V _{12a} =		pc/h (Equat			
Yes,V _{12a} =	· ·	(Equation 25-	8)		120		pc/ii (Equat	1011 25-10)		
Capacity Che		1 0	11	100.50	Capacity Checks					
	Actual	L Ca	pacity	LOS F?	\ \ \\ \\ \\	Actu		apacity	LOS F	
		E		l	V _F	1/	Exhibit 25		_	
V_{FO}	6161	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhibit 25			
					V _R		Exhibit 25			
Flow Entering				V()=1=4: - O	Flow En		erge Influe			
· · · · · · · · · · · · · · · · · · ·	Actual		esirable	Violation?		Actual	Max Des	sirable	Violation ²	
V _{R12}	4000	Exhibit 25-7	4600:All	No	V ₁₂	Comitee t	Exhibit 25-14	 a== /!f == =	<u> </u>	
Level of Serv							Determinati		or r)	
• • • • • • • • • • • • • • • • • • • •		0.0078 V ₁₂ - 0.00	OZILA				- 0.0086 V ₁₂ -	0.009 L _D		
$O_{R} = 28.2 \text{ (pc)}$						oc/mi/ln)				
OS = D (Exhib	<u> </u>					xhibit 25-4)	tion			
Speed Detern						Determina	τιοπ			
$M_{S} = 0.430 (Exil$,	xhibit 25-19)	10\			
	(Exhibit 25-19)				··	ph (Exhibit 25-				
S ₀ = 50.0 mph (Exhibit 25-19)				$S_0 = m$	ph (Exhibit 25-	19)				
	(Exhibit 25-14)				ľ	ph (Exhibit 25-	·			

		VIII O AIND	RAMP JUNG			<u> </u>			
General Info	rmation			Site Infor	mation				
Analyst Agency or Company Date Performed Analysis Time Perio	02/15	5/12	Jui Jui	eeway/Dir of Tr nction risdiction alysis Year	ravel S E N				
Project Description	Exit 4								
Inputs									
Jpstream Adj Ramp		Terrain: Level						Downstr Ramp	eam Adj
Yes O								✓ Yes	□ On
™ No □ O	Ħ							□ No	✓ Off
_{-up} = ft / _u = veh/l	h	S	FF = 56.0 mph	L _{down} = V _D =	6100 ft 760 veh/h				
Conversion t		dor Basa (show lanes, L _A	LD' R' V f				
	<u> </u>				T	Ι,	1 ,		
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PF	IF x f _{HV} x f _p
Freeway	5500	0.92	Level	2	0	0.990	1.00		6038
Ramp	370	0.93	Level	3	0	0.985	1.00		404
UpStream	7/0	0.00	Laval	2		0.000	1.00		024
DownStream	760	0.92 Merge Areas	Level	2	0	0.990	1.00 Diverge A	\roac	834
Estimation of v ₁₂						on of v ₁₂		AIEaS	
		(D)							
	$V_{12} = V_F$	• • • • • • • • • • • • • • • • • • • •	05.0			V ₁₂	$= V_R + (V$	F - V _R)P _{FD}	
L _{EQ} = 3353.44 (Equation 25-2 or 25-3)					L _{EQ} =		(Equation	on 25-8 or 25	-9)
P _{FM} =			on (Exhibit 25-5)		P _{FD} =		using E	quation (Exhib	it 25-12)
/ ₁₂ =	3707				V ₁₂ =		pc/h		
/ ₃ or V _{av34}	2331 5)	pc/h (Equatio	n 25-4 or 25-		V ₃ or V _{av34}		pc/h (Equ	uation 25-15 or 2	5-16)
Is V ₃ or V _{av34} > 2,7		e 🔽 No			Is V ₃ or V _{av3}	4 > 2,700 pc/h	? ☐ Yes	□ No	
Is V ₃ or V _{av34} > 1.5					Is V ₃ or V _{av3}	· ₄ > 1.5 * V ₁₂ /2	?	□ No	
f Yes,V _{12a} =	·=	Equation 25	_Q\		If Yes,V _{12a} =	1 12		quation 25-18)
Capacity Ch	•	(Lqualion 23	-8)		120	/ Checks			,
Sapacity Cit	Actual		apacity	LOS F?	Capacity	Actu		Capacity	LOS F
	Actual		траску	LOST:	V _F	Acit		bit 25-14	1031
1/	(440	F.,L:L:4 0F 7		NI-		\/	_		-
V_{FO}	6442	Exhibit 25-7		No	$V_{FO} = V_F$	· V _R	_	bit 25-14	
					V _R			bit 25-3	
Flow Enterin	_				Flow En			fluence Ar	
	Actual	1	Desirable	Violation?	\ \/	Actual	_	x Desirable	Violation?
V _{R12}	4111	Exhibit 25-7	4600:All	No	V ₁₂	<u></u>	Exhibit 2		15
Level of Serv		<u>_</u>						nation (if n	ot F)
	+ 0.00734 v _R + 0).UU/8 V ₁₂ - 0.0	U62/ L _A				+ 0.0086 V	′ ₁₂ - 0.009 L _D	
$O_{R} = 29.2 \text{ (p)}$	•				1	c/mi/ln)			
<u> </u>	ibit 25-4)					xhibit 25-4)			
Speed Deter	mination					etermina	tion		
$M_{\rm S} = 0.455 (Ex$	ibit 25-19)				3	(hibit 25-19)			
	S _R = 49.6 mph (Exhibit 25-19)					h (Exhibit 25-	19)		
\hat{S}_{R} = 49.6 mph	(LAHIDIL 23-17)				$S_R = mp$				
	(Exhibit 25-19)					h (Exhibit 25-	19)		

			FREEWA	Y WEA	VING WOR	KSHEE	Т		
Genera	l Informat	ion			Site Info	rmation			
Analyst SEB Agency/Company CHA Date Performed 02/15/12 Analysis Time Period AM				Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	Exit 2 NYSE	I-87 Northbound Exit 2E on to 2W off NYSDOT 2036 Diamond			
Inputs					•				
Weaving ทเ	Freeway free-flow speed, S _{FF} (mi/h) 56 Weaving number of lanes, N 4 Weaving seg length, L (ft) 815 Terrain Leve		Weaving type Volume ratio, VR Weaving ratio, R			A 0.25 0.32			
Conver	sions to p	c/h Unde	r Base C	onditio			_	_	
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f_{HV}	fp	V
V_{o1}	2930	0.92	2	0	1.5	1.2	0.990	1.00	3216
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0
V_{w1}	680	0.92	2	0	1.5	1.2	0.990	1.00	746
V_{w2}	320	0.92	2	0	1.5	1.2	0.990	1.00	351
V _w				1097	V _{nw}				3216
V					1100				4313
Weavin	g and No	n-Weavin	g Speeds	3					
			Unconstr	ained			Cons	trained	
<i>t</i> =		Weaving			aving (i = nw)	Weavi	ng (i = w)	Non-Wea	ving (= nw)
a (Exhibit 2		0.15		}	0035				
b (Exhibit 2 c (Exhibit 2		0.97		}	.30				
d (Exhibit 2		0.80).75			ĺ	
Weaving intens		1.01		1	0.50				
Weaving and n speeds, Si (mi/		37.8	6	4!	5.72				
Number of	lanes required number of lanes		ned operation,	Nw	1.32 1.40				
	✓ If Nw < Nw	• •					w (max) const	rained operati	on
Weavin	g Segmer	nt Speed,	Density,		f Service,	and Cap	oacity		
				43.42					
Weaving segment density, D (pc/mi/ln)				24.83					
Level of service, LOS				С					
Capacity of base condition, c _b (pc/h)				6442					
Capacity as a 15-minute flow rate, c (veh/h) Capacity as a full-hour volume, c _h (veh/h)				6378					
	s a full-hour vol	ume, c _h (veh/h	1)	5868					
Notes									

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 2/17/2012 1:23 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

			FREEWA	Y WEA	/ING WOR	KSHEE	Т			
Genera	l Informat	ion			Site Info	rmation				
Analyst SEB Agency/Company CHA Date Performed 02/15/12 Analysis Time Period AM				Freeway/Dir of Travel Weaving Seg Location Jurisdiction Analysis Year		Exit 2 NYSE	I-87 Southbound Exit 2W on to 2E off NYSDOT 2036 Diamond			
Inputs										
Weaving nu	Freeway free-flow speed, S _{FF} (mi/h) 56 Weaving number of lanes, N 4 Weaving seg length, L (ft) 810 Terrain Leve		IVVEAVIDICIANO R			A 0.24 0.31				
Conver	sions to p	c/h Unde	r Base C	ondition			1	1	•	
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f_{HV}	fp	V	
V_{o1}	3570	0.92	2	0	1.5	1.2	0.990	1.00	3919	
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0	
V_{w1}	780	0.92	2	0	1.5	1.2	0.990	1.00	856	
V_{w2}	350	0.92	2	0	1.5	1.2	0.990	1.00	384	
V _w	1		,	1240	V _{nw}			Į.	3919	
V	7					l			5159	
Weavin	g and No	n-Weavin	g Speeds	3						
			Unconstr					trained		
/E 1 11 11 0	4.()	Weaving			ving (i = nw)	Weavii	ng (i = w)	Non-Wea	ving (= nw)	
a (Exhibit 24 b (Exhibit 24		0.15 2.20		1	.00					
c (Exhibit 2		0.97		!	.30					
d (Exhibit 2		0.80			.75			ĺ		
Weaving intens	ity factor, Wi	1.18	}	0	.60					
Weaving and no speeds, Si (mi/h		36.0	9	43	3.69					
Number of I Maximum n	anes required number of lanes If Nw < Nw	s, Nw (max)			1.31 1.40	if Nw > N	v (max) consti	rained onerati	on	
		<u> </u>			f Service,			anioa opoidu	•••	
	egment speed,		. ,	41.59			 ,			
Weaving segment density, D (pc/mi/ln)				31.01						
Level of service, LOS				D						
Capacity of base condition, c _b (pc/h)			6512							
Capacity as a 15-minute flow rate, c (veh/h)				6448						
Capacity as a full-hour volume, c _h (veh/h)				5932						
Notes										

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 2/17/2012 1:23 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 mith 70 mith 65 mith 60 mith 55 mith 50 LOS A 6	B C C 45	1500 200	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, LO FFS, LO	S, v _p N, S, D S, N v _p , S, D AADT LOS, S, D S, AADT N, S, D
General Information	Flow Rate (pc/h/lin)	Site Inforn	nation		
Analyst Agency or Company Date Performed Analysis Time Period	SEB CHA 02/15/12 AM			ction of Travel	Northbou Exit 4 off NYSDOT 2046 Dia	to Exit 4 on
Project Description Exit 4 Oper.(LOS)		Г	Des.(N)		☐ Plar	nning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	2600	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra Grade %	Buses, P _T	0.92 2 0 Level mi	
Driver type adjustment Calculate Flow Adjustr	1.00 nents			Up/Down %		
f _p	1.00		E _R		1.2	
E _T	1.5			_r - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs				d Adj and FFS		
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 3 56.0	ft ft I/mi mi/h	f _{LW} f _{LC} f _{ID} f _N			mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times N)$ f_p S $D = v_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	f_p) S $D = v_p / S$	HV) / (PHF x N x	f _{HV} x	pc/h mi/h pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base frour volume		E _R - Exhibits2 E _T - Exhibits : f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
Copyright © 2007 University of Florida,				Version 5.3		nerated: 2/17/2012 1:42

HCS+TM Version 5.3

Generated: 2/17/2012 1:42 PM

HCS+TM Version 5.3

Generated: 2/17/2012 1:43 PM

	BASIC FI	REEWAY SE	GMENTS W	ORKSHEET		
Dieses 30	B C C	150 (600 1750		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AAD FFS, LOS, AA	v _p , S, D LOS, S, D
0 400 200	1200 Flow Rate (pc/h/ln)	1600 2000	2400			
General Information			Site Inform			
Analyst Agency or Company Date Performed	SEB CHA 12/12/2011		Highway/Dire From/To Jurisdiction	ection of Travel	Northbound Exit 4 to Exit NYSDOT	
Analysis Time Period Project Description Exit 4	AM		Analysis Yea	r	2046 Diamoi	nd
✓ Oper.(LOS)			Des.(N)		☐ Plannin	g Data
Flow Inputs			,			
Volume, V AADT	2650	veh/h veh/day	Peak-Hour Fa		0.92	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	1.00	veh/h	%RVs, P _R General Terra Grade %	Length	0 Level mi	
Driver type adjustment Calculate Flow Adjustn				Up/Down %		
f _p	1.00		E _R		1.2	
E _T	1.5			T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs			Calc Spee	d Adj and FFS		
Lane Width	12.0	ft	f_{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
Interchange Density	0.50	I/mi	f _{ID}			mi/h
Number of Lanes, N	3		f ID			mi/h
FFS (measured)	56.0	mi/h	'N		50.0	
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N			
Operational (LOS) v _p = (V or DDHV) / (PHF x N)	x f _{HV} x 970	pc/h/ln	Design (N) Design LOS V _D = (V or DD	OHV) / (PHF x N x	f _{HV} x	
f _p) S	56.0	mi/h	f _p) S			pc/h mi/h
$D = v_p / S$	17.3	pc/mi/ln	S D = v _p / S			pc/mi/ln
LOS	В		F	mber of Lanes, N		·
Glossary			Factor Loc	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base free		f _p - Page 23-	23-8, 23-10, 23-1	1 f _{LC}	- Exhibit 23-4 - Exhibit 23-5 - Exhibit 23-6 - Exhibit 23-7
DDHV - Directional design ho	ur volume			Varsion 5.2		ed: 2/17/2012 1:43

HCS+TM Version 5.3

Generated: 2/17/2012 1:43 PM

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
Wassendae Passendae Carlo Mith To mith	Be C -	1600 200	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, FFS, N, Ai FFS, LOS, FFS, LOS,	v _p N, S, D N v _p , S, D ADT LOS, S, D AADT N, S, D
General Information	Table New (points	7.	Site Infori	mation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/15/12 AM			ection of Travel	Southbourn Exit 5 to E. NYSDOT 2046 Diam	xit 4
✓ Oper.(LOS)			Des.(N)		☐ Plann	ing Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	5850	veh/h veh/day veh/h	Peak-Hour F %Trucks and %RVs, P _R General Terr Grade %	d Buses, P _T	0.92 2 0 Level mi	
Calculate Flow Adjustr				Op/Down //		
f _p E _T	1.00 1.5		E _R f _{1.07} = 1/[1+P ₇ (E	E _T - 1) + P _R (E _R - 1)]	1.2 0.990	
Speed Inputs				ed Adj and FFS		
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured) Base free-flow Speed, BFFS	12.0 6.0 0.50 3 56.0	ft ft I/mi mi/h mi/h	f _{LW} f _{LC} f _{ID} f _N FFS	a Aujuna i i o	56.0	mi/h mi/h mi/h mi/h mi/h
LOS and Performance		1111/11	Dosign (N	`		
Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times N)$ f_p S $D = v_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	Design (N) Design (N) Design LOS $v_p = (V \text{ or } DE)$ $f_p)$ S $D = v_p / S$) DHV) / (PHF x N x t	f _{HV} x	pc/h mi/h pc/mi/ln
	-			mber of Lanes, N		
Glossary N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flov BFFS - Base frour volume		f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-11	1 f f	L _W - Exhibit 23-4 L _C - Exhibit 23-5 N - Exhibit 23-6 L _D - Exhibit 23-7
Copyright © 2007 University of Florida,	All Pights Passayed			M Version 5.3	Conc	erated: 2/17/2012 1:43

HCS+TM Version 5.3

Generated: 2/17/2012 1:43 PM

Allow Book		BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
Site Information Site Information Site Information Analyst SEB Highway/Direction of Travel Northbound i-87 From/To Exit 2 to Exit 4 Durisdiction NYSDOT Analysis Time Period PM Analysis Year 2016 Diamond Project Description Exit 4	Free-Flow Speed FIS = 75 mith 70 mith 70 mith 70 mith 65 mith 60 mith 55 mith 50 10 55 mith 10 55 mi	B C C State of the state of the	1600 200	2400	Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M)	FFS, N, v _p FFS, LOS, FFS, LOS, FFS, N, A FFS, LOS,	v _p N, S, D N v _p , S, D ADT LOS, S, D AADT N, S, D
Analyst	General Information	Flow Rate (pc/h/lr	1)	Site Inform	nation		
Agency or Company		SER				Northboun	d I-87
Date Performed 02/15/12 PM Jurisdiction NYSDOT 2016 Diamond Project Description Exit 4 Planning Data Flow Inputs Image: Peak-Hir Prop. of AADT, K Peak-Hir Prop. of AADT, K Peak-Hir Direction Prop. DDHV = AADT x K x D Priver type adjustment Peak-Hir Direction Prop. DDHV = AADT x K x D Priver type adjustment Peak-Hir Prop. of AADT x K x D Priver type adjustment Peak-Hir Prop. of AADT x K x D Priver type adjustment Peak-Hir Prop. of AADT x K x D Priver type adjustment Peak-Hir Prop. of AADT x K x D Priver type adjustment Peak-Hir Prop. of AADT x K x D Priver type adjustment Peak-Hir Prop. of AADT x K x D Priver type adjustment Peak-Hir Prop. of AADT x K x D Priver type adjustment Peak-Hir Prop. of AADT x K x D Priver type adjustment Peak-Hir Prop. of AADT x K x D Priver type adjustment Peak-Hir Prop. of AADT x K x D Priver type adjustment Peak-Hir Prop. of AADT x K x D Priver type adjustment Peak-Hir Prop. of AADT x K x D Priver type adjustment Peak-Hir Prop. of AADT x K x D Priver type adjustment Peak-Hir Prop. of AADT x K x D Priver type adjustment Peak-Hir Prop. of AADT x R type Deak-Hir Prop. of AADT x K x D Priver type adjustment Peak-Hir Prop. of AADT x R type Deak-Hir Prop. of AADT x	•				olion of mavor		
Project Description	Date Performed	_					
Des.(N)	Analysis Time Period	PM		Analysis Year	r	2016 Diam	nond
Flow Inputs	Project Description Exit 4						
Volume, V 5400 veh/h veh/day Weh/h Peak-Hour Factor, PHF 0.86 AADT Veh/day WTrucks and Buses, P_T 2 Peak-Hr Direction Prop. D General Terrain: Level DDHV = AADT x K x D veh/h Grade % Length mi Driver type adjustment 1.00 Up/Down % Design (N) Design (N) Design (N) September 1.00 Terrain: Level Michael September 1.00 Terrain September 1.00 T	Oper.(LOS)			Des.(N)		☐ Planr	ing Data
Peak-Hr Prop. of AADT, K Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop. D General Terrain: Level DDHV = AADT x K x D veh/h Grade % Length mi Driver type adjustment 1.00 M Length mi Up/Down % M Length mi Up/Down % M Length mi Up/Down % M Length M Up/Down % M Mi/h Length M Length M Up/Down % M Mi/h Length M Length M Up/Down % M Mi/h Length M Length M Up/Down % M Mi/h Length M Length M Mi/h Mi/h Length M Mi/h Length M Mi/h Mi/h Length M Mi/h Mi/h Length M Mi/h Mi/h Length M Mi/h Mi/h Length M Mi/h Mi/h Length M Mi/h Mi/h Length M Mi/h Mi/h Length M Mi/h Mi/h Mi/h Mi/h Mi/h Mi/h Mi/h Mi/h	Flow Inputs						
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D Veh/h General Terrain: Level Grade % Length mi Up/Down % Up/Down		5400			•		
Peak-Hr Direction Prop, D DDHV = AADT x K x D DDHV = AADT x K x D DTVier type adjustment 1.00 Calculate Flow Adjustments $ f_{p} $			ven/day		buses, P _T		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				• • • • • • • • • • • • • • • • • • • •	nim.	-	
Driver type adjustment 1.00 Up/Down %			veh/h				
Calculate Flow Adjustments f_p 1.00 E_R 1.2 E_T 1.5 $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]}$ 0.990Speed InputsLane Width12.0ft f_{LW} mi/h Rt-Shoulder Lat. Clearance6.0ft f_{LW} mi/h Interchange Density0.50 $1/mi$ f_{LC} mi/h Number of Lanes, N3 f_{ID} mi/h mi/h FFS (measured)56.0 mi/h FFS56.0 mi/h Base free-flow Speed, BFFS mi/h FFS 56.0 mi/h LOS and Performance MeasuresDesign (N)Operational (LOS) Vp = (V or DDHV) / (PHF x N x f_{HV} x f_p) S 2114 S $pc/h/ln$ yp = (V or DDHV) / (PHF x N x f_{HV} x f_p) S pc/h SD = vp / S Required Number of Lanes, N $pc/mi/ln$ f_p f_p S Required Number of Lanes, NGlossaryFactor Location f_{LW} - Exhibit 23-4 f_p - Exhibit 23-8, 23-10, 23-11 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{N} - Exhibit 23-7 f_{N} - Exhibit 23-7 		1.00	VOIIIII			****	
		nents			•		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	f _p	1.00		E _R		1.2	
Calc Speed Adj and FFS		1.5			_r - 1) + P _P (E _P - 1)]	0.990	
Lane Width 12.0 ft Rt-Shoulder Lat. Clearance 6.0 ft Interchange Density 0.50 l/mi Number of Lanes, N 3 sers (measured) 56.0 mi/h f_{LC} f_{LC} mi/h f_{LC} f_{L	·					}	
Rt-Shoulder Lat. Clearance 6.0 ft Interchange Density 0.50 l/mi f_{LC} mi/h Number of Lanes, N 3 FFS (measured) 56.0 mi/h f_{N} f_{N} mi/h f_{N} f_{N} mi/h f_{N} f_{N} mi/h f_{N} $f_$	· · · · · · · · · · · · · · · · · · ·	12.0	ft		a raj ana i i e	<u> </u>	
Interchange Density 0.50 I/mi Number of Lanes, N 3 FFS (measured) 56.0 mi/h $f_{\rm N}$ mi/h $f_{\rm N}$ mi/h $f_{\rm N}$ mi/h $f_{\rm N}$ mi/h $f_{\rm N}$ mi/h $f_{\rm N}$ mi/h $f_{\rm N}$ mi/h $f_{\rm N}$ mi/h $f_{\rm N}$ mi/h $f_{\rm N}$ mi/h $f_{\rm N}$ mi/h $f_{\rm N}$ $f_{\rm N}$ mi/h $f_{\rm N}$ $f_$		_					
Number of Lanes, N 3 FFS (measured) 56.0 mi/h Base free-flow Speed, BFFS mi/h LOS and Performance Measures Design (N) Design LOS $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_p)$ $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_p)$ $V_p =$				f _{LC}			mi/h
FFS (measured) 56.0 mi/h Base free-flow Speed, BFFS mi/h FFS 56.0 mi/h FFS 56.0 mi/h FFS 56.0 mi/h FFS 56.0 mi/h FFS 56.0 mi/h FFS 56.0 mi/h FFS 56.0 mi/h FFS 56.0 mi/h FFS 56.0 mi/h FFS 56.0 mi/h FFS 56.0 mi/h FFS 56.0 mi/h FFS 56.0 mi/h FFS 56.0 mi/h Design (N) Design LOS $v_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_{PV} \times f_$	•		71111	f_{ID}			mi/h
Base free-flow Speed, BFFS mi/h LOS and Performance Measures Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ S $D = v_p / S$ LOS E Design (N) Design LOS $v_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_p)$ S $D = v_p / S$ $D = v_p / S$ $D = v_p / S$ Required Number of Lanes, N Factor Location E Required Number of Lanes, N Factor Location E $E_T - Exhibits 23-8, 23-10$ E $E_T - Exhibits 23-8, 23-10$ E $E_T - Exhibits 23-8, 23-10$ E $E_T - Exhibits 23-8, 23-10$ F $E_T - Exhi$			mi/b	f _N			mi/h
LOS and Performance Measures Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_{PV} $	· ·	36.0				56.0	mi/h
Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times f_{PV} \times f_$	·		mi/n				,
Design LOS $v_p = (V \text{ or DDHV}) / (PHF \times N \times f_{HV} \times 2114)$ pc/h/ln f_p) Solution F_p	LOS and Performance	weasures					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Operational (LOS) v _p = (V or DDHV) / (PHF x N :	x f _{HV} x	nc/h/ln	Design LOS	HV) / (PHF x N x	f x	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	f_p)		F-97	. 5	,	ПV -	pc/h
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S	53.5	mi/h				mi/h
Required Number of Lanes, N Required Number of Lanes, N	$D = v_p / S$	39.5	pc/mi/ln				
GlossaryN - Number of lanesS - SpeedV - Hourly volumeD - Density E_R - Exhibits 23-8, 23-10 E_R - Exhibit 23-4 E_R - Exhibits 23-8, 23-10, 23-11 E_R - Exhibit 23-5 E_R - Exhibits 23-8, 23-10, 23-11 E_R - Exhibit 23-5 E_R - Exhibits 23-8, 23-10, 23-11 E_R - Exhibit 23-5 E_R - Exhibits 23-8, 23-10, 23-11 E_R - Exhibit 23-5 E_R - Exhibits 23-8, 23-10, 23-11 E_R - Exhibit 23-5 E_R - Exhibits 23-8, 23-10, 23-11 E_R - Exhibit 23-5 E_R - Exhibits 23-8, 23-10, 23-11 E_R - Exhibit 23-5 E_R - Exhibits 23-8, 23-10, 23-11 E_R - Exhibit 23-5 E_R - Exhibits 23-8, 23-10, 23-11 E_R - Exhibit 23-6 E_R - Exhibits 23-8, 23-10, 23-11 E_R - Exhibit 23-7	LOS	E		· ·	mbor of Lanca N		ρωπι/π
N - Number of lanes S - Speed E_R - Exhibits 23-8, 23-10 E_R - Exhibit 23-8 E_R - Exhibits 23-8, 23-10 E_R - Exhibit 23-5 E_R - Exhibits 23-8, 23-10 E_R - Exhibit 23-5 E_R - Exhibits 23-8, 23-10 E_R - Exhibit 23-5 E_R - Exhibits 23-8, 23-10 E_R - Exhibit 23-5 E_R - Exhibits 23-8, 23-10 E_R - Exhibit 23-5 E_R - Exhibits 23-8, 23-10 E_R - Exhibit 23-5 E_R - Exhibits 23-8, 23-10 E_R - Exhibit 23-5 E_R - Exhibits 23-8, 23-10 E_R - Exhibit 23-5 E_R - Exhibit 23-6 E_R - Exhibit 23-7 E_R - Exhibit 23-7 E_R - Exhibit 23-7 E_R - Exhibit 23-7 E_R - Exhibit 23-7 E_R - Exhibit 23-7 E_R - Exhibit 23-7 E_R - Exhibit 23-7 E_R - Exhibit 23-7 E_R - Exhibit 23-7 E_R - Exhibit 23-7 E_R - Exhibit 23-7 E_R - Exhibit 23-7 E_R - Exhibit 23-7 E_R - Exhibit 23-7 E_R - Exhibit 23-8 E_R - Exh	[Glossary						
V - Hourly volume D - Density E_R - Exhibits 23-8, 23-10 f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{DC} - Flow rate FFS - Free-flow speed LOS - Level of service BFFS - Base free-flow speed LOS, S, FFS, V_R - Exhibits 23-2, 23-3 f_{DC} - Exhibit 23-7		S - Speed		l actor Loc	,41011		
v_p - Flow rate FFS - Free-flow speed LOS - Level of service BFFS - Base free-flow speed LOS, S, FFS, v_p - Exhibits 23-8, 23-10, 23-11 f_{C} - Exhibit 23-6 LOS, S, FFS, v_p - Exhibits 23-2, 23-3 f_{C} - Exhibit 23-7		· ·		E _R - Exhibits2	23-8, 23-10	1	_{LW} - Exhibit 23-4
LOS - Level of service BFFS - Base free-flow speed LOS, S, FFS, v _z - Exhibits 23-2, 23-3 f ₁₀ - Exhibit 23-7	-	=	v speed	E _T - Exhibits	23-8, 23-10, 23-1 ⁻¹	1 1	LC - Exhibit 23-5
LOS - Level of service BFFS - Base free-flow speed LOS, S, FFS, v _z - Exhibits 23-2, 23-3 f ₁₅ - Exhibit 23-7	F			f _p - Page 23-1	12		
DDHV - Directional design hour volume			ee-riow speed	F			• •
Copyright © 2007 University of Florida, All Rights Reserved HCS+TM Version 5.3 Generated: 2/15/2012 2:							

HCS+TM Version 5.3

Generated: 2/15/2012 2:19 PM

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 mith 70 mith 70 mith 65 mith 55 mith 55 mith 60 mith 65 mith 60 mith 65 mith 60 mith 65 mith 60 mith 65 mith 60 mith 65 mi	B C C	450 (600 1750 0 1600 2001	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	Input FFS, N, v FFS, LOS FFS, N, A FFS, LOS FFS, LOS	, v _p N, S, D , N v _p , S, D ADT LOS, S, D , AADT N, S, D
General Information	Flow Rate (pc/h/lin	1	Site Inforn	nation		
Analyst Agency or Company Date Performed Analysis Time Period	SEB CHA 02/15/12 PM			ction of Travel	Southbou Exit 4 to E NYSDOT 2016 Diar	Exit 2
Project Description Exit 4 Oper.(LOS)		Г	Des.(N)		□ Plan	ning Data
Flow Inputs			De3.(N)		, i ian	ing Data
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	3850	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra	Buses, P _T	0.92 2 0 Level	
DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustr	1.00 nents	veh/h	Grade %	Length Up/Down %	mi	_
f _p	1.00		E _R		1.2	
E _T	1.5		• •	_T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs				d Adj and FFS	3	
Lane Width	12.0	ft				mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			
Interchange Density	0.50	l/mi	f _{LC}			mi/h
Number of Lanes, N	3		f_{ID}			mi/h
FFS (measured)	56.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N)			
Operational (LOS) $V_p = (V \text{ or DDHV}) / (PHF \times N)$ f_p) S $D = V_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	<u>Design (N)</u> Design LOS	HV) / (PHF x N x	f _{HV} x	pc/h mi/h pc/mi/ln
				mber of Lanes, N		
Glossary			Factor Loc	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base from		f _p - Page 23-	23-8, 23-10, 23-1	1	f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{D} - Exhibit 23-7
DDHV - Directional design ho				Version 5.3		erated: 2/15/2012 2:20

HCS+TM Version 5.3

Generated: 2/15/2012 2:20 PM

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
S0 Free-Flow Speed FFS = 75 migh 70 migh 70 migh 65 migh 60 migh 55 migh 60 migh 65 migh 60 migh 65 might 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 might 65 might 65 migh 65	B C C	450 (500) 1750 0		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	Input FFS, N, 1 FFS, LOS FFS, LOS FFS, LOS FFS, LOS	S, v _p N, S, D S, N v _p , S, D AADT LOS, S, D S, AADT N, S, D
0 400 800	1200 Flow Rate (pc/h/lin	1600 2000)	2400			
General Information			Site Inform			
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/15/12 PM		Highway/Dire From/To Jurisdiction Analysis Yea	ection of Travel	Northbou Exit 4 off NYSDOT 2016 Dia	to Exit 4 on
✓ Oper.(LOS)		П	Des.(N)		☐ Plan	ning Data
Flow Inputs			()			3
Volume, V AADT Peak-Hr Prop. of AADT, K	4450	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.86 2 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustr	nents			•		
f_p	1.00		E _R		1.2	
E _T	1.5		f _{HV} = 1/[1+P _T (E	T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs			Calc Spee	d Adj and FFS	}	
Lane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft				mi/h
Interchange Density	0.50	I/mi	f _{LC}			
Number of Lanes, N	3		f _{ID}			mi/h
FFS (measured)	56.0	mi/h	t _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x N :		pc/h/ln	Design (N) Design LOS))HV) / (PHF x N x :	f _{HV} x	
f _p)	500	• 11	f _p)		•	pc/h
S D :: / S	56.0	mi/h	S			mi/h
$D = v_p / S$	31.1	pc/mi/ln	$D = v_p / S$			pc/mi/ln
LOS	D		F	mber of Lanes, N		
Glossary			Factor Loc	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fro		f _p - Page 23-	23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{ID} - Exhibit 23-7
Copyright © 2007 University of Florida				Varsion 5.2		nerated: 2/15/2012 2:20

HCS+TM Version 5.3

Generated: 2/15/2012 2:20 PM

	BASIC F	REEWAY SI	GMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 mith 70 mith 65 mith 60 mith 70 mith 55 mith 70 mi	B C C 45	150 (600 1750 1750 1750 1750 1750 1750 1750 17	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, N, FFS, LO	S, v _p N, S, D S, N v _p , S, D AADT LOS, S, D S, AADT N, S, D
General Information	Flow Rate (pc/h/lin)	Site Inforn	nation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/15/12 PM			ction of Travel	Southboo Exit 4 off NYSDOT 2016 Dia	to Exit 4 on
Oper.(LOS)			Des.(N)		☐ Plar	nning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	2700	veh/h veh/day veh/h	Peak-Hour Fa %Trucks and %RVs, P _R General Terra Grade %	Buses, P _T	0.92 2 0 Level mi	
Driver type adjustment Calculate Flow Adjustr	1.00 nents			Up/Down %		
f _p	1.00		E _R		1.2	
E _T	1.5		* *	_T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs				d Adj and FFS	5	
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 3 56.0	ft ft I/mi mi/h	f _{LW} f _{LC} f _{ID} f _N FFS		56.0	mi/h mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS	Magaziraa	mi/h				·
LOS and Performance Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times N)$ f_p) S $D = v_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	f_p^p) S D = v_p / S	HV) / (PHF x N x	f _{HV} x	pc/h mi/h pc/mi/ln
Glossary			Factor Loc	ation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fr		f _p - Page 23-	23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{ID} - Exhibit 23-7
Copyright © 2007 University of Florida,				Version 5.3		nerated: 2/15/2012 2:20

HCS+TM Version 5.3

Generated: 2/15/2012 2:20 PM

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 mith 70 mith 65 mith 65 mith 55 mith 55 mith 55 mith 60 mith 60 mith 65 mith 60 mi	B C C	1500 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, 1 FFS, LOS FFS, LOS FFS, LOS	S, v _p N, S, D S, N v _p , S, D AADT LOS, S, D S, AADT N, S, D
General Information	Flow Rate (pc/h/lin)	Site Inforn	nation		
Analyst	SEB			ection of Travel	Northbou	nd I-87
Agency or Company	CHA		From/To	odon or mavor	Exit 4 to L	-
Date Performed	02/15/12		Jurisdiction		NYSDOT	· -
Analysis Time Period	PM		Analysis Yea	r	2016 Dia	mond
Project Description Exit 4						
Oper.(LOS)			Des.(N)		☐ Plan	ning Data
Flow Inputs	5050	1.0		, DUE	0.00	
Volume, V AADT	5650	veh/h	Peak-Hour Fa %Trucks and		0.86 2	
		veh/day		buses, r _T		
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D			%RVs, P _R General Terra	ain:	0 Level	
DDHV = AADT x K x D		veh/h	Grade %	Length	mi	
Driver type adjustment	1.00			Up/Down %		
Calculate Flow Adjustr	nents					
f_p	1.00		E_R		1.2	
E _T	1.5		f _{HV} = 1/[1+P _T (E	T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs			Calc Spee	d Adj and FFS	3	
Lane Width	12.0	ft		•		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3		f_ID			mi/h
FFS (measured)	56.0	mi/h	f_N			mi/h
Base free-flow Speed, BFFS	30.0	mi/h	FFS		56.0	mi/h
LOS and Performance	Moscuros	1111/11	Dosign (N)	\		
LOS and Performance	Weasures		Design (N) Design (N))		
Operational (LOS) v _p = (V or DDHV) / (PHF x N	x f _{HV} x 2212	pc/h/ln	Design LOS)HV) / (PHF x N x	f _{HV} x	4
t _p)		•	f _p)			pc/h
S	51.5	mi/h	S S			mi/h
$D = v_p / S$	43.0	pc/mi/ln	$D = v_p / S$			pc/mi/ln
LOS	E		F	mber of Lanes, N		L
Glossary			Factor Loc			
N - Number of lanes	S - Speed					
V - Hourly volume	D - Density		E _R - Exhibits2			f _{LW} - Exhibit 23-4
v _p - Flow rate	FFS - Free-flow	/ speed	_ ·	23-8, 23-10, 23-1	1	f _{LC} - Exhibit 23-5
LOS - Level of service	BFFS - Base fr		f _p - Page 23-			f _N - Exhibit 23-6
DDHV - Directional design ho		oo now speed	LOS, S, FFS	, v _p - Exhibits 23-2	2, 23-3	f _{ID} - Exhibit 23-7
Copyright © 2007 University of Florida,				^A Version 5.3		nerated: 2/15/2012 2:20

HCS+TM Version 5.3

Generated: 2/15/2012 2:20 PM

HCS+TM Version 5.3

Generated: 2/15/2012 2:21 PM

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
Froe-Flow Spzed FFS = 75 mith 70 mith 70 mith 70 mith 65 mith	By C.	450 (600 1750 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AAD FFS, LOS, N	Output LOS, S, D N, S, D V _p , S, D LOS, S, D N, S, D v _p , S, D
0 400 800) 1200 Flow Rate (pc/h/lin	1600 2000)	2400			
General Information			Site Inform	nation		
Analyst Agency or Company Date Performed Analysis Time Period	CLD CHA 07/29/13 PM		Highway/Dire From/To Jurisdiction Analysis Yea	ection of Travel	Northbound I-8 Exit 5 to Exit 6 NYSDOT 2016 Diamona	
Project Description Exit 4 Oper.(LOS)			Des.(N)		☐ Planning	Data
Flow Inputs			Des.(IV)		r laming	Data
Volume, V AADT Peak-Hr Prop. of AADT, K	5750	veh/h veh/day	Peak-Hour Face %Trucks and %RVs, P _R	Buses, P _T	0.86 2 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustr	1.00	veh/h	General Terr Grade %	ain: Length Up/Down %	Level mi	
	1.00				1.2	
f _p E _T	1.00 1.5		E _R	T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs	1.0			d Adj and FFS		
I ane Width	12.0	ft		a Auj ana 113		.,,
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	l/mi	f _{LC}			mi/h
Number of Lanes, N	4		f_{ID}			mi/h
FFS (measured)	56.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N)		
Operational (LOS) V _p = (V or DDHV) / (PHF x N : f _p)	x f _{HV} x 1688	pc/h/ln	. 5)HV) / (PHF x N x f	: HV X	pc/h
S	56.0	mi/h	r _p) S			mi/h
D = v _p / S	30.1	pc/mi/ln	$D = v_p / S$			pc/mi/ln
LOS	D		· ·	mber of Lanes, N		
Glossary			Factor Lo	cation		
N - Number of lanes	S - Speed		E _R - Exhibits	23-8 23-10	f -	Exhibit 23-4
V - Hourly volume	D - Density			23-8, 23-10 23-8, 23-10, 23-11	=	Exhibit 23-5
v _p - Flow rate	FFS - Free-flov	speed	f _p - Page 23-			Exhibit 23-6
LOS - Level of service	BFFS - Base fr	ee-flow speed	1 '	, v _p - Exhibits 23-2		Exhibit 23-7
DDHV - Directional design ho	our volume			, _p = 11110113 20-2	, 'ID '	EXHIDIT ZU-1
Copyright © 2007 University of Florida,	All Rights Reserved		HCS+ [™]	M Version 5.3	Generated	l: 8/12/2013 2:53 P

Agency or Company Date Performed 7/29/13 Analysis Time Period PM Analysis Year Project Description Exit 4 ✓ Oper.(LOS) Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DHV = AADT x K x D From/To Jurisdiction Des.(N) Des.(N) Peak-Hour Fa veh/h %RVs, P _R General Terra DDHV = AADT x K x D Veh/h Grade Grade Grade From/To Jurisdiction Analysis Year Peak-Hour Fa veh/h General Terra general Terra	Application Input Output Operational (LOS) FFS, N, v _p LOS, S, S, Design (N) FFS, LOS, N V _p , S, D Design (v _p) FFS, LOS, N V _p , S, D Planning (LOS) FFS, N, AADT LOS, S, Planning (M) FFS, LOS, AADT N, S, D Planning (v _p) FFS, LOS, N V _p , S, D mation ection of Travel Southbound I-87 Exit 6 to Exit 5
General Information Analyst CLD Highway/Direct Agency or Company CHA From/To Date Performed 7/29/13 Jurisdiction Analysis Time Period PM Analysis Year Project Description Exit 4 ✓ Oper.(LOS) Des.(N) Flow Inputs Volume, V 3500 veh/h Peak-Hour Fa veh/day %Trucks and %RVs, P _R General Terra DDHV = AADT x K x D veh/h Grade %	ection of Travel Southbound I-87
Analyst CLD Highway/Direct Agency or Company CHA From/To Date Performed 7/29/13 Jurisdiction Analysis Time Period PM Analysis Year Project Description Exit 4 ✓ Oper.(LOS) Des.(N) Flow Inputs Volume, V 3500 veh/h Peak-Hour Fa AADT veh/day %Trucks and Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D Highway/Direct From/To Des.(N) Des.(N) ✓ Reak-Hour Fa Veh/day %Trucks and Reak-Hr Direction Prop, D ODHV = AADT x K x D Veh/h Grade %	ection of Travel Southbound I-87
✓ Oper.(LOS) Flow Inputs Volume, V 3500 veh/h Peak-Hour Fa AADT veh/day %Trucks and Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D Des.(N) Des.(N) Reak-Hour Fa veh/h Geak-Hour Fa %RVs, P _R General Terra	NYSDOT
Volume, V 3500 veh/h Peak-Hour Fa AADT veh/day %Trucks and Peak-Hr Prop. of AADT, K %RVs, P_R General Terra DDHV = AADT x K x D veh/h Grade %	☐ Planning Data
DDHV = AADT x K x D veh/h Grade %	Buses, P _T 2 0
	Length <i>mi</i> Up/Down %
Calculate Flow Adjustments	4.0
f_{p} 1.00 E_{R} $f_{HIV} = 1/[1+P_{T}(E_{T})]$	1.2 1) + P _p (E _p -1)] 0.990
11V - 1-1	$_{T}^{-1} + P_{R}(E_{R}^{-1})$ 0.990 d Adj and FFS
Lane Width 12.0 ft f_{LW} ft. Rt-Shoulder Lat. Clearance 6.0 ft Interchange Density 0.50 I/mi Number of Lanes, N 4 FFS (measured) 56.0 mi/h	mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS mi/h	<i>56.0</i> mi/h
	pc/h pc/mi/ln pc/mi/ln
Glossary Factor Loc	
N - Number of lanes S - Speed V - Hourly volume D - Density	23-8, 23-10 f _{LW} - Exhibit 23-4 23-8, 23-10, 23-11 f _{LC} - Exhibit 23-5

HCS+TM Version 5.3

Generated: 8/12/2013 2:53 PM

	<u>KA</u>	VIF 3 AND	RAMP JUNG	STICING W	OKKSHE						
General Infor	mation			Site Infor	mation						
Analyst	SEB		Fre	eeway/Dir of Tra	avel i	Northbound I-	87				
Agency or Company	CHA		Ju	nction	[Exit 2W On-R	amp				
Date Performed	02/1!	5/12	Ju	risdiction	I	NYSDOT	•				
analysis Time Period	d PM		An	alysis Year	:	2016 Diamono	t				
Project Description	Exit 4										
nputs											
Ipstream Adj Ramp		Terrain: Level						Downstre Ramp	eam Adj		
▼ Yes ☐ Or								☐ Yes	□ On		
No ✓ Of	f							™ No	☐ Off		
_{rup} = 1100	ft		_{-F} = 56.0 mph		S _{FR} = 4	0.0 mph		L _{down} =	ft		
$V_{u} = 800 \text{ v}$	eh/h	3	•	show lanes, L _A ,		o.o mpn		$V_D =$	veh/h		
Conversion to	o pc/h Un	der Base C			DKI						
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f_{HV}	fp	v = V/PH	$F \times f_{HV} \times f_{p}$		
reeway	4650	0.86	Level	2	0	0.990	1.00		5461		
Ramp	770	0.92	Level	2	0	0.990	1.00		845		
JpStream	800	0.92	Level	2	0	0.990	1.00	1	878		
DownStream		0.72	2010.		<u> </u>	0.770			0.0		
		Merge Areas					Diverge Ar	eas			
stimation of					Estimati	ion of v ₁₂					
		(D)					•				
$V_{12} = V_F (P_{FM})$						V ₁₂	$_2 = V_R + (V_F)$	- V _R)P _{FD}			
L _{EQ} = 1416.68 (Equation 25-2 or 25-3)							(Equation	25-8 or 25-	9)		
P _{FM} = 0.581 using Equation (Exhibit 25-5)							using Eq	uation (Exhibi	t 25-12)		
12 =	3174	pc/h			P _{FD} = V ₁₂ =		pc/h	`	,		
	2287	pc/h (Equatio	n 25-4 or 25-				•	#an 25 15 ar 2	T 1/\		
or V _{av34}	5)				V ₃ or V _{av34}			tion 25-15 or 2	0-10)		
s V_3 or $V_{av34} > 2,70$	00 pc/h?	s 🗹 No					n? ☐ Yes ☐				
s V ₃ or V _{av34} > 1.5	[*] V ₁₂ /2	s 🗹 No			Is V ₃ or V _{av3}	₃₄ > 1.5 * V ₁₂ /2	2 ☐ Yes ☐	No			
Yes,V _{12a} =		(Equation 25	-8)		If Yes,V _{12a} = pc/h (Equation 25-18)						
Capacity Che		(- 100	-/		Canacit	y Checks	:				
Japacity One	Actual	C	pacity	LOS F?	Oupuch	Act		Capacity	LOS F		
	Actual		pacity	LUST:	\/	ACI		1 -	1031		
					V _F		Exhibit				
V_{FO}	6306	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhibit	25-14			
					V _R		Exhibit	25-3			
low Entering	a Merae In	fluence A	rea		Flow En	terina Di	verae Infl	uence Are			
	Actual	T .)esirable	Violation?		Actual		Desirable	Violation?		
V _{R12}	4019	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-				
evel of Serv				I	}	Service		ation (if n	ot F)		
								•	<i>J(1)</i>		
10		0.0078 V ₁₂ - 0.00	JUZI LA			11	+ 0.0086 V ₁	₂ - 0.009 L _D			
R = 31.1 (pc					$D_R = (pc/mi/ln)$						
OS = D (Exhib Speed Detern						exhibit 25-4) Exhibit 25-4)					
					_		idon				
1 _S = 0.470 (Exi	bit 25-19)				$D_s = $ (Exhibit 25-19)						
S _R = 49.4 mph (Exhibit 25-19)					S _R = mp	oh (Exhibit 25	-19)				
S ₀ = 49.6 mph (Exhibit 25-19)					S ₀ = mp	oh (Exhibit 25	-19)				
$_{0}$ = 49.6 mph (S = 49.5 mph (Exhibit 25-14)									
	-				S = mr	oh (Exhibit 25	-15)				

		RAMP	S AND RAM	IP JUNCTI	ONS WO	RKS	HEET				
General Info	rmation			Site Infor							
Analyst Agency or Compan Date Performed Analysis Time Peric	SEB y CHA 02/19 od PM		J	reeway/Dir of Tr unction urisdiction Analysis Year	ravel r E	Exit 4 I					
Project Description	Exit 4										
Inputs		Terrain: Leve	<u> </u>							A 1:	
Upstream Adj Ram ☐ Yes ☐ O		Terrain. Leve	'						Downstrea Ramp	am Adj	
									✓ Yes	☑ On	
™ No □ O	111								□ No	☐ Off	
L _{up} = ft									L _{down} =	1850 ft	
V _u = veh/	h	S	$_{FF}$ = 56.0 mph Sketch ((show lanes, L _A	$S_{FR} = 40.0 \text{ mph}$ V_{E}					880 veh/h	
Conversion	to pc/h Und	der Base (Conditions								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	5400	0.86	Level	2	0	0	.990	1.00	63	342	
Ramp	960	0.86	Level	2	0	0	.990	1.00	11	27	
UpStream DownStream	000	0.00	Level	1		+	005	1.00	10)OF	
DownStream	880	0.88 Merge Areas	Level	1	0	0	.995	1.00 Diverge Areas	10	005	
Estimation o		ivior go 7 ii cus			Estimati	on c		biverge rireas			
	V ₁₂ = V _F	(D)			+			= V _R + (V _F - V _I	\D		
 		-			Equation 25-8	` ''					
L _{EQ} = P =		L _{EQ} = P _{FD} =			.550 using Eq		sibit 2E 12)				
P _{FM} = V ₁₂ =	pc/h	Equation (E	.Allibit 25-5)		V ₁₂ =			993 pc/h	uation (Exi	IIDIL 23-12)	
V ₁₂ = V ₃ or V _{av34}	•	(Equation 25	-4 or 25-5)		V ₁₂ – V ₃ or V _{av34}			993 pc/11 349 pc/h (Equ	ation 25 1	5 or 25 16	
Is V ₃ or V _{av34} > 2,7			7 4 01 23 3)			. > 27		Tyes ☑ No	alion 25-1.	3 01 23-10	
Is V_3 or $V_{av34} > 2,7$								Yes ✓ No			
If Yes,V _{12a} =	·=	Equation 25	(-8)		If Yes, V _{12a} =			oc/h (Equation	25-18)		
Capacity Ch		(=9000			Capacity						
	Actual	С	apacity	LOS F?	100,000,000,000	<i></i>	Actual	Ca	pacity	LOS F	
			. ,		V _F		6342	Exhibit 25-1	4 6780	No	
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	5215	Exhibit 25-1	4 6780	No	
					V _R		1127	Exhibit 25-3	2100	No	
Flow Enterin	a Merae In	fluence Δ	rea	<u> </u>		terir		rge Influen			
	Actual	ľ	Desirable Desirable	Violation?		1	Actual	Max Desirat		Violation	
V _{R12}		Exhibit 25-7			V ₁₂		3993	Exhibit 25-14	4400:All	No	
Level of Ser	vice Detern	nination (i	f not F)	•		Ser	vice De	terminatio	n (if not	. F)	
D _R = 5.475 + 0	0.00734 v _R +	0.0078 V ₁₂ -	0.00627 L _A			O _R = 4	1.252 + 0	.0086 V ₁₂ - 0.	009 L _D		
D _R = (pc/m	i/ln)				$D_R = 32$.4 (pc	/mi/ln)	· -	_		
	oit 25-4)				LOS = D	(Exhi	bit 25-4)				
Speed Deter	mination				Speed D	eter	minatio	on			
M _S = (Exibit 2					D _s = 0.4	164 (E	xhibit 25	-19)			
_	hibit 25-19)				S _R = 49.5 mph (Exhibit 25-19)						
						S_0 = 56.2 mph (Exhibit 25-19)					
	hibit 25-19)				$S_0 = 56$.z mpr	ı (Exnibit	25-19)			
$S_0^=$ mph (Ex	hibit 25-19) hibit 25-14)						ı (Exnibit ı (Exhibit				

	RA	MPS AND	KAMP JUN	CHONS W	OKKSHE	<u>- </u>					
General Infor	mation			Site Infor	mation						
Analyst Agency or Company	SEB CHA			eeway/Dir of Tra		Northbound I-8 Exit 4 NB On-F					
ate Performed	02/1!			risdiction		NYSDOT	tump				
nalysis Time Period			An	nalysis Year		2016 Diamond					
roject Description	Exit 4			•							
nputs											
pstream Adj Ramp		Terrain: Level						Downstre Ramp	eam Adj		
Yes On	1							☐ Yes	☐ On		
No ✓ Off	f							✓ No	☐ Off		
up = 1850	ft							L _{down} =	ft		
	1.0	S	_F = 56.0 mph		$S_{FR} = 4$	0.0 mph		V _D =	veh/h		
u = 960 ve				show lanes, L _A ,	$L_{D'}V_{R'}V_{f}$			V D -	VGII/II		
Conversion to	o pc/h Und	der Base C	Conditions								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p		
reeway	4450	0.86	Level	2	0	0.990	1.00		5226		
Ramp	880	0.88	Level	1	0	0.995	1.00		1005		
JpStream	960	0.92	Level	3	0	0.985	1.00	1059			
DownStream]							
		Merge Areas			Catina ati		Diverge Are	eas			
stimation of	12				Estimati	ion of v ₁₂					
	$V_{12} = V_{F}$	(P _{FM})				V ₁₂	$= V_R + (V_F)$	- V _P)P _{ED}			
L _{EQ} = 1604.87 (Equation 25-2 or 25-3)						12		25-8 or 25-	9)		
P _{FM} = 0.614 using Equation (Exhibit 25-5)					L _{EQ} = P _{FD} =			uation (Exhibit			
12 =	3210	pc/h			V ₁₂ =		pc/h	(=11111	,		
₃ or V _{av34}	2016	pc/h (Equatio	n 25-4 or 25-		V ₃ or V _{av34}		•	tion 25-15 or 2	5-16)		
	5)	_				> 2.700 nc/h	? TYes		5 10)		
s V_3 or $V_{av34} > 2,70$											
s V_3 or $V_{av34} > 1.5$					Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No If Yes, $V_{12a} =$ pc/h (Equation 25-18)						
Yes,V _{12a} =		(Equation 25-	·8)		120						
Capacity Che	cks				Capacity	y Checks					
	Actual	Ca	pacity	LOS F?		Actu		Capacity	LOS F		
					V _F		Exhibit	25-14			
V_{FO}	6231	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhibit	25-14			
					V _R		Exhibit	25-3			
low Entering	a Merae In	fluence A	rea		-	terina Di	verge Infl	uence Are	<u>'</u> ea		
	Actual	1)esirable	Violation?		Actual		Desirable	Violation?		
V _{R12}	4215	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-				
evel of Serv	ice Deterr	nination (i	not F)		}	Service	 Determina		ot F)		
		0.0078 V ₁₂ - 0.00			1		+ 0.0086 V ₁₂				
_R = 29.7 (pc	10	IZ	М			c/mi/ln)	12	. D			
OS = D (Exhib						xhibit 25-4)					
Speed Detern	<u> </u>				`	etermina	tion				
•					_	xhibit 25-19)	uon.				
1 _S = 0.480 (Exil					3		10)				
S _R = 49.3 mph (Exhibit 25-19)						oh (Exhibit 25-					
	(Fubibit OF 10)				S ₀ = mph (Exhibit 25-19)						
₀ = 50.5 mph ((Exhibit 25-14)					oh (Exhibit 25-					

			S AND RAN								
General Infor	mation			Site Infor							
Analyst Agency or Company Date Performed Analysis Time Perioc	02/15	5/12	J	reeway/Dir of Tra lunction lurisdiction Analysis Year		Northbo Exit 5 N NYSDO 2016 Di	T				
Project Description	Exit 4										
Inputs											
Upstream Adj Ramp		Terrain: Level							Downstrea Ramp	m Adj	
▼ Yes ▼ Or									☐ Yes	□ On	
□ No □ Of	f								✓ No	☐ Off	
L _{up} = 7810	ft		_{FF} = 56.0 mph		S _{FR} = 3	15 0 mnl	<u> </u>		L _{down} =	ft	
$V_u = 880 \text{ ve}$			Sketch ((show lanes, L _A ,						veh/h	
Conversion to		der Base (Conditions		1						
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	1	HV	f _p	v = V/PHF x f _{HV}		
Freeway	5650	0.86	Level	2	0	_	990	1.00	663		
Ramp	410	0.92	Level	3	0	_	985	1.00	45		
UpStream DownStream	880	0.88	Level	1	0	0.9	995	1.00	100)5	
Downstieam		Merge Areas						Diverge Areas			
Estimation of		worge 7 trous			Estimati	ion o		51vorgo 7 trous			
		(D)						\/ . (\/ \/	\D		
1	$V_{12} = V_F$		25.2)					= V _R + (V _F - V _I		05.0)	
L _{EQ} = (Equation 25-2 or 25-3)					L _{EQ} =			310.35 (Equati			
P _{FM} = using Equation (Exhibit 25-5)					P _{FD} =			573 using Eq	uation (Exni	DIT 25-12)	
V ₁₂ =	pc/h	(Cauchian OF	1 or 05 5)		V ₁₂ =			997 pc/h	05.45	05.40	
V ₃ or V _{av34} Is V ₃ or V _{av34} > 2,70		(Equation 25	-4 Of Z5-5)		V ₃ or V _{av34}	. 27		638 pc/h (Equ	ation 25-15	or 25-16	
0 4101								Yes ✓ No			
Is V_3 or $V_{av34} > 1.5$	· -		0/					Yes No	OF 40\		
If Yes,V _{12a} =		(Equation 25	-8)		If Yes,V _{12a} =			oc/h (Equation	25-18)		
Capacity Che	1	1 0	11	LOS F?	Capacity	y Che		1 0	11	LOS F	
	Actual		apacity	LUS F?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-	Actual		pacity		
, , , , , , , , , , , , , , , , , , ,					V _F	, 	6635	Exhibit 25-1	+	No	
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	6183	Exhibit 25-1	_	No	
					V _R		452	Exhibit 25-3	2000	No	
Flow Entering	g Merge In	1			Flow En	_		rge Influen			
.,	Actual	1	Desirable	Violation?	ļ		ctual	Max Desirat		Violation	
V _{R12}	<u> </u>	Exhibit 25-7			V ₁₂		997	Exhibit 25-14	4400:All	No	
Level of Serv		•			1			terminatio	_	-)	
$D_R = 5.475 + 0.$		0.0078 V ₁₂ -	0.00627 L _A			$D_R = 4$.252 + 0	.0086 V ₁₂ - 0.	009 L _D		
D _R = (pc/mi/	ln)				l ''	o.4 (pc/	•				
LOS = (Exhibi						•	it 25-4)				
Speed Detern	nination				Speed D	Deteri	minatio	on			
M _S = (Exibit 2	 5-19)				$D_S = 0.4$	469 (Ex	chibit 25	-19)			
o .	ibit 25-19)				S _R = 49	.4 mph	(Exhibit	25-19)			
					$S_0 = 55$	i.0 mph	(Exhibit	25-19)			
'S ₀ = mph (Exh	1011 20 10)				S = 51.5 mph (Exhibit 25-15)						
	ibit 25-14)				S = 51	.5 mnh	(Exhibit	25-15)			

		IVAIVII V	S AND RAM			1110					
General Info	rmation			Site Infor	mation						
Analyst Agency or Company Date Performed Analysis Time Perio	02/1!		J	reeway/Dir of Tr unction urisdiction .nalysis Year	<u> </u>	Southb Exit 2W NYSDC 2016 D	/ Off				
Project Description	Exit 4										
Inputs											
Upstream Adj Ramp		Terrain: Leve							Downstrea Ramp	m Adj	
☐ Yes ☐ O									✓ Yes	✓ On	
✓ No ☐ Of	ff								□ No	☐ Off	
L _{up} = ft		5	_{FF} = 56.0 mph		S _{FR} = 4	0 0 mn	h		L _{down} =	1300 ft	
V _u = veh/ł			Sketch (show lanes, L _A						680 veh/h	
Conversion t	o pc/h Un	der Base (Conditions								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	<u> </u>	f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	3850	0.92	Level	2	0	0.	990	1.00	422		
Ramp	540	0.92	Level	2	0	0.	990	1.00	593		
UpStream DownStream	400	0.02	Lovel	1 2	0		000	1.00	7.4	7	
Downstieam	680	0.92 Merge Areas	Level	2	U	0.	990	1.00 Diverge Areas	74	/	
Estimation o		werge rireas			Estimati	on o		biverge rireds			
	V ₁₂ = V _F	(D)			1			- \/ - \/ \/	\D		
h					= V _R + (V _F - V _I						
L _{EQ} = (Equation 25-2 or 25-3) P _{FM} = using Equation (Exhibit 25-5)					L _{EQ} = P _{FD} =			Equation 25-8		L# 2E 12)	
- ·								.627 using Ed	luation (Exn	DII 25-12)	
V ₁₂ =	pc/h	/Equation 25	4 or 25 5)		V ₁₂ =			872 pc/h	OF 45	05 40	
V ₃ or V _{av34} Is V ₃ or V _{av34} > 2,70		(Equation 25	-4 Of 25-5)		V ₃ or V _{av34}	. 27		355 pc/h (Equ	ation 25-15	or 25-16	
Is V_3 or $V_{av34} > 2.70$ Is V_3 or $V_{av34} > 1.5$								Yes ✓ No			
	· -		0/					Yes No	OF 10)		
If Yes,V _{12a} =		(Equation 25	-8)		If Yes,V _{12a} =			oc/h (Equation	125-18)		
Capacity Che	1	1 0		LOS F?	Capacity Checks						
	Actual		apacity	LUS F?	\ \ \\	\dashv	Actual	Exhibit 25-1	pacity 4 6780	LOS F	
		E 1 11 11 0 E 7			V _F	\ <u></u>	4227			No	
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- v _R	3634	Exhibit 25-1	-	No	
					V _R		593	Exhibit 25-3		No	
Flow Enterin	1	1		T	Flow Entering Diverge Influence Area						
	Actual	_	Desirable	Violation?	.,		Actual	Max Desiral		Violation	
V _{R12}	1 2 1	Exhibit 25-7			V ₁₂		2872	Exhibit 25-14	4400:All	No	
Level of Serv								terminatio		-)	
$D_R = 5.475 + 0$.,	u.0078 V ₁₂ -	0.00627 L _A					0.0086 V ₁₂ - 0.	009 L _D		
D _R = (pc/mi					I ''		/mi/ln)				
•	it 25-4)					•	oit 25-4)				
Speed Deteri	mination				Speed D						
M _S = (Exibit 2	5-19)					•	xhibit 25	,			
S _R = mph (Ext	nibit 25-19)					-	(Exhibit				
I_	:h:+ 0F 40\				$S_0 = 60.0 \text{ mph (Exhibit 25-19)}$						
S ₀ = mph (Ext	nibit 25-19)				-0 00	.o mpi	(LXIIIDIL	20 10)			

			RAMP	S AND RAM	IP JUNCTI	ONS WO	RKS	HEET				
Genera	l Infori	nation		<u> </u>	Site Infor							
Analyst Agency or (Date Perfor Analysis Tir	Company med me Period	SEB CHA 02/15 PM	5/12	Ju Ju	reeway/Dir of Tr unction urisdiction nalysis Year	avel	Exit 4 : NYSD	oound I-87 SB Off OT Diamond				
Project Des Inputs	scription	EXIT 4										
Upstream A	ldi Damn		Terrain: Leve	 el						Downstrea	ım Adi	
Yes										Ramp	•	
✓ No	□ Off									✓ Yes	☑ On	
140										□ No	Off	
L _{up} =	ft		S	S _{FF} = 56.0 mph		S _{FR} = 4	0.0 mj	oh		L _{down} =	1820 ft	
V _u =	veh/h			Sketch (show lanes, L _A	$L_{D'}V_{R'}V_{f}$				V _D =	1280 veh/l	
Conver	sion to	pc/h Und	der Base	Conditions								
(pc/	/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f_{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway		3650	0.92	Level	2	0	0	.990	1.00	40	07	
Ramp		970	0.92	Level	2	0	0	.990	1.00	1065		
UpStream DownStrea	am	1280	0.93	Level	4	0		.980	1.00	14	04	
2011101101			Merge Areas	Lovei					Diverge Areas		0-1	
Estimat	tion of	v ₁₂				Estimati	ion d	of v ₁₂				
		V ₁₂ = V _F	(P _{EM})					V ₁₂ =	= V _R + (V _F - V _I	P _{ED}		
L _{EQ} = (Equation 25-2 or 25-3)						L _{FO} =			Equation 25-8	`		
P _{FM} = using Equation (Exhibit 25-5)						P _{FD} =		0	611 using Eq	uation (Ext	nibit 25-12)	
V ₁₂ =		pc/h				V ₁₂ =		2	862 pc/h			
V ₃ or V _{av34}		pc/h (Equation 25	5-4 or 25-5)		V_3 or V_{av34}		1	145 pc/h (Equ	ation 25-1	5 or 25-16)	
Is V ₃ or V _{av}	_{v34} > 2,700	pc/h? 🔲 Yes	s 🗆 No			Is V ₃ or V _{av3}	34 > 2,	700 pc/h?	Tyes ✓ No			
		$V_{12}/2 \square Yes$							Yes Vo			
If Yes,V _{12a}			Equation 25	5-8)		If Yes,V _{12a} = pc/h (Equation 25-18)						
Capacit	ty Che	cks			•	Capacity Checks						
		Actual	C	Capacity	LOS F?	ļ ,,		Actual	<u> </u>	pacity	LOS F?	
.,						V _F	.,	4007	Exhibit 25-1		No	
V _F	o		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2942	Exhibit 25-1	_	No	
						V _R		1065	Exhibit 25-3		No	
Flow E	ntering	Merge In	1		l Walata 2	Flow En	ı		rge Influen		l Walatiano	
V		Actual	Exhibit 25-7	Desirable	Violation?	V ₁₂	_	Actual 2862	Max Desirat Exhibit 25-14	4400:All	Violation? No	
	V_{R12} Exhibit 25-7 V_{12} 2862 Exhibit 25 Level of Service Determination (if not F) Level of Service Determination											
				- 0.00627 L _A					.0086 V ₁₂ - 0.	-	' /	
D _R = 0.1	(pc/mi/li		12	0.00027			1.	:/mi/ln)	12 0.	000 - D		
LOS =	(Exhibit	25-4)				LOS = C	(Exhi	bit 25-4)				
Speed I	Determ	ination				Speed L	Deter	minatio	on			
M _S = (I	Exibit 25	-19)				D _S = 0.4	459 (E	xhibit 25	-19)			
_		bit 25-19)				S _R = 49.6 mph (Exhibit 25-19)						
	nph (Exhi	bit 25-19)				$S_0 = 60.9 \text{ mph (Exhibit 25-19)}$						
S = m	nph (Exhi	bit 25-14)				S = 52.4 mph (Exhibit 25-15)						
Copyright © 2	2007 Unive	sity of Florida, A	All Rights Reser	ved		HCS+ [™]	Versio	n 5.3	Ge	nerated: 2/15	/2012 2:22 F	

		MPS AND	RAMP JUN			<u> </u>				
General Infor	mation			Site Infor	mation					
Analyst Agency or Company Date Performed Analysis Time Period	SEB CHA 02/15 PM		Jı Jı	reeway/Dir of Tr unction urisdiction nalysis Year		Southbound I-8 Exit 4 SB On-R NYSDOT 2016 Diamond				
Project Description				naiysis i cai		2010 Diamonu				
Inputs	LAILT									
Jpstream Adj Ramp		Terrain: Level						Downstre	eam Adi	
✓ Yes ☐ On	l							Ramp		
□ No Off	:						☐ Yes ☑ No	☐ On ☐ Off		
- _{up} = 1820 1	ft							L _{down} =	ft	
$J_{up} = 1820 \text{ f}$ $J_{u} = 970 \text{ v}$		S	F = 56.0 mph	show lanes, L _A ,	S _{FR} = 4	0.0 mph		V _D =	veh/h	
Conversion to		dor Basa C		Show lanes, L _A	D' R' f					
	<i>γ</i> γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ			1		1 .	Ι.	1,775.		
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p	
Freeway	2700	0.92	Level	2	0	0.990	1.00		2964	
Ramp	1280	0.93	Level	4	0	0.980	1.00		1404	
UpStream	970	0.92	Level	2	0	0.990	1.00		1065	
DownStream		Morgo Aroas					Divorgo Aro	200		
Estimation of		Merge Areas			Fstimat	ion of v ₁₂	Diverge Area	as		
		(D.)			Loamac	1011 01 112				
$V_{12} = V_F (P_{FM})$						V ₁₂	= V _R + (V _F -	$V_R)P_{FD}$		
L _{EQ} = 1203.97 (Equation 25-2 or 25-3)					L _{EQ} =		(Equation	25-8 or 25-	9)	
$P_{\text{FM}} = 0.614$ using Equation (Exhibit 25-5)							using Equ	ation (Exhibi	t 25-12)	
/ ₁₂ =	1820	•			V ₁₂ =		pc/h			
₃ or V _{av34}	1144 5)	pc/h (Equatio	n 25-4 or 25-		V_3 or V_{av34}		pc/h (Equati	on 25-15 or 2	5-16)	
Is V ₃ or V _{av34} > 2,70	,	s 🔽 No			Is V ₃ or V _{av3}	34 > 2,700 pc/h	Yes □	No		
ls V ₃ or V _{av34} > 1.5 *					Is V ₃ or V _{av3}	₃₄ > 1.5 * V ₁₂ /2	□ Yes □	No		
Yes,V _{12a} =		(Equation 25	.8)		If Yes,V _{12a} = pc/h (Equation 25-18)					
Capacity Che	·	(Equation 20	<u> </u>		Canacit	y Checks				
supuoity One	Actual	Ca	pacity	LOS F?	Joapaon	Actu	al I	Capacity	LOS F	
	Actual		pacity	2001.	V _F	ricia	Exhibit 2		2001	
V_{FO}	4368	Exhibit 25-7		No	$V_{FO} = V_{F}$	- \/	Exhibit 2		_	
*FO	4500	LATIIDIL 23-7		INO		* R	_		_	
	<u> </u>	<u> </u>			V _R		Exhibit :			
Flow Entering				\/ioloti0	Flow En	tering Div			_	
V	Actual 3224	Exhibit 25-7	esirable 4600:AII	Violation?	\/	Actual	Exhibit 25-1	esirable	Violation?	
V _{R12}			4600:All	No	V ₁₂	Comics 5			1 of <i>E</i> '	
Level of Servi						Service L			ot F)	
••		0.0078 V ₁₂ - 0.00	7627 L _A			D _R = 4.252 +	0.0086 V ₁₂	- 0.009 L _D		
$O_{R} = 21.8 \text{ (pc)}$	•					c/mi/ln)				
OS = C (Exhib	-					xhibit 25-4)				
Speed Detern	nination				 	Determina	tion			
specu zetem	oit 25-19)				3	xhibit 25-19)				
	•				S _R = mph (Exhibit 25-19)					
M _S = 0.315 (Exit	Exhibit 25-19)									
$M_{\rm S} = 0.315 \text{ (Exit)}$ $S_{\rm R} = 51.6 \text{ mph (}$	•					ph (Exhibit 25-1 ph (Exhibit 25-1				

	RAI	MPS AND	RAMP JUNG	CTIONS W	/ORKSHE	EET				
General Info				Site Infor						
Analyst Agency or Compan Date Performed Analysis Time Peric	SEB V CHA 02/15 d PM		Fre Jui Jui	eeway/Dir of Tr nction risdiction alysis Year	avel	Southbound I- Exit 5 SB On-I NYSDOT 2016 Diamond	Ramp			
Project Description	Exit 4									
Inputs										
Upstream Adj Ram		Terrain: Level						Downstr Ramp	eam Adj	
Yes TO								✓ Yes	☐ On	
™ No □ O	Π							□ No	✓ Off	
_{-up} = ft			E4.0 mnh		<u> </u>	0.0 mnh		L _{down} =	6100 ft	
$V_u = veh/$	h	3	$_{FF}$ = 56.0 mph Sketch (s	show lanes, L _A ,	$S_{FR} = 4$, $L_{D'}V_{R'}V_{f}$.u.u mpn		V _D =	970 veh/h	
Conversion	to pc/h Und	der Base C	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	HF x f _{HV} x f _p	
Freeway	3000	0.92	Level	2	0	0.990	1.00		3293	
Ramp	630	0.87	Level	1	0	0.995	1.00		728	
UpStream DownStream	970	0.92	Level	2	0	0.990	1.00		1065	
Downstieam		Merge Areas	Levei	Z	1 0	0.990	Diverge A	reas	1000	
Estimation o		g			Estimati	ion of v ₁₂				
	V ₁₂ = V _F	(P _{EM})			†			\/ \D		
L _{EQ} = 4282.27 (Equation 25-2 or 25-3)					-	V 12	$= V_R + (V_R)$	F ^{- v} R ^{)F} FD on 25-8 or 25	-0)	
P _{FM} = 0.614 using Equation (Exhibit 25-5)					L _{EQ} = P =			quation (Exhib		
V ₁₂ =	2022		,		P _{FD} = V ₁₂ =		pc/h	quation (Exhib	11 25-12)	
V ₃ or V _{av34}	1271	pc/h (Equatio	n 25-4 or 25-		V ₁₂ – V ₃ or V _{av34}		•	ıation 25-15 or 2	95-16)	
	5)	—				₃₄ > 2,700 pc/h			.5 10)	
Is V_3 or $V_{av34} > 2.7$						₃₄ > 1.5 * V ₁₂ /2				
Is V ₃ or V _{av34} > 1.5	· -	s ™ No (Equation 25	0)		If Yes, $V_{12a} = pc/h$ (Equation 25-18)					
f Yes,V _{12a} = Capacity Ch		(Equation 25	-0)		Capacity Checks					
Capacity Cit	Actual		apacity	LOS F?	Capacit	Acti	ī	Capacity	LOS F	
	notaai	† ĭ	puolty	1 2001.	V _F	71010		oit 25-14	2031	
V_{FO}	4021	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _D		oit 25-14		
FO					V _R	- K	_	oit 25-3		
Flow Enterin	na Merae In	fluence A	rea	<u> </u>	-	terina Di		fluence Ar	 ea	
TOW EMEM	Actual		Desirable	Violation?	1 1011 211	Actual		C Desirable	Violation	
V _{R12}	2750	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25			
Level of Ser	vice Detern	nination (i	f not F)			Service	Determii	nation (if n	ot F)	
D _R = 5.475	+ 0.00734 v _R + 0	0.0078 V ₁₂ - 0.0	0627 L _A		ı	D _R = 4.252	+ 0.0086 V	₁₂ - 0.009 L _D		
O _R = 18.4 (p	c/mi/ln)				$D_R = (p$	c/mi/ln)				
OS = B (Exh	ibit 25-4)				LOS = (E	xhibit 25-4)				
Speed Deter	mination					Determina	tion			
M _S = 0.278 (E)	ribit 25-19)				D _s = (Exhibit 25-19)					
S _R = 52.1 mph	(Exhibit 25-19)				1 "	ph (Exhibit 25-				
K										
$S_0 = 53.2 \text{ mph}$	(Exhibit 25-19) (Exhibit 25-14)				$S_0 = m_1$	ph (Exhibit 25-	19)			

		FREEWA	Y WEAV	ING WOR	KSHEE	T			
General Informa	tion			Site Info	rmation				
Analyst Agency/Company Date Performed Analysis Time Period	SEB CHA 02/15 PM	/12		Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	Location	I-87 Northbound Exit 2E on to 2W off NYSDOT 2016 Diamond			
Inputs				_					
Freeway free-flow speed, Weaving number of lanes Weaving seg length, L (ft Terrain	s, N	56 4 815 Lev	rel veaving ratio, K		, VR			.21 .35	
Conversions to	pc/h Unde	er Base C	ondition						
(pc/h) V	PHF	Truck %	RV %	E _T	E _R	f _{HV}	fp	V	
V ₀₁ 4220	0.86	2	0	1.5	1.2	0.990	1.00	4956	
V _{o2} 0	0.92	2	0	1.5	1.2	0.990	1.00	0	
V _{w1} 800	0.92	2	0	1.5	1.2	0.990	1.00	878	
V _{w2} 430	0.92	2	0	1.5	1.2	0.990	1.00	472	
V _w		•	1350	V_{nw}			,	4956	
V				TIW				6306	
Weaving and No	n-Weavin	g Speeds	<u> </u>						
		Unconstr				Cons	trained		
/E	Weaving		1	ving (i = nw)	Weavii	ng (i = w)	Non-Wea	ving (= nw)	
a (Exhibit 24-6)	0.1		 	.00					
b (Exhibit 24-6) c (Exhibit 24-6)	0.9			.30					
d (Exhibit 24-6)	0.80			.75			 		
Weaving intensity factor, Wi	1.30		<u> </u>	.72			1		
Weaving and non-weaving speeds, Si (mi/h)	34.4	7	41	.81					
Number of lanes required Maximum number of lane		ned operation,	Nw	1.25 1.40					
	w(max) uncons	trained operat	ion		if Nw > N	w (max) consti	rained operati	on	
Weaving Segme						, ,			
Weaving segment speed	S (mi/h)	,	39.99			•			
Weaving segment density			39.42						
Level of service, LOS	· · · · · · · · · · · · · · · · · · ·		Е						
Capacity of base conditio	n, c _b (pc/h)		6665						
Capacity as a 15-minute		h/h)	6599						
Capacity as a full-hour vo		-	5764						
Notes	11								

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 2/15/2012 2:23 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

			FREEWA	Y WEAV	/ING WOR	KSHEE	Т		
Genera	l Informat	ion			Site Info	rmation			
Analyst Agency/Cor Date Perfor Analysis Tir	med	SEB CHA 02/15/ PM	12		Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	Location	I-87 Southbound Exit 2W on to 2E off NYSDOT 2016 Diamond		
Inputs									
Weaving nu	ee-flow speed, umber of lanes, eg length, L (ft)	11 1	56 4 810 Lev	el Weaving ratio		, VR		A 0.19 0.10	
Conver	sions to p	c/h Unde	er Base C	ondition	าร	r		1	
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f _{HV}	fp	V
V_{o1}	3220	0.92	2	0	1.5	1.2	0.990	1.00	3534
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0
V_{w1}	680	0.92	2	0	1.5	1.2	0.990	1.00	746
V_{w2}	80	0.92	2	0	1.5	1.2	0.990	1.00	87
$V_{_{\mathrm{W}}}$			•	833	V _{nw}				3534
V	7			L		ı			4367
Weavin	g and No	n-Weavin	g Speeds	5					
			Unconstr					trained	
o (Eyhibit 2	1 ()	Weaving		4	ving (i = nw)	Weavir	ng (i = w)	Non-Wea	ving (= nw)
a (Exhibit 2) b (Exhibit 2)		0.15 2.20		 	.00				
c (Exhibit 2		0.97		1	.30				
d (Exhibit 2		0.80)	0	.75				
Weaving intens		0.92)	0	.41				
Weaving and no speeds, Si (mi/l		38.9	8	47	7.56				
Number of I	lanes required number of lanes		ned operation,	, Nw	1.11 1.40				
	If Nw < Nw		trained operat	ion	_	if Nw > Nv	v (max) consti	rained operati	on
		<u> </u>			f Service,				
	egment speed,			45.65			J		
	egment density			23.92					
Level of ser	vice, LOS			С					
Capacity of	base condition	ı, c _b (pc/h)		6788					
Capacity as	a 15-minute fl	ow rate, c (vel	n/h)	6721					
Capacity as	a full-hour vol	ume, c _h (veh/h	n)	6183					
Notes									

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 2/15/2012 2:23 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
80 Free-Flow Spzed FFS = 75 mith 70 mith 70 mith 65 mith 65 mith 55 mith 55 mith 65 mi	By C.	450 (600) 1750 0 1600 200	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AA FFS, LOS, N	
General Information	Flow Rate (pc/h/lin)	Site Inform	mation		
Analyst	SEB			ection of Travel	Northbound I	-87
Agency or Company	CHA		From/To	ction of maver	Exit 2 to Exit	
Date Performed	02/15/12		Jurisdiction		NYSDOT	•
Analysis Time Period	PM		Analysis Yea	r	2026 Diamor	d
Project Description Exit 4						
Oper.(LOS)			Des.(N)		☐ Planning	g Data
Flow Inputs						
Volume, V	<i>5450</i>	veh/h	Peak-Hour F		0.86	
AADT		veh/day	%Trucks and	l Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R		0	
Peak-Hr Direction Prop, D		 	General Terra		Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade %	Length Up/Down %	mi	
Calculate Flow Adjustr				Op/20W11 70		
f _p	1.00		E _R		1.2	
	1.5			· 4) . D /F 4)1	0.990	
E _T	1.0			E _T - 1) + P _R (E _R - 1)]		
Speed Inputs	40.0	<u> </u>	Caic Spee	d Adj and FFS)	
Lane Width	12.0	ft	f_LW			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f_LC			mi/h
Interchange Density	0.50	l/mi	f _{ID}			mi/h
Number of Lanes, N	3		f			mi/h
FFS (measured)	56.0	mi/h	'N			
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N)		
Operational (LOS) V _p = (V or DDHV) / (PHF x N	x f _{HV} x		Design (N) Design LOS	NINA //BUE N	£	
f _p)	2134	pc/h/ln	1.5	OHV) / (PHF x N x	ı _{HV} x	pc/h
S	53.1	mi/h	f _p)			mi/h
$D = v_p / S$	40.2	pc/mi/ln	0 D-7//8			
LOS	E		$D = v_p / S$	mah an at lea		pc/mi/ln
Classom				mber of Lanes, N		
Glossary			Factor Loc	cation		
N - Number of lanes	S - Speed		E _R - Exhibits	23-8, 23-10	f,	- Exhibit 23-4
V - Hourly volume	D - Density	_	.,	23-8, 23-10, 23-1	=	- Exhibit 23-5
v _p - Flow rate	FFS - Free-flow		f _p - Page 23-			Exhibit 23-6
LOS - Level of service	BFFS - Base from	ee-flow speed	۲	, v _p - Exhibits 23-2	• • • • • • • • • • • • • • • • • • • •	- Exhibit 23-7
DDHV - Directional design ho	our volume			, t _p = Zillolto 20-2	-, 'ID	
Copyright © 2007 University of Florida,	All Rights Reserved		ucs.TN	W Version 5.3	Generati	ed: 2/16/2012 9:35

HCS+TM Version 5.3

HCS+TM Version 5.3

HCS+TM Version 5.3

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
S0 Free-Flow Speed FES = 75 mith 70 mith 70 mith 65 mith 65 mith 55 mith 50 1.05 A	B C C	150 (500) 1750 0		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, N, FFS, LO	S, v _p N, S, D S, N v _p , S, D AADT LOS, S, D S, AADT N, S, D
0 400 200	1200 Flow Rate (pc/h/lin	1600 2000)	2400			
General Information			Site Inform			
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/15/12 PM		Highway/Dire From/To Jurisdiction Analysis Yea	ection of Travel	Southbou Exit 4 off NYSDOT 2026 Dia	to Exit 4 on -
✓ Oper.(LOS)		П	Des.(N)		☐ Plar	nning Data
Flow Inputs			200.(1.1)			g = a.a.
Volume, V AADT Peak-Hr Prop. of AADT, K	2750	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.92 2 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustr	nents			•		
f_p	1.00		E _R		1.2	
E _T	1.5		f _{HV} = 1/[1+P _T (E	T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs			Calc Spee	d Adj and FFS	;	
Lane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
Interchange Density	0.50	I/mi				
Number of Lanes, N	3		f _{ID}			mi/h
FFS (measured)	56.0	mi/h	t _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N)		
Operational (LOS) V _p = (V or DDHV) / (PHF x N x		pc/h/ln	Design (N) Design LOS	DHV) / (PHF x N x :	f _{uv} x	
f_p)		•	f _p)	, ,	117	pc/h
S	56.0	mi/h	S			mi/h
$D = v_p / S$	18.0	pc/mi/ln	$D = v_p / S$			pc/mi/ln
LOS	В		F	mber of Lanes, N		r
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base front		E _R - Exhibits: E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
Copyright © 2007 University of Florida				Varsion 5.2		nerated: 2/16/2012 9:36

HCS+TM Version 5.3

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
80 Froe-Flow Speed FFS = 75 mith 70 mith 70 mith 65 mith 55 mith 55 mith 60 mith 75 mi	B C C	450 (600 1750 0 1600 2001	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	Input FFS, N, v FFS, LOS FFS, N, A FFS, LOS FFS, LOS	, v _p N, S, D , N v _p , S, D , ADT LOS, S, D , AADT N, S, D
General Information	Flow Rate (pc/h/lin	L ₂	Site Inforn	nation		
Analyst Agency or Company Date Performed	SEB CHA 02/15/12		Highway/Dire From/To Jurisdiction	ction of Travel	Northbour Exit 4 to E NYSDOT	Exit 5
Analysis Time Period Project Description Exit 4	PM		Analysis Yea	r	2026 Diar	mond
Oper.(LOS)			Des.(N)		☐ Plan	ning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	5700	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra	Buses, P _T	0.86 2 0 Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade %	Length Up/Down %	mi	
Calculate Flow Adjustr					10	
f _p E _T	1.00 1.5		E _R	_T - 1) + P _R (E _R - 1)]	1.2 0.990	
Speed Inputs	7.0			d Adj and FFS		
Lane Width	12.0	ft		a Aaj ana 11 c	<u> </u>	• 11
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3		f_ID			mi/h
FFS (measured)	56.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N)			
Operational (LOS) V _p = (V or DDHV) / (PHF x N f _p) S	x f _{HV} x 2231	pc/h/ln mi/h	f_p)	HV) / (PHF x N x	f _{HV} x	pc/h
D = v _p / S LOS	43.7 E	pc/mi/ln	S D = v _p / S Required Nur	mber of Lanes, N		mi/h pc/mi/In
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base free		f _p - Page 23-	23-8, 23-10, 23-1	1	f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho				Version 5.3		erated: 2/16/2012 9:36

HCS+TM Version 5.3

HCS+TM Version 5.3

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
Froe-Flow Spzed FFS = 75 mith 70 mith	By C.	450 (600) 1750 0		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AA FFS, LOS, N	
0 400 800) 1200 Flow Rate (pc/h/lin	1600 2000)	2400			
General Information			Site Inform			
Analyst Agency or Company Date Performed Analysis Time Period	CLD CHA 07/30/13 PM		Highway/Dire From/To Jurisdiction Analysis Yea	ection of Travel r	Northbound I Exit 5 to Exit NYSDOT 2026 Diamon	6
Project Description Exit 4 Oper.(LOS)			Dog (NI)		□ Dianning	n Doto
Flow Inputs			Des.(N)		Planning	j Dala
Volume, V AADT Peak-Hr Prop. of AADT, K	5900	veh/h veh/day	Peak-Hour Factor & Trucks and %RVs, P _R	Buses, P _T	0.86 2 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustr	1.00	veh/h	General Terr Grade %	ain: Length Up/Down %	Level mi	
	1.00		E _R		1.2	
f _p E _T	1.00 1.5			1)	0.990	
Speed Inputs	1.5			$\frac{1}{1} - 1 + P_R(E_R - 1)$		
Lane Width	12.0	ft		d Adj and FFS		
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f_{LC}			mi/h
Number of Lanes, N	4	,	f_{ID}			mi/h
FFS (measured)	56.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N)		
Operational (LOS) V _p = (V or DDHV) / (PHF x N : f _p)	x f _{HV} x 1732	pc/h/ln	Design (N) Design LOS $v_p = (V \text{ or DD})$)HV) / (PHF x N x f	: : _{HV} x	pc/h
S	56.0	mi/h	t _p)			mi/h
D = v _p / S	30.9	pc/mi/ln	S D = v _p / S			pc/mi/ln
LOS	D		· ·	mber of Lanes, N		
Glossary			Factor Lo	cation		
N - Number of lanes	S - Speed		E _R - Exhibits	23-8 23-10	f	- Exhibit 23-4
V - Hourly volume	D - Density			23-8, 23-10 23-8, 23-10, 23-11		- Exhibit 23-5
v _p - Flow rate	FFS - Free-flow	speed	f _p - Page 23-			Exhibit 23-6
LOS - Level of service	BFFS - Base fr	ee-flow speed	1 '	, v _p - Exhibits 23-2		Exhibit 23-7
DDHV - Directional design ho	our volume			, _p Exhibits 23-2	, 200 I _{ID}	EATILOIT 20-1
Copyright © 2007 University of Florida,	All Rights Reserved		HCS+ [™]	M Version 5.3	Generat	ed: 8/12/2013 3:07 P

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
Free-Flow Spzed FIS = 75 mith 70 mit	B C C	150 1750 1750 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v FFS, LOS, N FFS, N, AAC FFS, LOS, A FFS, LOS, N	v _p , S, D vt LOS, S, D ADT N, S, D
General Information	Flow Rate (pc/h/ln)	Į į	Site Inform	mation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	CLD CHA 07/30/13 PM			ection of Travel	Southbound Exit 6 to Exi NYSDOT 2026 Diamo	t 5
✓ Oper.(LOS)			Des.(N)		☐ Plannir	ng Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	3625	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terr	l Buses, P _T	0.92 2 0 Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade %	Length Up/Down %	mi	
Calculate Flow Adjustr					1.2	
f _p Ε _Τ	1.00 1.5		E _R	· 4) . D /E 4)]	0.990	
Speed Inputs	1.5			ed Adj and FFS		
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 4 56.0	ft ft I/mi mi/h	f _{LW} f _{LC} f _{ID} f _N	a Auj ana 11 o		mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance			Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x N : f _p)		pc/h/ln	$\frac{\text{Design (N)}}{\text{Design LOS}}$ $v_p = (V \text{ or DD})$	0HV) / (PHF x N x t	f _{HV} x	pc/h
S D = v _p / S LOS	56.0 17.8 B	mi/h pc/mi/ln	r _p) S D = v _p / S Required Nu	mber of Lanes, N		mi/h pc/mi/ln
Glossary			Factor Loc	· · · · · · · · · · · · · · · · · · ·		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fre	-	E _R - Exhibits E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1	1 f _L	N - Exhibit 23-4 C - Exhibit 23-5 - Exhibit 23-6 C - Exhibit 23-7
Copyright © 2007 University of Florida,	All Rights Reserved	-	HCSTIN	M Version 5.3	Genera	ited: 8/12/2013 3:08 PM

HCS+TM Version 5.3

Generated: 8/12/2013 3:08 PM

/hr) 0 N	S Ver Base C PHF 0.86 0.92 0.92 Alerge Areas	Ju An An _{FF} = 56.0 mph	Site Information of Transition	avel	Northbound Exit 2W On-I NYSDOT 2026 Diamor	Ramp nd f _p 1.00		☐ On ☐ Off ft veh/h F x f _{HV} x f _p		
CHA 02/15/ PM	S Ver Base C PHF 0.86 0.92 0.92 Alerge Areas	Ju Ju An An Sketch (s Conditions Terrain Level Level	nction risdiction nalysis Year show lanes, L _{A'} %Truck 2 2	$S_{FR} = 4$ L_{D}, V_{R}, V_{f} $\% RV$ 0	Exit 2W On-I NYSDOT 2026 Diamor 0.0 mph	Ramp nd f _p 1.00	Ramp Yes No L _{down} = V _D =	☐ On ☐ Off ft veh/h F x f _{HV} x f _p		
02/15/ PM	S Ver Base C PHF 0.86 0.92 0.92 Alerge Areas	Ju An An FF = 56.0 mph Sketch (s Conditions Terrain Level Level	show lanes, L _A . %Truck 2 2	$S_{FR} = 4$ $L_{D'}V_{R'}V_{f'}$ $\%RV$ 0	NYSDOT 2026 Diamor 0.0 mph	f _p 1.00	Ramp Yes No L _{down} = V _D =	☐ On ☐ Off ft veh/h F x f _{HV} x f _p		
PM D O O O O O O O O O O O O	S Ver Base C PHF 0.86 0.92 0.92 Alerge Areas	An FF = 56.0 mph Sketch (s Conditions Terrain Level Level	show lanes, L _A , %Truck 2 2	$S_{FR} = 4$ $L_{D'}V_{R'}V_{f'}$ $\%RV$ 0	NYSDOT 2026 Diamor 0.0 mph	f _p 1.00	Ramp Yes No L _{down} = V _D =	☐ On ☐ Off ft veh/h F x f _{HV} x f _p		
PM D O O O O O O O O O O O O	S Ver Base C PHF 0.86 0.92 0.92 Alerge Areas	_{FF} = 56.0 mph Sketch (s Conditions Terrain Level Level	show lanes, L _A , %Truck 2 2	$S_{FR} = 4$ $L_{D'}V_{R'}V_{f'}$ $\%RV$ 0	0.0 mph	f _p 1.00	Ramp Yes No L _{down} = V _D =	On Off ft veh/h F x f _{HV} x f _p		
/hr) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PHF 0.86 0.92 0.92 Merge Areas	_{FF} = 56.0 mph Sketch (s Conditions Terrain Level Level	show lanes, L _A , %Truck 2 2	$S_{FR} = 4$ $L_{D'}V_{R'}V_{f}$ $\%RV$ 0	0.0 mph	f _p 1.00	Ramp Yes No L _{down} = V _D =	On Off ft veh/h F x f _{HV} x f _p		
/hr) 0 N	PHF 0.86 0.92 0.92 Merge Areas	FF = 56.0 mph Sketch (s Conditions Terrain Level Level	%Truck 2 2	L _D ,V _R ,V _f) %Rv 0	f _{HV}	1.00	Ramp Yes No L _{down} = V _D =	☐ On ☐ Off ft veh/h F x f _{HV} x f _p		
/hr) 0 N	PHF 0.86 0.92 0.92 Merge Areas	FF = 56.0 mph Sketch (s Conditions Terrain Level Level	%Truck 2 2	L _D ,V _R ,V _f) %Rv 0	f _{HV}	1.00	Ramp Yes No L _{down} = V _D =	☐ On ☐ Off ft veh/h F x f _{HV} x f _p		
/hr) 0 N	PHF 0.86 0.92 0.92 Merge Areas	Sketch (s Conditions Terrain Level Level	%Truck 2 2	L _D ,V _R ,V _f) %Rv 0	f _{HV}	1.00	Yes No L _{down} = V _D =	Off ft veh/h F x f _{HV} x f _p		
/hr) 0 N	PHF 0.86 0.92 0.92 Merge Areas	Sketch (s Conditions Terrain Level Level	%Truck 2 2	L _D ,V _R ,V _f) %Rv 0	f _{HV}	1.00	$V_D = V/PH$	Off ft veh/h F x f _{HV} x f _p		
/hr) 0 N	PHF 0.86 0.92 0.92 Merge Areas	Sketch (s Conditions Terrain Level Level	%Truck 2 2	L _D ,V _R ,V _f) %Rv 0	f _{HV}	1.00	V _D = v = V/PH	veh/h		
/hr) 0 N	PHF 0.86 0.92 0.92 Merge Areas	Sketch (s Conditions Terrain Level Level	%Truck 2 2	L _D ,V _R ,V _f) %Rv 0	f _{HV}	1.00	v = V/PH	F x f _{HV} x f _p		
/hr) 0 N	0.86 0.92 0.92 0.92 Merge Areas	Terrain Level Level	%Truck 2 2	%Rv 0	├	1.00	v = V/PH	<u>'</u>		
/hr) 0 N	0.86 0.92 0.92 0.92 Merge Areas	Terrain Level Level	2 2	0	├	1.00		<u>'</u>		
/hr) 0 N	0.86 0.92 0.92 Merge Areas	Level Level	2 2	0	├	1.00		<u>'</u>		
N 2 = V _F (0.92 0.92 Merge Areas	Level	2		0.990					
N 2 = V _F (0.92 Merge Areas			0				5461		
N 2 = V _F (Nerge Areas	Level	2		0.990	1.00		856		
₂ = V _F (<u> </u>		1	0	0.990	1.00		922		
₂ = V _F (<u> </u>									
						Diverge A	reas			
				Estimati	ion of v ₁	12				
	P)			1			1/ 15			
						$_{12} = V_R + (V_I)$				
L _{EQ} = 1419.04 (Equation 25-2 or 25-3)						(Equation	on 25-8 or 25-9	9)		
P _{FM} = 0.581 using Equation (Exhibit 25-5)						using Ed	quation (Exhibit	25-12)		
173 p	c/h			V ₁₂ =		pc/h				
	c/h (Equatio	n 25-4 or 25-		V ₃ or V _{av34}		•	ation 25-15 or 25	5-16)		
)					> 2.700 pc	/h? ☐ Yes 「		, 10)		
	i ✓ No									
Yes	. ✓ No					/2 ☐ Yes 「				
pc/h (Equation 25	-8)		If Yes,V _{12a} =		pc/h (Ec	quation 25-18)			
				Capacity	v Check	s				
ual	Ca	apacity	LOS F?	<u> </u>	1		Capacity	LOS F		
	ĺ	7	1	V-						
,	E 1 11 11 0E 7			<u> </u>	1/			_		
1	EXNIBIT 25-7		NO		- v _R			_		
				V_R		Exhib	oit 25-3			
je Ini	fluence A	rea		Flow En	tering D	iverge Inf	fluence Are	a		
ıal	Max E	Desirable	Violation?]	Actual	Max	c Desirable	Violation?		
9	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25	5-14			
term	ination (i	f not F)	•	Level of	Service	Determin	nation (if no	ot F)		
										
K	12	A			• •		12 0			
					,	4)				
<u></u>				· ·						
$M_S = 0.472 \text{ (Exibit 25-19)}$										
5-19)				S _R = mp	on (Exhibit 2	5-19)				
5-19)				S ₀ = mph (Exhibit 25-19)						
1 C ()	pc/h (tual 17 ge In: ual 29 eterm V R + 0 25-19) 25-19)	tual Carlon 25 Exhibit 25-7 Ge Influence A ual Max I Exhibit 25-7 E	tual Capacity 17 Exhibit 25-7 ge Influence Area ual Max Desirable 29 Exhibit 25-7 4600:All etermination (if not F) V R + 0.0078 V ₁₂ - 0.00627 L _A 500 25-19)	tual Capacity LOS F? 17 Exhibit 25-7 No 18	If Yes, $V_{12a} = Capacity Capacity Cos F? V_F V_{FO} = V_F V_R V_{FO} = V_F V_{FO} = V_{FO} = V_{FO} V_{FO} = V_{FO} = V_{FO} = V_{FO} V_{FO} = V_{FO} $	pc/h (Equation 25-8) If Yes, $V_{12a} = $ Capacity Check Italian Capacity LOS F? Actual Italian V_F V_F Italian V_F	pc/h (Equation 25-8) If Yes, $V_{12a} = pc/h$ (Equation 25-8) Capacity Checks	pc/h (Equation 25-8) If Yes, V _{12a} = pc/h (Equation 25-18) Capacity Checks		

		IVAIVIE	S AND RAM			11110					
General Info				Site Infor							
Analyst Agency or Company Date Performed Analysis Time Perio	02/1		J	reeway/Dir of Tr unction urisdiction .nalysis Year		Exit 4 NYSD	ound I-87 NB Off OT Diamond				
Project Description				a.yo.o . oa.		2020 2	, idiniona				
Inputs											
Upstream Adj Ramp)	Terrain: Leve	I						Downstrea Ramp	m Adj	
☐ Yes ☐ O	n								✓ Yes	™ On	
₩ No	ff								□ No	☐ Off	
L _{up} = ft		S	_{FF} = 56.0 mph		S _{FR} = 4	10.0 mi	oh		L _{down} =	1850 ft	
V _u = veh/ł			Sketch (show lanes, L _A					V _D =	930 veh/	
Conversion t	to pc/h Un	der Base (Conditions								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV} f _p		f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	5450	0.86	Level	2	0	0	.990	1.00	6401		
Ramp	980	0.86	Level	2	0	0	.990	1.00	1151		
UpStream	000	0.00		1		+-	205	1.00	10.		
DownStream	930	0.88 Merge Areas	Level	1 1	0	0	.995	1.00 Diverge Areas	106	52	
Estimation o		ivici ye Ai eas			Estimati	ion d		Diverge Areas			
		(B)			200,7740			., ., .,	<u> </u>		
$V_{12} = V_F (P_{FM})$								= V _R + (V _F - V _I			
L _{EQ} = (Equation 25-2 or 25-3)					L _{EQ} =			Equation 25-8			
P _{FM} = using Equation (Exhibit 25-5)					P _{FD} =			547 using Ed	Juation (Exhi	bit 25-12)	
V ₁₂ =	pc/h				V ₁₂ =			023 pc/h			
V ₃ or V _{av34}		(Equation 25	-4 or 25-5)		V_3 or V_{av34}			378 pc/h (Equ	ation 25-15	or 25-16	
Is V_3 or $V_{av34} > 2,70$								Tyes ✓ No			
Is V_3 or $V_{av34} > 1.5$	· -						5 * V ₁₂ /2	TYes ✓ No			
If Yes,V _{12a} =	pc/h	(Equation 25	-8)		If Yes, V _{12a} = pc/h (Equation 25-18)						
Capacity Che	ecks				Capacity Checks						
	Actual	C	apacity	LOS F?			Actual	Ca	pacity	LOS F	
					V_{F}		6401	Exhibit 25-1	4 6780	No	
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V_R	5250	Exhibit 25-1	4 6780	No	
					V _R		1151	Exhibit 25-3	3 2100	No	
Flow Enterin	a Merae In	fluence A	rea		<u> </u>	teri	na Dive	rge Influen	ce Area		
	Actual	1	Desirable	Violation?	,	-	Actual	Max Desiral		Violation	
V _{R12}	ĺ	Exhibit 25-7			V ₁₂	_	4023	Exhibit 25-14	4400:All	No	
Level of Serv	rice Deterr		f not F)					terminatio	l		
$D_R = 5.475 + 0$.0086 V ₁₂ - 0.	_	/	
$D_R = (pc/mi)$		12	A				:/mi/ln)	12	ט		
**	it 25-4)						bit 25-4)				
Speed Deteri					Speed D	•		on			
							xhibit 25				
M _S = (Exibit 25-19)						•		•			
	nibit 25-19)				S _R = 49.5 mph (Exhibit 25-19)						
	nibit 25-19)				S_0 = 56.1 mph (Exhibit 25-19) S = 51.7 mph (Exhibit 25-15)						
	nibit 25-14)				S = 51	ı / mnl	a (Lybibit	76-151			

	<u>R</u> AI	MPS AND	RAMP JUNG	<u>STIONS W</u>	OKNORE	<u></u>						
General Infor	mation			Site Infor	mation							
Analyst Agency or Company Date Performed	SEB CHA 02/1!		Ju	eeway/Dir of Tranction risdiction		Northbound I-8 Exit 4 NB On-F NYSDOT						
nalysis Time Period	PM		An	nalysis Year	:	2026 Diamond						
Project Description	Exit 4											
nputs		l										
lpstream Adj Ramp ▼ Yes		Terrain: Level						Downstre Ramp	eam Adj			
Yes I On								☐ Yes	☐ On			
■ No Off								✓ No	☐ Off			
up = 1850 f	ft							L _{down} =	ft			
' _u = 980 ve	eh/h	S	_{FF} = 56.0 mph Sketch (s	show lanes, L _A ,	$S_{FR} = 4$ $L_{P_1}V_{P_2}V_{A}$	0.0 mph		V _D =	veh/h			
Conversion to	pc/h Un	der Base C		A	-D' - R' - 1'							
(pc/h)	V	PHF	Terrain	%Truck	%Rv	f _{HV}	fp	v = V/PH	F x f _{HV} x f _p			
reeway	(Veh/hr) 4450	0.86	Level	2	0	0.990	1.00	_	5226			
Ramp	930	0.88	Level	1	0	0.995	1.00		1062			
UpStream	980	0.92	Level	3	0	0.985	1.00	1081				
DownStream							ĺ					
		Merge Areas			Fatima at		Diverge Are	eas				
stimation of	V ₁₂				Estimati	ion of v ₁₂						
			V ₁₂	= V _R + (V _F	- V _R)P _{FD}							
L _{EQ} = 1617.07 (Equation 25-2 or 25-3)					L _{EQ} =		(Equation	25-8 or 25-	9)			
FM =	0.614	using Equation	on (Exhibit 25-5)		P _{FD} =		using Equ	ıation (Exhibi	t 25-12)			
12 =	3210	•			V ₁₂ =		pc/h					
or V _{av34}		pc/h (Equatio	n 25-4 or 25-		V ₃ or V _{av34}		pc/h (Equat	tion 25-15 or 2	5-16)			
s V ₃ or V _{av34} > 2,70	5) 0 pc/h? □ ∨a	e V No				₃₄ > 2,700 pc/h	? ☐ Yes ☐	No				
s V ₃ or V _{av34} > 1.5 *					Is V ₃ or V _{av3}	₃₄ > 1.5 * V ₁₂ /2	☐ Yes ☐	No				
Yes, V _{12a} =		(Equation 25	-8)		If Yes,V _{12a} = pc/h (Equation 25-18)							
Capacity Che		(=900000-10	<u> </u>		Capacity Checks							
,	Actual	Ca	pacity	LOS F?	10040000	Actu	al	Capacity	LOS F?			
			, ,	1	V _F		Exhibit					
V_{FO}	6288	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _P	Exhibit	25-14				
10					V _R		Exhibit					
low Entering	ı Merae In	ofluence A	rea	<u> </u>	-	terina Div	/erge Infl		 Pa			
	Actual	ή)esirable	Violation?		Actual		Desirable	Violation?			
V _{R12}	4272	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-	_				
evel of Serv	ice Deterr	nination (i	f not F)			Service I	Determina	ation (if n	ot F)			
D _R = 5.475 +	0.00734 v _R + 0	0.0078 V ₁₂ - 0.0	0627 L _A			$D_{R} = 4.252 -$	+ 0.0086 V ₁₂	- 0.009 L _D				
O _R = 30.1 (pc	/mi/ln)				$D_R = (p$	c/mi/ln)						
OS = D (Exhib					LOS = (E	xhibit 25-4)						
Speed Detern	nination				Speed D	Petermina	tion					
M _S = 0.496 (Exibit 25-19)					$D_s = (E)$	xhibit 25-19)						
S _R = 49.1 mph (Exhibit 25-19)					S _R = mph (Exhibit 25-19)							
_R = 49.1 mph (,		S ₀ = 50.5 mph (Exhibit 25-19)					$S_0 = mph$ (Exhibit 25-19)				
					S ₀ = m _l	oh (Exhibit 25-	19)					

		RAMPS	S AND RAI	IP JUNCTI	ONS WO	RKS	HEET				
General Infor	mation			Site Infor							
Analyst Agency or Company Date Performed Analysis Time Period	SEB CHA 02/1! PM			Freeway/Dir of Tr Junction Jurisdiction Analysis Year	avel [Exit 5 N					
Project Description	Exit 4										
Inputs		Terrain: Leve							- ·	A 1:	
Upstream Adj Ramp		TCHain. Ecve							Downstrea Ramp	m Aaj	
✓ Yes ✓ On									☐ Yes	On	
□ No □ Off									✓ No	Off	
										ft	
L _{up} = 7810 1	rt	5	_{FF} = 56.0 mph		S _{FR} = 3	5 0 mr	ıh		L _{down} =	IL	
V _u = 930 νε	eh/h		• •	(show lanes, L _A		5.0 mp	'''		V _D =	veh/h	
Conversion to	pc/h Und	der Base (· A	D. K. I.						
(pc/h)	V	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{LIV} x f _n	
Freeway	(Veh/hr) 5700	0.86	Level	2	0	4	990	1.00	66	••• г	
Ramp	420	0.92	Level	3	0		985	1.00	463		
UpStream	930	0.88	Level	1	0	_	995	1.00	1062		
DownStream											
5 -444		Merge Areas			F - 45 45			Diverge Areas			
Estimation of	V ₁₂				Estimati	on c					
	$V_{12} = V_F$	(P _{FM})					V ₁₂ =	= V _R + (V _F - V _I	R)P _{FD}		
L _{EQ} = (Equation 25-2 or 25-3)					L _{EQ} =		5	596.13 (Equati	on 25-8 or	25-9)	
P _{FM} = using Equation (Exhibit 25-5)					P _{FD} =			.571 using Eq	uation (Exh	ibit 25-12)	
V ₁₂ =	pc/h				V ₁₂ =			023 pc/h			
V ₃ or V _{av34}		(Equation 25	-4 or 25-5)		V ₃ or V _{av34}	0.7		671 pc/h (Equ	ation 25-15	or 25-16	
Is V_3 or $V_{av34} > 2,70$								☐ Yes ☑ No			
Is V ₃ or V _{av34} > 1.5 *	· -		0)					Yes No	2F 10\		
If Yes,V _{12a} = Capacity Che		(Equation 25	-0)		If Yes,V _{12a} = pc/h (Equation 25-18)						
Сараспу спе	Actual	T C	apacity	LOS F?	Capacity Checks Actual Capacity					LOS F	
	netdai	Ĭ	apacity	2031.	V _F		6694	Exhibit 25-1	T .	No	
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V ₅	6231	Exhibit 25-1	_	No	
FO					V _R	K	463	Exhibit 25-3		No	
Flow Entering	Morgo In	fluence A	ro2			torir		erge Influen		110	
. 10W Entering	Actual	1	Desirable	Violation?	1 13W LII	-	Actual	Max Desirat		Violation	
V _{R12}		Exhibit 25-7			V ₁₂		1023	Exhibit 25-14	4400:All	No	
Level of Serv	ice Detern	nination (i	f not F)			Ser	vice De	eterminatio	n (if not	F)_	
$D_R = 5.475 + 0.0$	00734 v _R +	0.0078 V ₁₂ -	0.00627 L _A		[O _R = 4	1.252 + 0	0.0086 V ₁₂ - 0.	009 L _D		
D _R = (pc/mi/	n)				D _R = 36	.6 (pc	/mi/ln)				
LOS = (Exhibi	t 25-4)				LOS = E (Exhibit 25-4)						
Speed Detern	nination				Speed D	eter	minati	on			
M _S = (Exibit 25-19)					D _s = 0.470 (Exhibit 25-19)						
S _R = mph (Exhibit 25-19)					S _R = 49.4 mph (Exhibit 25-19)						
⊳ _R = mpn (Exn						S ₀ = 54.9 mph (Exhibit 25-19)					
S ₀ = mph (Exh	ibit 25-19) ibit 25-14)				$S_0 = 54$.9 mph	(Exhibit	25-19)			

		RAMP	S AND RAM	IP JUNCTI	ONS WO	RKS	HEET					
General Info	rmation			Site Infor								
Analyst Agency or Company Date Performed Analysis Time Perio	SEB / CHA 02/15 d PM		J	reeway/Dir of Tr unction urisdiction Analysis Year	ravel S	Southb Exit 2V NYSD(2026 D	V Off					
Project Description	Exit 4											
Inputs		Terrain: Leve	<u> </u>					1	D	A al:		
Upstream Adj Ramp			•						Downstrea Ramp			
✓ No ☐ O									✓ Yes	☑ On		
	.,								□ No	☐ Off		
L _{up} = ft		S	_{FF} = 56.0 mph		S _{FR} = 4	0.0 mp	h		L _{down} =	1300 ft		
$V_u = veh/I$	า		Sketch ((show lanes, L _A	$L_{D'}V_{R'}V_{f}$				V _D =	710 veh/h		
Conversion t	to pc/h Und	der Base (Conditions									
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		${\sf f}_{\sf HV}$	f _p	v = V/PHF	$x f_{HV} x f_{p}$		
Freeway	3950	0.92	Level	2	0	0	990	1.00	43	36		
Ramp	560	0.92	Level	2	0	0	.990	1.00	6	15		
UpStream DownStream	710	0.00	Level			+	000	1.00	7.	70		
DownStream	710	0.92 Merge Areas	Level	2	0	0	990	1.00 Diverge Areas	1.	79		
Estimation o		ivici ye Ai cas			Estimati	on c		Diverge Areas				
		(D)						\/ . (\/ \/	\D			
	$V_{12} = V_F$		05.0\		L _{FO} =			$= V_R + (V_F - V_F)$				
L _{EQ} = (Equation 25-2 or 25-3) P _{FM} = using Equation (Exhibit 25-5)								Equation 25-8				
P _{FM} =	_	Equation (E	XNIDII 25-5)		P _{FD} =			.623 using Eq	uation (Exr	iibit 25-12)		
V ₁₂ =	pc/h	/F // 05	. 4 . 05 5)		V ₁₂ =			934 pc/h				
V ₃ or V _{av34}		(Equation 25	-4 or 25-5)		V_3 or V_{av34} 1402 pc/h (Equation 25-15 or 25-16 Is V_3 or $V_{av34} > 2,700$ pc/h? \checkmark Yes \checkmark No							
Is V_3 or $V_{av34} > 2.79$												
Is V_3 or $V_{av34} > 1.5$	·=		. 0/					Yes Mo	OF 40\			
If Yes,V _{12a} =		(Equation 25)-8)		If Yes,V _{12a} =			oc/h (Equation	25-18)			
Capacity Che	1	T	apacity	LOS F?	Capacity	Ch			pacity	LOS F		
	Actual		араспу	LUST	V _F		Actual 4336	Exhibit 25-1	T -	No		
V		Cybibit 2F 7				- \/			+			
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	*R	3721	Exhibit 25-1	_	No No		
	14 .	<u> </u>			V _R	4	615	Exhibit 25-3		No		
Flow Enterin	g Merge In Actual	ľ	rea Desirable	Violation?	riow En	1	ig Dive Actual	rge Influen Max Desirab		Violation		
V _{R12}	Actual	Exhibit 25-7	DESII ADIE	viola(IOI1?	V ₁₂	_	2934	Exhibit 25-14	4400:All	No		
Level of Serv	ice Detern		if not E)	1				eterminatio		<u> </u>		
$D_{R} = 5.475 + 0$.0086 V ₁₂ - 0.	•	<i>'</i>		
• • •	• • • • • • • • • • • • • • • • • • • •	0.0070 v ₁₂ -	0.00027 L _A					.0000 v ₁₂ - 0.	003 LD			
$D_R = (pc/mi)$ LOS = (Exhib	•				1 "		/mi/ln)					
LOS = (Exhibit 25-4) Speed Determination						LOS = C (Exhibit 25-4) Speed Determination						
					` '							
M _S = (Exibit 2					J.	•	xhibit 25	•				
S _R = mph (Exhibit 25-19)						S _R = 50.1 mph (Exhibit 25-19)						
	S ₀ = mph (Exhibit 25-19)						S ₀ = 59.9 mph (Exhibit 25-19)					
S ₀ = mph (Exi	nibit 25-19) nibit 25-14)						n (Exhibit n (Exhibit					

		IV-VIAII A	O AND ITAI	IP JUNCTI		11110	···				
General Info	rmation			Site Infor							
Analyst Agency or Compan Date Performed Analysis Time Peric	02/1!		J	reeway/Dir of Tr unction urisdiction analysis Year	1	Exit 4 : NYSD	oound I-87 SB Off OT Diamond				
Project Description	Exit 4										
Inputs											
Upstream Adj Ramı		Terrain: Leve							Downstrea Ramp	m Adj	
☐ Yes ☐ O									✓ Yes	✓ On	
™ No □ O	ff								□ No	☐ Off	
L _{up} = ft		9	_{FF} = 56.0 mph		S _{FR} = 4	0 0 mr	nh.		L _{down} =	1820 ft	
V _u = veh/			Sketch ((show lanes, L _A ,		.0.0 111	JII		V _D =	1310 veh	
Conversion	to pc/h Un	der Base (Conditions								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f_{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	3800	0.92	Level	2	0	0	.990	1.00	417	72	
Ramp	1040	0.92	Level	2	0	0	.990	1.00	114	12	
UpStream	1210	0.02	Lovel	1	0	_	000	1.00	14	7	
DownStream	1310	0.93 Merge Areas	Level	4	0	0	.980	1.00 Diverge Areas	143	37	
Estimation of		werge 711 cus			Estimati	ion c		biverge rireds			
		(D)						\/ . (\/ \/	\D		
ı	$V_{12} = V_F$		OF 0\		L _{EQ} =			= V _R + (V _F - V _I			
L _{EQ} = (Equation 25-2 or 25-3) P _{FM} = using Equation (Exhibit 25-5)								Equation 25-8		:L:: OF 10\	
P _{FM} =	_	Equation (XIIIDIL 20-0)		P _{FD} =			.603 using Ed	luation (Exil	IDIL 25-12)	
V ₁₂ = V ₃ or V _{av34}	pc/h	(Equation 25	4 or 25 5)		$V_{12} = V_3 \text{ or } V_{av34}$			970 pc/h	ation OF 15	- OF 40	
Is V ₃ or V _{av34} > 2,7		(Equation 25	1-4 01 25-5)		V_3 or V_{av34} 1202 pc/h (Equation 25-15 or 25-16 Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No						
Is V_3 or $V_{av34} > 2,7$								Yes No			
If Yes,V _{12a} =	· -	S I NO (Equation 25	: 0\		If Yes, $V_{12a} =$			oc/h (Equation	25 10)		
Capacity Ch		(Equation 23	0)					ochi (Equation	123-10)		
Capacity Cit	Actual	Г <u>с</u>	apacity	LOS F?	Capacity	y Cii	Actual	Ca	pacity	LOS F?	
	Actual	† ĭ	араспу	LUST:	V _F		4172	Exhibit 25-1	· ·	No	
V		Exhibit 25-7			-	\/				+	
V _{FO}		EXHIBIT 23-7			$V_{FO} = V_{F}$	- v _R	3030	Exhibit 25-1	-	No	
<u></u>					V _R		1142	Exhibit 25-3		No	
Flow Enterin	1	1		\I':=1=#' \ \O	Flow En	1		rge Influen		\I;=1=1' C	
V	Actual	Exhibit 25-7	Desirable	Violation?	\/	_	Actual	Max Desirat		Violation?	
V _{R12} Level of Serv	vice Detarr		if not El		V ₁₂		2970	Exhibit 25-14	4400:All	No E)	
					+)	
$D_{R} = 5.475 + 0$		0.0076 V ₁₂ -	0.00021 L _A			• • •		0.0086 V ₁₂ - 0.	oos rD		
D _R = (pc/mi/ln)						$D_{R} = 23.5 \text{ (pc/mi/ln)}$					
LOS = (Exhibit 25-4) Speed Determination						LOS = C (Exhibit 25-4) Speed Determination					
					' 						
M _S = (Exibit 2					. "	,	xhibit 25	*			
	hibit 25-19)				1	-	n (Exhibit				
S ₀ = mph (Exhibit 25-19)					$S_0 = 60$).6 mpl	n (Exhibit	25-19)			
S = mph (Exhibit 25-14)							n (Exhibit				

		MPS AND	RAMP JUN			<u>:EI </u>					
General Infor	mation			Site Infor	mation						
Analyst Agency or Company Date Performed	SEB CHA 02/15		Jı	reeway/Dir of Tra unction urisdiction	avel Southbound I-87 Exit 4 SB On-Ramp NYSDOT						
Analysis Time Period		JI 12		nalysis Year		2026 Diamond					
Project Description						Lozo Biamona					
Inputs											
Jpstream Adj Ramp		Terrain: Level						Downstre Ramp	am Adj		
Yes On								☐ Yes	□ On		
□ No Off	:							™ No	☐ Off		
- _{up} = 1820	ft							L _{down} =	ft		
$V_{u} = 1040 \text{ V}$	reh/h	S	_{FF} = 56.0 mph Sketch (show lanes, L _A ,	$S_{FR} = 4$	0.0 mph		V _D =	veh/h		
Conversion to	o pc/h Und	l der Base C		Show lanes, LA	D' R' f'						
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p		
Freeway	2750	0.92	Level	2	0	0.990	1.00	 	3019		
Ramp	1310	0.93	Level	4	0	0.980	1.00	1	1437		
UpStream	1040	0.92	Level	2	0	0.990	1.00		1142		
DownStream											
		Merge Areas					Diverge Area	as			
Estimation of	v ₁₂				Estimation of v ₁₂						
	V ₁₂ = V _F	(P _{FM})				\/	= V _R + (V _F -	V_)P			
_{EQ} = 1222.80 (Equation 25-2 or 25-3)						v 12	(Equation:		0)		
P _{FM} =			on (Exhibit 25-5))	L _{EQ} =						
'12 =	1854		,	,	P _{FD} =			ation (Exhibit	. 20-12)		
		pc/h (Equatio	n 25-4 or 25-		$V_{12} = pc/h$ V_3 or V_{av34} pc/h (Equation 25-15 or 25-16)						
or V _{av34}	5)				V_3 or V_{av34} pc/h (Equation 25-15 or 25-16) Is V_3 or $V_{av34} > 2,700$ pc/h? Yes No						
s V_3 or $V_{av34} > 2,70$											
Is V_3 or $V_{av34} > 1.5$	V ₁₂ /2	s 🗹 No			Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No						
f Yes,V _{12a} =	pc/h	(Equation 25-	8)		If Yes,V _{12a} = pc/h (Equation 25-18)						
Capacity Che	cks				Capacit	y Checks					
	Actual	Ca	pacity	LOS F?		Actu	al	Capacity	LOS F		
					V _F		Exhibit 2	25-14			
V_{FO}	4456	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhibit 2	25-14			
-					V _R		Exhibit 2	25-3			
low Entering	n Merge In	fluence Ai	 'ea		Flow Entering Diverge Influence Area						
	Actual		esirable	Violation?		Actual		esirable	Violation?		
V _{R12}	3291	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-14				
Level of Serv	ice Detern	nination (ii	not F)		}	Service L	Determina		ot F)		
		0.0078 V ₁₂ - 0.00			1		0.0086 V ₁₂				
) _R = 22.3 (pc		12	Λ			c/mi/ln)	12	D			
LOS = C (Exhibit 25-4)						LOS = (Exhibit 25-4)					
Speed Detern	nination				Speed D	Determina	tion				
M _S = 0.321 (Exil					 	xhibit 25-19)					
S_{R} = 51.5 mph (Exhibit 25-19)					1	ph (Exhibit 25-1	19)				
.,						ph (Exhibit 25-1					
S ₀ = 53.6 mph (Exhibit 25-19) S = 52.0 mph (Exhibit 25-14)						$S_0 = \text{mpn (Exhibit 25-19)}$ $S = \text{mph (Exhibit 25-15)}$					
S = 52.0 mph (EXPIDIT 75-141					DIT (EXIJUIN 77)-					

	RA	MPS AND	KAMP JUNG	STICING W	OKKSHL	<u></u>					
General Info	ormation			Site Infor	mation						
Analyst SEB Agency or Company CHA Date Performed 02/15/12 Analysis Time Period PM				avel S E N	Southbound I- Exit 5 SB On-F NYSDOT 2026 Diamond						
Project Description	n Exit 4										
Inputs		-									
Jpstream Adj Ran		Terrain: Leve						Downstr Ramp	eam Adj		
□Yes □								✓ Yes	□ On		
☑ No	ווכ							□ No	✓ Off		
- _{up} = ft		S	_{FF} = 56.0 mph		S _{FR} = 40	0.0 mph		L _{down} =	6100 ft		
/ _u = veh	/h		Sketch (s	show lanes, L _A ,	$L_{D'}V_{R'}V_{f}$			$V_D =$	1040 veh/h		
Conversion	to pc/h Un	der Base (Conditions					•			
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	IF x f _{HV} x f _p		
Freeway	3150	0.92	Level	2	0	0.990	1.00		3458		
Ramp	670	0.87	Level	1	0	0.995	1.00		774		
UpStream DownStream	1040	0.92	Level	2	0	0.990	1.00		1142		
Downsticani		Merge Areas	Level			0.770	Diverge /	Areas	1142		
Estimation		<u> </u>			Estimation of v ₁₂						
	V ₁₂ = V _F	(P _{EM})			1			/ \/\D			
- _{EQ} =		• • • • • • • • • • • • • • • • • • • •	25-2 or 25-3)		-	V 12		′ _F - V _R)P _{FD} on 25-8 or 25-	0)		
P _{FM} =			on (Exhibit 25-5)		L _{EQ} =						
/ ₁₂ =	2123		OTT (EXTENDED 20 0)		P _{FD} =		_	quation (Exhib	1[25-12)		
		•	on 25-4 or 25-		V ₁₂ =		pc/h	OF 4E 0	F 4 ()		
V ₃ or V _{av34}	5)				V_3 or V_{av34} pc/h (Equation 25-15 or 25-16) Is V_3 or $V_{av34} > 2,700$ pc/h? Yes No						
Is V_3 or $V_{av34} > 2$					Is V_3 or $V_{av34} > 2.700$ pc/nr: Yes No						
Is V_3 or $V_{av34} > 1$	·=										
f Yes,V _{12a} =	<u>.</u>	(Equation 25	-8)		If Yes,V _{12a} =			quation 25-18)		
Capacity Cl	necks				Capacity	/ Checks			,		
	Actual	C	apacity	LOS F?		Actı		Capacity	LOS F?		
					V _F		Exhi	bit 25-14			
V_{FO}	4232	Exhibit 25-7		No	$V_{FO} = V_{F}$	· V _R	Exhi	bit 25-14			
					V _R		Exhi	bit 25-3			
Flow Enteri	ng Merge Ir				Flow En	tering Di		fluence Ar	-		
	Actual		Desirable	Violation?	ļ	Actual		x Desirable	Violation?		
V _{R12}	2897	Exhibit 25-7	4600:All	No	V ₁₂	<u> </u>	Exhibit 2		<u></u>		
Level of Ser								nation (if n	ot F)		
• • • • • • • • • • • • • • • • • • • •	+ 0.00734 V _R +	0.0078 V ₁₂ - 0.0	0627 L _A			.,	+ 0.0086 \	/ ₁₂ - 0.009 L _D			
D _R = 19.6 (pc/mi/ln)						D _R = (pc/mi/ln)					
	hibit 25-4)					xhibit 25-4)					
Speed Dete	rmination				' '	etermina	tion				
5	xibit 25-19)				3	khibit 25-19)	40)				
S _R = 52.0 mph (Exhibit 25-19)						h (Exhibit 25-					
S ₀ = 53.0 mph (Exhibit 25-19)											
	h (Exhibit 25-19) h (Exhibit 25-14)					oh (Exhibit 25- oh (Exhibit 25-	•				

		FREEWA	Y WEAV	ING WOF	RKSHEE	Γ				
General Informat	tion			Site Info	rmation					
Analyst Agency/Company Date Performed Analysis Time Period	SEB CHA 02/15/ PM	12		Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	g Location	Exit 2 NYSD	I-87 Northbound Exit 2E on to 2W off NYSDOT 2026 Diamond			
Inputs										
Freeway free-flow speed, Weaving number of lanes Weaving seg length, L (ft) Terrain	11 .	56 4 815 Lev		Weaving type Volume ratio Weaving rati	, VR		A 0.22 0.35			
Conversions to p	oc/h Unde	r Base C	ondition	_				_		
(pc/h) V	PHF	Truck %	RV %	E _T	E _R	f_{HV}	fp	V		
V _{o1} 4200	0.86	2	0	1.5	1.2	0.990	1.00	4932		
V _{o2} 0	0.92	2	0	1.5	1.2	0.990	1.00	0		
V _{w1} 840	0.92	2	0	1.5	1.2	0.990	1.00	922		
V _{w2} 450	0.92	2	0	1.5	1.2	0.990	1.00	494		
V _w			1416	V _{nw}				4932		
V				I TIW	ı			6348		
Weaving and No	n-Weavin	g Speeds	 S							
		Unconstr				Cons	trained			
(=	Weaving			ving (i = nw)	Weavir	ıg (i = w)	Non-Wea	ving (= nw)		
a (Exhibit 24-6)	0.15			0035						
b (Exhibit 24-6) c (Exhibit 24-6)	2.20 0.97		!	.30	<u> </u>					
d (Exhibit 24-6)	0.80			.75						
Weaving intensity factor, Wi	1.39			.74						
Weaving and non-weaving speeds, Si (mi/h)	34.2			.38						
Number of lanes required	for unconstrain	ned operation,	Nw	1.28	!		!			
Maximum number of lanes				1.40	_					
If Nw < Nw	<u> </u>			-		(max) constr	rained operati	on		
Weaving Segment Weaving segment speed,			39.54	s Service,	and Cap	acity				
Weaving segment density Level of service, LOS	40.14 E									
Capacity of base condition	n. c. (pc/h)		6615							
Capacity as a 15-minute f	D -	n/h)	6550							
Capacity as a full-hour vol			5725							
Notes	n (- o	,	1 3720							

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

			FREEWA	Y WEAV	ING WOR	KSHEE	Τ						
General	Informat	ion			Site Info	rmation							
Analyst Agency/Con Date Perforr Analysis Tim	ned	SEB CHA 02/15/ PM	12		Weaving Seg Location E Jurisdiction N			I-87 Southbound Exit 2W on to 2E off NYSDOT 2026 Diamond					
Inputs													
Weaving nui Weaving seq Terrain	e-flow speed, and the speed, and the speed, and the speed and the speed are speed. The speed are speed, and the speed are speed, and the speed, and the speed are speed, and the speed, and the speed are speed, and the speed are speed, and the speed are speed, and the speed are speed, and the speed are speed, and the speed are speed, and the speed are speed, and the speed are speed are speed are speed, and the speed are	Ň	56 4 810 Lev	el	Weaving type Volume ratio, Weaving ratio	, VR		A 0.19 0.10					
Convers	sions to p	c/h Unde	er Base C	ondition		r	1	1					
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f _{HV}	fp	V				
V _{o1}	3320	0.92	2	0	1.5	1.2	0.990	1.00	3644				
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0				
V _{w1}	710	0.92	2	0	1.5	1.2	0.990	1.00	779				
V_{w2}	80	0.92	2	0	1.5	1.2	0.990	1.00	87				
$V_{_{\mathrm{W}}}$	1	•	•	866	V_{nw}		•	•	3644				
V	1				,	ı			4510				
Weaving	g and No	n-Weavin	g Speeds	3									
			Unconstr	4				trained					
o /F.ubibit 0.4		Weaving			ving (i = nw)	Weavir	ng (i = w)	Non-Wea	ving (= nw)				
a (Exhibit 24 b (Exhibit 24		0.15 2.20			.00			-					
c (Exhibit 24		0.97		1.30									
d (Exhibit 24		0.80			.75								
Weaving intensi	•	0.95)	0.43									
Weaving and no speeds, Si (mi/h		38.5	9	47.12									
Number of la Maximum no	anes required umber of lanes				1.12 1.40								
		(max) uncons					v (max) constr	rained operati	on				
					f Service,	and Cap	acity						
Weaving segment density, D (pc/mi/ln) Level of service, LOS				24.94									
	base condition	r c (nc/h)		C 6781									
		ow rate, c (vet	n/h)	6714									
		ume, c _h (veh/h		6177									
Notes	a fall flour VOI	unio, oh (venin	''	0177									
140162													

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

HCS+TM Version 5.3

Generated: 2/17/2012 1:24 PM

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
80 Froe-Flow Speed FFS = 75 mith 70 mith 70 mith 65 mith 55 mith 55 mith 60 mith 75 mi	B C C 45	1600 200	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, FFS, LOS, FFS, LOS, FFS, LOS,	v _p N, S, D N v _p , S, D ADT LOS, S, D AADT N, S, D
General Information	Flow Rate (pc/h/lin	1	Site Inforn	nation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/15/12 PM			ction of Travel	Southbour Exit 4 to E NYSDOT 2036 Dian	xit 2
Project Description Exit 4 Project Description Exit 4 Project Description Exit 4			Des.(N)		☐ Planr	ning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	4050	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra Grade %	Buses, P _T	0.92 2 0 Level mi	
Driver type adjustment Calculate Flow Adjustr	1.00			Up/Down %		
	1.00		E _R		1.2	
f _p E _T	1.5			_T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs				d Adj and FFS		
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 3 56.0	ft ft I/mi mi/h mi/h	f _{LW} f _{LC} f _{ID} f _N FFS	•	56.0	mi/h mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS	Mossuros	1111/11		<u> </u>		
LOS and Performance Operational (LOS) $V_p = (V \text{ or DDHV}) / (PHF \times N f_p)$ S $D = V_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	f_p) S D = v_p / S	HV) / (PHF x N x mber of Lanes, N	f _{HV} x	pc/h mi/h pc/mi/ln
Glossary			Factor Loc	ation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fr		f _p - Page 23-	23-8, 23-10, 23-1 ⁻	1 1	L _W - Exhibit 23-4 L _C - Exhibit 23-5 N - Exhibit 23-6 L _D - Exhibit 23-7
Copyright © 2007 University of Florida,				Version 5.3	Cond	erated: 2/17/2012 1:24

HCS+TM Version 5.3

Generated: 2/17/2012 1:24 PM

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 mith 70 mith 65 mith 60 mith 55 mith 50 LOS A 6	B C C S	1600 200	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, LO FFS, LO	NS, V _p N, S, D NS, N V _p , S, D AADT LOS, S, D NS, AADT N, S, D
General Information	Flow Rate (pc/h/lir	1)	Site Inforn	nation		
Analyst Agency or Company Date Performed Analysis Time Period	SEB CHA 02/15/12 PM			ction of Travel	Northbou Exit 4 off NYSDO	to Exit 4 on
Project Description Exit 4						
✓ Oper.(LOS)			Des.(N)		☐ Pla	nning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	4500	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra	Buses, P _T	0.86 2 0 Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade %	Length Up/Down %	mi	
Calculate Flow Adjustr	nents					
f_p	1.00		E_R		1.2	
E_T	1.5		$f_{HV} = 1/[1+P_T(E-$	$_{T}$ - 1) + $P_{R}(E_{R}$ - 1)]	0.990	
Speed Inputs			Calc Spee	d Adj and FFS	3	
Lane Width	12.0	ft	f_{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
Interchange Density	0.50	I/mi	f _{ID}			mi/h
Number of Lanes, N	3		f			mi/h
FFS (measured)	56.0	mi/h	FFS		56.0	
Base free-flow Speed, BFFS		mi/h			36.0	mi/h
LOS and Performance	Measures		Design (N)			
Operational (LOS) v _p = (V or DDHV) / (PHF x N : f _p)	x f _{HV} x 1762	pc/h/ln	1.5	PHV) / (PHF x N x	f _{HV} x	pc/h
S	56.0	mi/h	f _p)			! #
$D = v_p / S$	31.5	pc/mi/ln	S D = v / S			mi/h
LOS	D		D = v _p / S	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fr		E _R - Exhibits2 E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho	our volume			· p		טו
Copyright © 2007 University of Florida,	All Rights Reserved		ucc.TM	Version 5.3	Ge	enerated: 2/17/2012 1:24

HCS+TM Version 5.3

Generated: 2/17/2012 1:24 PM

	BASIC FI	REEWAY SE	GMENTS W	ORKSHEET		
S0 Free-Flow Speed FFS = 75 migh 70 migh 70 migh 65 migh 60 migh 55 migh 60 migh 65 migh 60 migh 65 migh 65 migh 60 migh 65 might 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 migh 65 might 65 might 65 migh 65	B C C	450 (600 1750 0		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v, FFS, LOS FFS, N, A FFS, LOS FFS, LOS	v _p N, S, D N v _p , S, D ADT LOS, S, D AADT N, S, D
0 400 800	1200 Flow Rate (pc/h/ln)	1600 2000)	2400			
General Information			Site Inform			
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/15/12 PM		Highway/Dire From/To Jurisdiction Analysis Yea	ection of Travel	Southboul Exit 4 off t NYSDOT 2036 Dian	o Exit 4 on
✓ Oper.(LOS)		П	Des.(N)		☐ Planı	ning Data
Flow Inputs						g
Volume, V AADT Peak-Hr Prop. of AADT, K	2800	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.92 2 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustr	nents					
f_p	1.00		E_R		1.2	
E_T	1.5		$f_{HV} = 1/[1+P_T(E)]$	T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs			Calc Spee	d Adj and FFS	3	
Lane Width	12.0	ft	f_{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
Interchange Density	0.50	I/mi				mi/h
Number of Lanes, N	3		f _{ID}			
FFS (measured)	56.0	mi/h	T _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N))		
Operational (LOS) v _p = (V or DDHV) / (PHF x N :	x f _{HV} x 1025	pc/h/ln	<u>Design (N)</u> Design LOS)HV) / (PHF x N x	f _{ыу} х	_
f _p)		·	f _p)			pc/h
S	56.0	mi/h	S S			mi/h
$D = v_p / S$	18.3	pc/mi/ln	$D = v_p / S$			pc/mi/ln
LOS	С		F	mber of Lanes, N		•
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base freed our volume		E _R - Exhibits: E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1	1	f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6 f _{ID} - Exhibit 23-7
Copyright © 2007 University of Florida				A Varaion E 2		erated: 2/17/2012 1:25

HCS+TM Version 5.3

Generated: 2/17/2012 1:25 PM

HCS+TM Version 5.3

Generated: 2/17/2012 1:25 PM

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
S0 Free-Flow Space FFS = 75 mith 70 mith 70 mith 65 mith 65 mith 55 mith 55 mith 60 55 mith 60 60 mith 60 mi	B C C	1500 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, Vp FFS, LOS, V FFS, LOS, I FFS, N, AA FFS, LOS, I	v _p , S, D DT LOS, S, D AADT N, S, D
	Flow Rate (pc/h/lin)	- Tax			
General Information			Site Inform		0 44	
Analyst Agency or Company	SEB CHA		From/To	ection of Travel	Southbound Exit 5 to Ex	
Date Performed	02/15/12		Jurisdiction		NYSDOT	π 4
Analysis Time Period	PM		Analysis Yea	ar	2036 Diamo	ond
Project Description Exit 4						
Oper.(LOS)			Des.(N)		☐ Planni	ng Data
Flow Inputs	2000			· · · · · · ·	0.00	
Volume, V AADT	3900	veh/h veh/day	Peak-Hour F %Trucks and		0.92 2	
		veri/day	%RVs, P _R	Duses, r _T	0	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D			General Terr	ain·	Level	
DDHV = AADT x K x D		veh/h	Grade %	Length	mi	
Driver type adjustment	1.00			Up/Down %		
Calculate Flow Adjustr						
f _p	1.00		E _R		1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E)]$	$E_T - 1) + P_R(E_R - 1)$	0.990	
Speed Inputs			Calc Spee	ed Adj and FFS	3	
Lane Width	12.0	ft	f_{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
Interchange Density	0.50	l/mi				mi/h
Number of Lanes, N	3		f _{ID}			
FFS (measured)	56.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N)		
Operational (LOS)			<u>Design (N)</u>			
$v_p = (V \text{ or DDHV}) / (PHF x N)$	v f v		Design LOS			
L.	^ ' _{HV} ^ 1427	pc/h/ln	$v_p = (V \text{ or } DD)$	OHV) / (PHF x N x	$f_{HV} x$	nc/h
т _р) S	56.0	mi/h	f _p)			pc/h
S D = v _p / S	25.5	pc/mi/ln	S			mi/h
LOS	25.5 C	рс/пп/п	$D = v_p / S$			pc/mi/ln
LO3	C		Required Nu	mber of Lanes, N		
Glossary			Factor Lo	cation		
N - Number of lanes	S - Speed		E - Evhibita	23-8 23-10		- Evhihit 22 4
V - Hourly volume	D - Density		E _R - Exhibits			_W - Exhibit 23-4 _C - Exhibit 23-5
v _p - Flow rate	FFS - Free-flow	/ speed		23-8, 23-10, 23-1		
LOS - Level of service	BFFS - Base fr	ee-flow speed	f _p - Page 23-		•	- Exhibit 23-6
DDHV - Directional design ho	our volume		LU3, 3, FF3	5, v _p - Exhibits 23-2	د, عن-ی آ _ا	_D - Exhibit 23-7
Copyright © 2007 University of Florida,	All Rights Reserved		ucs.Tl	M Version 5.3	Gener	ated: 2/17/2012 1:25 P

HCS+TM Version 5.3

Generated: 2/17/2012 1:25 PM

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
Froe-Flow Spzed FFS = 75 mith 70 mith	B C C	450 (600) 1750 0		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AAE FFS, LOS, N	Output LOS, S, D N, S, D v _p , S, D LOS, S, D V _p , S, D v _p , S, D
0 400 800) 1200 Fllow Rate (pc/h/lin	1600 2000)	2400			
General Information			Site Inform			
Analyst Agency or Company Date Performed Analysis Time Period	CLD CHA 07/30/13 PM		Highway/Dire From/To Jurisdiction Analysis Yea		Northbound I- Exit 5 to Exit 6 NYSDOT 2036 Diamond	3
Project Description Exit 4 Oper.(LOS)			Des.(N)		☐ Planning	Data
Flow Inputs			Des.(IV)		i i iaiiiiig	Data
Volume, V AADT Peak-Hr Prop. of AADT, K	6050	veh/h veh/day	Peak-Hour Face %Trucks and %RVs, P _R	Buses, P _T	0.86 2 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustr	1.00	veh/h	General Terr Grade %	ain: Length Up/Down %	Level mi	
	1.00		E _R		1.2	
f _p E _⊤	1.00 1.5			1) LP (F 1)]	0.990	
Speed Inputs	1.5			$\frac{1}{1} - 1 + P_R(E_R - 1)$		
I ane Width	12.0	ft		d Adj and FFS		
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f_{LC}			mi/h
Number of Lanes, N	4	,,	f_{ID}			mi/h
FFS (measured)	56.0	mi/h	f_N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N)		
Operational (LOS) V _p = (V or DDHV) / (PHF x N : f _p)		pc/h/ln	Design (N) Design LOS v _p = (V or DD)HV) / (PHF x N x f	· ·	pc/h
S	56.0	mi/h	t _p)			me:/l=
$D = v_p / S$	31.7	pc/mi/ln	S D = v _p / S			mi/h pc/mi/ln
LOS	D		· ·	mber of Lanes, N		F 84.1114.111
Glossary			Factor Lo			
N - Number of lanes	S - Speed				ı	Evhibit 00.4
V - Hourly volume	D - Density		E _R - Exhibits		=	Exhibit 23-4
v _p - Flow rate	FFS - Free-flow	/ speed		23-8, 23-10, 23-11		Exhibit 23-5
LOS - Level of service	BFFS - Base fr		f _p - Page 23-		• •	Exhibit 23-6
DDHV - Directional design ho	our volume		LUS, S, FFS	, v _p - Exhibits 23-2	, ∠ა-ა ī _{ID} -	Exhibit 23-7
Copyright © 2007 University of Florida,	All Rights Reserved		HCS+TN	M Version 5.3	Generate	d: 7/30/2013 8:11 A

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
Free-Flow Spzed FFS = 75 mith 70 mith	B C C	50 (600 1750 E	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AAD' FFS, LOS, N	Output LOS, S, D N, S, D v _p , S, D LOS, S, D N, S, D v _{p'} , S, D
General Information	Flow Rate (pc/h/lin)	3	Site Inform	nation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	CLD CHA 07/30/13 PM		1	ection of Travel	Southbound I-6 Exit 6 to Exit 5 NYSDOT 2036 Diamond	
✓ Oper.(LOS)			Des.(N)		☐ Planning	Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	3750	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra	Buses, P _T	0.92 2 0 Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade %	Length Up/Down %	mi	
Calculate Flow Adjustr					4.0	
f _p E _⊤	1.00 1.5		E _R	4) · D /F 4)1	1.2 0.990	
Speed Inputs	1.5			_T - 1) + P _R (E _R - 1)] d Adj and FFS		
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 4 56.0	ft ft I/mi mi/h	f _{LW} f _{LC} f _{ID} f _N	a Aaj ana 11 o		mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS	30.0	mi/h	FFS		56.0	mi/h
LOS and Performance	Measures	1111/11	Design (N))		
Operational (LOS) v _p = (V or DDHV) / (PHF x N : f _p) S		pc/h/ln mi/h	<u>Design (N)</u> Design LOS)HV) / (PHF x N x f	f _{HV} x	pc/h mi/h
D = v _p / S LOS	18.4 C	pc/mi/ln	$D = v_p / S$ Required Nu	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base freeur volume	-	f _p - Page 23-	23-8, 23-10, 23-11	f _{LC} -	Exhibit 23-4 Exhibit 23-5 Exhibit 23-6 Exhibit 23-7
Copyright © 2007 University of Florida,	All Rights Reserved		HCS.TM	^{//} Version 5.3	Generated	: 8/12/2013 3:30 PM

HCS+TM Version 5.3

Generated: 8/12/2013 3:30 PM

	RA	MPS AND	KAMP JUN	CHONS W	OKNOH	<u>- </u>				
General Infor	mation			Site Infor	mation					
Analyst	SEB		Fre	eeway/Dir of Tra	avel	Northbound I-8	37			
gency or Company	CHA		Ju	nction		Exit 2W On-Ra	amp			
ate Performed	02/1!	5/12	Ju	risdiction		NYSDOT				
nalysis Time Period	l PM		An	nalysis Year		2036 Diamond				
roject Description	Exit 4									
nputs										
lpstream Adj Ramp		Terrain: Level						Downstre Ramp	eam Adj	
▼ Yes □ Or								☐ Yes	□ On	
No	f							✓ No	☐ Off	
_{rup} = 1100	ft		E4.0 mnh		<u> </u>	0 0 mph		L _{down} =	ft	
/ _u = 880 ve	eh/h	3	= _F = 56.0 mph	ا معطوا بيوطو	$S_{FR} = 4$	u.u mpn		V _D =	veh/h	
				show lanes, L _A ,	L _D , V _R , V _f)					
Conversion to		der Base C	onditions	1	1	1				
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f_{HV}	f _p	v = V/PH	$F x f_{HV} x f_{p}$	
reeway	4700	0.86	Level	2	0	0.990	1.00		5520	
Ramp	780	0.92	Level	2	0	0.990	1.00		856	
JpStream	880	0.92	Level	2	0	0.990	1.00		966	
DownStream		1 1								
		Merge Areas					Diverge Are	eas		
Estimation of v ₁₂						ion of v ₁₂				
	V ₁₂ = V _F	(P ₅₄)						\/ \D		
1404 (/ / / / / / / / / / / / / / / / / /						V ₁₂	$= V_R + (V_F)$			
EQ =					L _{EQ} =		(Equation	25-8 or 25-	9)	
FM =			on (Exhibit 25-5)		P _{FD} =		using Equ	ıation (Exhibi	t 25-12)	
12 =	3203	•			V ₁₂ =		pc/h			
₃ or V _{av34}		pc/h (Equatio	n 25-4 or 25-		V_3 or V_{av34}		pc/h (Equat	tion 25-15 or 2	5-16)	
	5)	<u></u>			Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No					
s V_3 or $V_{av34} > 2,70$					Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No					
s V_3 or $V_{av34} > 1.5$										
Yes,V _{12a} =	pc/h	(Equation 25	·8)		If Yes, V _{12a} = pc/h (Equation 25-18)					
Capacity Che	cks				Capacity	y Checks				
	Actual	Ca	pacity	LOS F?		Actu	ıal	Capacity	LOS F	
					V _F		Exhibit	25-14		
V_{FO}	6376	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _D	Exhibit	25-14		
FO					V _R	K	Exhibit		_	
	<u> </u>	<u> </u>			<u>'</u>	<u> </u>				
low Entering		1		T v" + " 0	Flow En		verge Infl			
\/	Actual)esirable	Violation?		Actual	1	Desirable	Violation?	
V _{R12}	4059	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-		<u> </u>	
evel of Serv					1		Determina		ot F)	
$D_{R} = 5.475 +$	$0.00734 \text{ V}_{R} + 0$	0.0078 V ₁₂ - 0.00	0627 L _A		[$O_{R} = 4.252$	+ 0.0086 V ₁₂	₂ - 0.009 L _D		
_R = 31.4 (pc	/mi/ln)				$D_R = (p$	c/mi/ln)				
OS = D (Exhib	oit 25-4)				LOS = (E	xhibit 25-4)				
Speed Deterr	nination				Speed D	Petermina	tion			
l _S = 0.479 (Exi					 	xhibit 25-19)				
o .										
S _R = 49.3 mph (Exhibit 25-19)					**					
					S ₀ = mph (Exhibit 25-19) S = mph (Exhibit 25-15)					
₀ = 49.4 mph ((Exhibit 25-19)									

		RAMP	S AND RAN	IP JUNCTI	ONS WO	RKS	HEET				
General Inf	ormation		<u> </u>	Site Infor							
Analyst Agency or Compa Date Performed Analysis Time Pel	SEB iny CHA 02/1 riod PM		J J	reeway/Dir of Tr unction urisdiction Analysis Year	avel [Exit 4 I					
Project Descriptio	n Exit 4										
Inputs		Terrain: Leve	.I								
Upstream Adj Rar Yes	•	Terrain. Leve	:1						Downstrea Ramp	am Adj	
✓ No									✓ Yes	☑ On	
I INO	Oli								□ No	☐ Off	
L _{up} = ft		<u> </u>	_{FF} = 56.0 mph		S - 1	0 0 mr	h.		L _{down} =	1850 ft	
V _u = veł	n/h		• •	(show lanes, L _A	$S_{FR} = 40.0 \text{ mph}$ $L_{A'} L_{D'} V_{R'} V_{f'} V_{f'}$					980 veh/h	
Conversion	to pc/h Un	der Base (Conditions								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		${\sf f}_{\sf HV}$	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	5500	0.86	Level	2	0	0	.990	1.00	64	159	
Ramp	1000	0.86	Level	2	0	0	.990	1.00	11	74	
UpStream DownStream	000	0.00	Lovel	1			nne	1.00	4.4	10	
DownStream	980	0.88 Merge Areas	Level	1	0	0	995	1.00 Diverge Areas	11	19	
Estimation		Merge Areas			Estimati	on c		Diverge Areas			
		(D)						= V _R + (V _F - V _I	\D		
$V_{12} = V_F (P_{FM})$					_			Equation 25-8			
L_{EQ} = (Equation 25-2 or 25-3) P_{EM} = using Equation (Exhibit 25-5)					L _{EQ} =			· · · · ·		::L:+ 2F 12\	
P _{FM} = V -	pc/h	Equation (EXTIIDIT 20-0)		P _{FD} =			.545 using E q 052 pc/h	uation (Exi	11DIL 25-12)	
V ₁₂ = V ₃ or V _{av34}	•	(Equation 25	(4 or 25 5)		V ₁₂ = V ₃ or V _{av34}			•	otion OF 1	F 0F 40	
Is V ₃ or V _{av34} > 2)-4 01 23-3)			> 2 7		⁴⁰⁷ pc/h (Equ ☐ Yes	ation 25-1	5 OF 25-16	
	.5 * V ₁₂ /2							Yes No			
If Yes,V _{12a} =	: -	(Equation 25	5-8)		If Yes, $V_{12a} =$			oc/h (Equation	25-18)		
Capacity C		(Equation 20)-O)		Capacity			on (Equation	23-10)		
Capacity Ci	Actual	T C	apacity	LOS F?	Capacity	, 011	Actual	Ca	pacity	LOS F	
	7.0.00	1 i	аравну		V _F		6459	Exhibit 25-1	T .	No	
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _D	5285	Exhibit 25-1	+	No	
1 40		EXHIBIT 20 7			V _R	·ĸ	1174	Exhibit 25-3		No	
Elow Entor	ing Marga Ir	ofluonos A	roo			40 viv				INO	
riow Enteri	ing Merge Ir	-	Desirable	Violation?	riow En	_	<i>ig Dive</i> Actual	rge Influen Max Desirat		Violation	
V _{R12}	Actual	Exhibit 25-7	2 John Will	violation;	V ₁₂	1	4052	Exhibit 25-14	4400:All	No	
	 rvice Deteri		if not F)					eterminatio			
	0.00734 v _R +	•						.0086 V ₁₂ - 0.	-	• /	
	mi/ln)	12	А		L	••	/mi/ln)	12	J. J.		
	ibit 25-4)				LOS = D (Exhibit 25-4)						
Speed Dete	rmination				Speed D	eter	minatio	on			
	25-19)				D _s = 0.469 (Exhibit 25-19)						
_	xhibit 25-19)				S _R = 49.4 mph (Exhibit 25-19)						
					S ₀ = 55.9 mph (Exhibit 25-19)						
	xhibit 25-19)				90 55	.,	(LXI 1151	_0 .0,			
S ₀ = mph (E	xhibit 25-19) xhibit 25-14)						(Exhibit				

	RAI	MPS AND	RAMP JUNG	CHONS W	ORKSHE	<u>:EI</u>				
General Infor	mation			Site Infor	mation					
Analyst Agency or Company	SEB CHA			eeway/Dir of Tra		Northbound I- Exit 4 NB On-				
ate Performed	02/1		Ju	risdiction		NYSDOT				
nalysis Time Period	d PM		An	alysis Year		2036 Diamon	d			
roject Description	Exit 4									
nputs		<u> </u>								
pstream Adj Ramp		Terrain: Level						Downstro Ramp	eam Adj	
Yes Or	1							☐ Yes	□ On	
□ No Of	f							™ No	☐ Off	
_{up} = 1850	ft							L _{down} =	ft	
		S	_{FF} = 56.0 mph		$S_{FR} = 4$	0.0 mph		\/ _	veh/h	
' _u = 1000 v				show lanes, L _A ,	$L_{D'}V_{R'}V_{f}$		V _D =	ven/n		
Conversion t	o pc/h Un	der Base C	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	fp	v = V/PH	F x f _{HV} x f _p	
reeway	4500	0.86	Level	2	0	0.990	1.00		5285	
Ramp	980	0.88	Level	1	0	0.995	1.00		1119	
JpStream	1000	0.92	Level	3	0	0.985	1.00		1103	
DownStream		Merge Areas					Divorgo A	rone		
stimation of		ivier ge Areas	Diverge Are Estimation of v ₁₂					itas		
		<u> </u>			Lounau	1011 01 1 12	2			
	$V_{12} = V_F$					V_1	$_2 = V_R + (V_R)$	V _R)P _{FD}		
EQ =		(Equation 2			L _{EQ} =		(Equation	n 25-8 or 25-	9)	
FM =	0.614	using Equation	on (Exhibit 25-5)		P _{FD} =		using E	quation (Exhibi	t 25-12)	
12 =	3246				V ₁₂ =		pc/h			
' ₃ or V _{av34}		pc/h (Equatio	n 25-4 or 25-		V ₃ or V _{av34} pc/h (Equation 25-15 or 25-16)					
s V ₃ or V _{av34} > 2,70	5) 10 nc/h2 □ ∨o	o 🔽 No				_{sa} > 2,700 pc/	h?			
s V ₃ or V _{av34} > 2,70 s V ₃ or V _{av34} > 1.5					Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No					
			0)		If Yes, V_{12a} = pc/h (Equation 25-18)					
Yes,V _{12a} =		(Equation 25	-8)		120				<u> </u>	
Capacity Che	,	I c.		LOS F?	Capacity	y Checks	ī	C!t	1 100 50	
	Actual	l Ca	npacity	LUSF?	\/	Act		Capacity	LOS F	
.,				l	V _F			it 25-14	_	
V_{FO}	6404	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		it 25-14		
					V _R		Exhib	it 25-3		
low Entering	g Merge In	fluence A	rea		Flow En	tering Di	verge Int	luence Are		
	Actual	1	Desirable	Violation?	ļ	Actual		Desirable	Violation?	
V _{R12}	4365	Exhibit 25-7	4600:All	No	V ₁₂	<u> </u>	Exhibit 25			
evel of Serv					1			nation (if n	ot F)	
10		0.0078 V ₁₂ - 0.00	0627 L _A		[$O_R = 4.252$	+ 0.0086 V	₁₂ - 0.009 L _D		
$O_{R} = 30.8 \text{ (pc)}$:/mi/ln)				$D_R = (p$	c/mi/ln)				
OS = D (Exhil	oit 25-4)				LOS = (E	xhibit 25-4)			
Speed Deterr	nination				Speed D	Determina	ation			
1 _S = 0.523 (Exi					$D_s = $ (Exhibit 25-19)					
S _R = 48.7 mph (Exhibit 25-19)					S _R = mph (Exhibit 25-19)					
					S_0 = mph (Exhibit 25-19)					
S ₀ = 50.5 mph (Exhibit 25-19)					S = mph (Exhibit 25-15)					
= 49.2 mnh	(Exhibit 25-14)	S = 49.2 mph (Exhibit 25-14)					- [5]			

• • • •		IVAIIII	S AND RAM								
General Infor				Site Infor							
Analyst Agency or Company Date Performed Analysis Time Perioc	SEB CHA 02/1! PM		J	reeway/Dir of Tra unction urisdiction unalysis Year	Travel Northbound I-87 Exit 5 NB Off NYSDOT 2036 Diamond						
Project Description											
Inputs											
Upstream Adj Ramp		Terrain: Level							Downstrea Ramp	m Adj	
✓ Yes ✓ Or									· '	□ On	
□ No □ Of	:								✓ No	☐ Off	
L _{up} = 7810	ft		$S_{FF} = 56.0 \text{ mph}$ $S_{FR} = 35.0 \text{ mph}$						L _{down} =	ft	
$V_u = 980 \text{ Ve}$	eh/h	3		show lanes, L _A ,	$S_{FR} = 35.0 \text{ mph}$ $S_{FR} = J_D, V_R, V_f$					veh/h	
Conversion to	pc/h Und	der Base (Conditions								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	5750	0.86	Level	2	0	0.	990	1.00	675	i3	
Ramp	440	0.92	Level	3	0	0.	985	1.00	48	5	
UpStream	980	0.88	Level	1	0	0.	995	1.00	111	9	
DownStream		Merge Areas			-			Diverge Areas			
Estimation of		ivier ge Areas			Estimati	ion c		biverge Areas			
		(5.)			Lounau			., ., .,	<u> </u>		
l.	$V_{12} = V_F$		>					= V _R + (V _F - V _I			
L _{EQ} = (Equation 25-2 or 25-3)					L _{EQ} =			906.29 (Equati			
P _{FM} = using Equation (Exhibit 25-5)					P _{FD} =			.569 using Ec	uation (Exhi	bit 25-12)	
V ₁₂ =	pc/h				V ₁₂ =			051 pc/h			
V_3 or V_{av34}		(Equation 25	-4 or 25-5)		V_3 or V_{av34}			702 pc/h (Equ	ation 25-15	or 25-16	
Is V_3 or $V_{av34} > 2,70$								Yes No			
Is V_3 or $V_{av34} > 1.5$	· -							TYes ✓ No			
If Yes,V _{12a} =		(Equation 25	-8)		If Yes, V _{12a} = 4053 pc/h (Equation 25-18)						
Capacity Che	cks				Capacity	y Ch	ecks				
	Actual	Ca	apacity	LOS F?	ļ		Actual	_	pacity	LOS F	
					V _F		6753	Exhibit 25-1	4 6780	No	
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	6268	Exhibit 25-1	4 6780	No	
					V_R		485	Exhibit 25-3	3 2000	No	
Flow Entering	Merge In	fluence A	rea	-	Flow En	terir	g Dive	rge Influen	ce Area	•	
	Actual	1	Desirable	Violation?		1	Actual	Max Desiral		Violation	
V _{R12}		Exhibit 25-7			V ₁₂		4051	Exhibit 25-14	4400:All	No	
Level of Serv	ice Detern	nination (i	f not F)		Level of	Ser	vice De	terminatio	n (if not l	-	
$D_R = 5.475 + 0.$	00734 v _R +	0.0078 V ₁₂ -	0.00627 L _A			D _R = 4	1.252 + 0	0.0086 V ₁₂ - 0.	009 L _D		
D _R = (pc/mi/	ln)		••				/mi/ln)		-		
LOS = (Exhibi	t 25-4)				1		oit 25-4)				
Speed Determ					Speed D	•		on			
$M_S = $ (Exibit 25)											
o .					$D_S = 0.472$ (Exhibit 25-19) $S_R = 49.4$ mph (Exhibit 25-19)						
					S_0 = 54.8 mph (Exhibit 25-19)						
S ₀ = mph (Exh					S = 51.4 mph (Exhibit 25-15)						
S = mph (Exh	IDIT フトーフグ										

		NAMIF	S AND RAM				,,,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>				
General Info				Site Infor							
Analyst Agency or Compan Date Performed Analysis Time Perio	02/1		Ji Ji	reeway/Dir of Tr unction urisdiction nalysis Year	1	Southb Exit 2\ NYSD 2036 [V Off				
Project Description				. .							
Inputs											
Upstream Adj Ram	р	Terrain: Leve							Downstrea Ramp	m Adj	
□ Yes □ C)n								✓ Yes	✓ On	
™ No □ C	Off								□ No	☐ Off	
L _{up} = ft		S	$S_{FF} = 56.0 \text{ mph}$ $S_{FR} = 40.0 \text{ mph}$						down	1300 ft	
V _u = veh/	h		Sketch (show lanes, L _A	$L_{D'}V_{R'}V_{f}$				V _D =	750 veh /	
Conversion	to pc/h Un	der Base (Conditions								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f_{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	4050	0.92	Level	2	0	0	.990	1.00	4446		
Ramp	590	0.92	Level	2	0	0	.990	1.00	64	8	
UpStream	750	0.00	1 1		0	+	000	1.00	00	2	
DownStream	750	0.92 Merge Areas	Level	2	0	0	.990	1.00 Diverge Areas	82	3	
Estimation of		ivici ye Ai eas			Estimati	ion d		Diverge Areas			
		(B)			Lotimati			., ., .,	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		
	$V_{12} = V_F$							= V _R + (V _F - V			
L _{EQ} = (Equation 25-2 or 25-3)					L _{EQ} =			Equation 25-8			
P _{FM} =	_	Equation (E	xhibit 25-5)		P _{FD} =			.619 using Ed	quation (Exhi	bit 25-12)	
V ₁₂ =	pc/h				V ₁₂ =			999 pc/h			
V_3 or V_{av34}		(Equation 25	-4 or 25-5)		V_3 or V_{av34}			447 pc/h (Equ	ation 25-15	or 25-16	
Is V_3 or $V_{av34} > 2.7$								☐ Yes 🗹 No			
Is V_3 or $V_{av34} > 1.5$:=						5 * V ₁₂ /2	TYes ✓ No			
If Yes,V _{12a} =	pc/h	(Equation 25	-8)		If Yes,V _{12a} = pc/h (Equation 25-18)						
Capacity Ch	ecks				Capacity	y Ch	ecks				
	Actual	C	apacity	LOS F?			Actual	Ca	pacity	LOS F	
					V _F		4446	Exhibit 25-1	4 6780	No	
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V_R	3798	Exhibit 25-1	4 6780	No	
					V _R		648	Exhibit 25-3	3 2100	No	
Flow Enterir	na Merae Ir	fluence A	rea		<u> </u>	terii	na Dive	rge Influen	ce Area		
	Actual	1	Desirable	Violation?	- 10 11 = 11	<u> </u>	Actual	Max Desiral		Violation	
V _{R12}		Exhibit 25-7			V ₁₂		2999	Exhibit 25-14	4400:All	No	
Level of Ser	vice Deterr		f not F)	•		Ser	vice De	eterminatio	n (if not l	=)	
$D_R = 5.475 + 0$					1			0.0086 V ₁₂ - 0.	-	•	
D _R = (pc/m		12	^				/mi/ln)	14	D		
• •	bit 25-4)						bit 25-4)				
Speed Deter					Speed D	•		on			
$M_S = $ (Exibit:					' 		xhibit 25				
· ·					S _R = 50.1 mph (Exhibit 25-19)						
					$S_0 = 59.7 \text{ mph (Exhibit 25-19)}$						
	thibit 25-19)				S = 52.9 mph (Exhibit 25-15)						
	111DIL 40-141				m.ı – 1/	· ~ IIII)	* : 111 117	Z : 1 = 1 : D 1			

		IVAIVII	S AND RAM								
General In				Site Infor							
Analyst Agency or Comp Date Performed Analysis Time Pe	02/1		J	reeway/Dir of Tr unction urisdiction .nalysis Year	1	Exit 4 : NYSD					
Project Descripti	on Exit 4			•							
Inputs											
Upstream Adj Ra	·	Terrain: Leve	I						Downstrea Ramp	m Adj	
	On								✓ Yes	✓ On	
™ No □	Off								□ No	☐ Off	
L _{up} = ft		S	$S_{FF} = 56.0 \text{ mph}$ $S_{FR} = 40.0 \text{ mph}$						dom	1820 ft	
V _u = ve	h/h		Sketch (show lanes, L _A	$L_{D'}V_{R'}V_{f}$				v _D –	1340 veh/	
Conversio	n to pc/h Un	der Base (Conditions								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f_{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	3900	0.92	Level	2	0	0	.990	1.00	428	32	
Ramp	1110	0.92	Level	2	0	0	.990	1.00	121	19	
UpStream	1240	0.00	1 1	1	0	+	000	1.00	1.4-	10	
DownStream	1340	0.93 Merge Areas	Level	4	0	0	.980	1.00 Diverge Areas	147	70	
Estimation	of v	Mei ge Areas			Estimati	ion d		Diverge Areas			
		(D.)			Lotimati			\	\D		
$V_{12} = V_F (P_{FM})$								= V _R + (V _F - V			
L _{EQ} = (Equation 25-2 or 25-3)					L _{EQ} =			Equation 25-8			
P _{FM} =	_	g Equation (E	xhibit 25-5)		P _{FD} =			.597 using Ed	uation (Exhi	bit 25-12)	
V ₁₂ =	pc/h				V ₁₂ =			047 pc/h			
V ₃ or V _{av34}		(Equation 25	5-4 or 25-5)		V ₃ or V _{av34}			235 pc/h (Eq u	ation 25-15	or 25-16	
0 4101	2,700 pc/h?							Yes Mo			
	1.5 * V ₁₂ /2							Yes ☑ No			
If Yes,V _{12a} =		(Equation 25	5-8)		If Yes, V _{12a} = pc/h (Equation 25-18)						
Capacity C	1			_	Capacity	y Ch					
	Actual	C	apacity	LOS F?			Actual		pacity	LOS F	
					V _F		4282	Exhibit 25-1	4 6780	No	
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	3063	Exhibit 25-1	4 6780	No	
					V_R		1219	Exhibit 25-3	2100	No	
Flow Enter	ing Merge li	nfluence A	rea		Flow En	terir	ng Dive	rge Influen	ce Area		
	Actual		Desirable	Violation?		1	Actual	Max Desiral		Violation	
V_{R12}		Exhibit 25-7			V ₁₂		3047	Exhibit 25-14	4400:All	No	
Level of Se	ervice Deter	mination (if not F)		Level of	Ser	vice De	terminatio	n (if not l	-)	
$D_{R} = 5.475 -$	+ 0.00734 v _R +	0.0078 V ₁₂ -	0.00627 L _A			$D_R = 4$	4.252 + 0	.0086 V ₁₂ - 0.	009 L _D		
D _R = (pc/	mi/ln)				D _R = 24	l.2 (pc	:/mi/ln)				
LOS = (Ex	hibit 25-4)				LOS = C	(Exhi	bit 25-4)				
Speed Det	ermination				Speed D	Deter	minati	on			
	it 25-19)				D _s = 0.4	473 (E	xhibit 25	-19)			
ľ	Exhibit 25-19)				S _R = 49.4 mph (Exhibit 25-19)						
S_0 = mph (Exhibit 25-19)					S ₀ = 60.5 mph (Exhibit 25-19)						
1	Exhibit 25-14)				S = 52.1 mph (Exhibit 25-15)						

	RAI	MPS AND	RAMP JUNG	CTIONS W	/ORKSHI	EET				
General Infor				Site Infor						
Analyst Agency or Company Date Performed Analysis Time Perio	SEB CHA 02/15 d PM		Fre Jui Jui	eeway/Dir of Tr nction risdiction alysis Year	Travel Southbound I-87 Exit 4 SB On-Ramp NYSDOT 2036 Diamond					
Project Description	Exit 4									
Inputs		Transia I aval								
Upstream Adj Ramp		Terrain: Level						Downstro Ramp	eam Adj	
✓ Yes ☐ Or	1							☐ Yes	E 0.	
□ No ○ Of	f								□ On	
	•							Mo No	☐ Off	
_{-up} = 1820	ft		F/ 0 l			10.0		L _{down} =	ft	
$V_{u} = 1110^{-3}$	/eh/h	5	FF = 56.0 mph	ا موسولييوماد	$S_{FR} = 4$.u.u mpn		$V_D =$	veh/h	
		/ D C		show lanes, L _A	, L _D , V _R , V _f)					
Conversion t	o pc/n Und I ∨		onaitions		<u> </u>	1	1			
(pc/h)	v (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	$F \times f_{HV} \times f_{p}$	
Freeway	2800	0.92	Level	2	0	0.990	1.00		3074	
Ramp	1340	0.93	Level	4	0	0.980	1.00		1470	
UpStream	1110	0.92	Level	2	0	0.990	1.00		1219	
DownStream	<u> </u>	Merge Areas			 		Diverge Ar	7025		
Estimation o		iviei ge Ai eas			Estimat	ion of v ₁₂		cas		
		(D)				1011 01 1 12				
	$V_{12} = V_F$		a= a = a;			V ₁₂	$= V_R + (V_F)$	- V _R)P _{FD}		
L _{EQ} = 1241.64 (Equation 25-2 or 25-3)					L _{EQ} =		(Equation	n 25-8 or 25-	·9)	
P _{FM} =			on (Exhibit 25-5)		P _{FD} =		using Eq	uation (Exhibi	t 25-12)	
/ ₁₂ =	1888		- OF 4 or OF		V ₁₂ =		pc/h			
V_3 or V_{av34}	5)	pc/h (Equatio	11 25-4 01 25-		V_3 or V_{av34}			ation 25-15 or 2	5-16)	
Is V_3 or $V_{av34} > 2,70$		s 🗹 No				₃₄ > 2,700 pc/h				
Is V_3 or $V_{av34} > 1.5$					Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No					
f Yes,V _{12a} =	pc/h	(Equation 25	-8)		If Yes, V _{12a} = pc/h (Equation 25-18)					
Capacity Che	ecks				Capacity Checks					
	Actual	Ca	ıpacity	LOS F?	ļ	Actı	ıal	Capacity	LOS F	
					V _F		Exhibi	t 25-14		
V_{FO}	4544	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhibi	t 25-14		
					V_R		Exhibi	t 25-3		
Flow Entering	g Merge In	fluence A	rea		Flow En	tering Di	verge Infl	luence Ar	ea	
	Actual)esirable	Violation?		Actual	7	Desirable	Violation?	
V _{R12}	3358	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25			
Level of Serv								ation (if n	ot F)	
$D_{R} = 5.475 +$	0.00734 v _R + 0	0.0078 V ₁₂ - 0.00	0627 L _A			$D_{R} = 4.252$	+ 0.0086 V ₁	₂ - 0.009 L _D		
$O_{R} = 22.8 \text{ (pc)}$:/mi/ln)				''	c/mi/ln)				
.OS = C (Exhi					LOS = (E	xhibit 25-4)				
Speed Deteri	nination					Determina	tion			
$M_{\rm S} = 0.329 (Ex)$	bit 25-19)				$D_s = (E_s)^T$	xhibit 25-19)				
"S 0.327 (LX	(F OF 40)				$S_R = m$	ph (Exhibit 25-	19)			
$S_R = 51.4 \text{ mph}$	(Exhibit 25-19)				к		-			
S _R = 51.4 mph	(Exhibit 25-19) (Exhibit 25-19)					ph (Exhibit 25-				

	RA	MPS AND	RAMP JUNG	CTIONS W	ORKSHE	EET				
General Info				Site Infor						
Analyst Agency or Compar Date Performed Analysis Time Peri Project Descriptior	02/1 od PM		Fre Jui Jui	eeway/Dir of Tr nction risdiction alysis Year	avel	Southbou Exit 5 SB NYSDOT 2036 Diar	On-Ram	р		
Inputs	LAIL T									
Upstream Adj Ram	ip	Terrain: Leve	I						Downstre Ramp	am Adj
□ Yes □ C	On								✓ Yes	□ On
☑ No ☐ C	Off								□ No	✓ Off
$L_{up} = ft$		S	_{FF} = 56.0 mph		S _{FR} = 4	0.0 mph			L _{down} =	6100 ft
V _u = veh	/h		Sketch (s	show lanes, L _A	$L_{D'}V_{R'}V_{f}$				$V_D =$	1110 veh/l
Conversion	to pc/h Un	der Base (Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{H\}	/	f _p	v = V/PH	F x f _{HV} x f _p
Freeway	3150	0.92	Level	2	0	0.990	_	1.00		3458
Ramp UpStream	730	0.87	Level	1	0	0.995	5	1.00		843
DownStream	1110	0.92	Level	2	0	0.990)	1.00		1219
20		Merge Areas	20001		†	0.770		iverge Areas		1217
Estimation (Estimat	ion of				
	V ₁₂ = V _F	(P _{EM})			†			/ . (\/ \/	/ \D	
L _{EQ} =			25-2 or 25-3)		_			/ _R + (V _F - V		۵۱
P _{FM} =			ion (Exhibit 25-5)		L _{EQ} =			Equation 25		
/ ₁₂ =	2123		1011 (EXIIIDII 20 0)		P _{FD} =			ising Equat	ion (Exnibit	25-12)
		-	on 25-4 or 25-		V ₁₂ =		-	oc/h //- /=	25 15 20	- 1/\
V_3 or V_{av34}	5)				V ₃ or V _{av34}	or V_{av34} pc/h (Equation 25-15 or 25-16) V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No				
Is V_3 or $V_{av34} > 2$,					Is V_3 or $V_{av34} > 2.760$ pcm; Yes No					
Is V_3 or $V_{av34} > 1$.										
f Yes,V _{12a} =		(Equation 25	5-8)		If Yes,V _{12a} = pc/h (Equation 25-18)					
Capacity Ch	ecks				Capacit	y Chec	cks			
	Actual	C	apacity	LOS F?	<u> </u>		Actual		apacity	LOS F?
					V _F			Exhibit 25	-14	
V_{FO}	4301	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		Exhibit 25	-14	
				<u> </u>	V _R			Exhibit 25	5-3	
Flow Enterii	ng Merge li				Flow En	tering	Diver	ge Influe		
	Actual		Desirable	Violation?	 	Actu		Max Des	irable I	Violation?
V _{R12}	2966	Exhibit 25-7	4600:All	No	V ₁₂	<u></u>		Exhibit 25-14		<u> </u>
Level of Ser								terminati	•	ot F)
	+ 0.00734 V _R +	v.vv/8 V ₁₂ - 0.0	JU62/ L _A				252 + 0.	0086 V ₁₂ -	υ.009 L _D	
$D_{R} = 20.1 (pc/mi/ln)$				D _R = (pc/mi/ln)						
					xhibit 2		<u> </u>			
•					Speed L			ori		
	xibit 25-19)				$D_s = (Exhibit 25-19)$					
**	h (Exhibit 25-19)				'`	ph (Exhibi				
S ₀ = 53.0 mp	h (Exhibit 25-19)				$S_0 = m$	ph (Exhibi	it 25-19)			
	h (Exhibit 25-14)				S = m	ph (Exhibi				

			FREEWA	Y WEAV	ING WOR	KSHEE	T			
Genera	l Informat	ion			Site Info	rmation				
Analyst SEB Agency/Company CHA Date Performed 02/15/12 Analysis Time Period PM				Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	Location	Exit 2 NYSE	I-87 Northbound Exit 2E on to 2W off NYSDOT 2036 Diamond			
Inputs										
Weaving no Weaving so Terrain	reeway free-flow speed, S _{FF} (mi/h) 56 Veaving number of lanes, N 4 Veaving seg length, L (ft) 815		el	Weaving type Volume ratio, VR Weaving ratio, R		A 0.23 0.34				
Conver	sions to p	c/h Unde	er Base C	ondition	_		_	1		
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f_{HV}	fp	V	
V_{o1}	4240	0.86	2	0	1.5	1.2	0.990	1.00	4979	
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0	
V _{w1}	880	0.92	2	0	1.5	1.2	0.990	1.00	966	
V_{w2}	460	0.92	2	0	1.5	1.2	0.990	1.00	504	
V _w	7			1470	V_{nw}			Į.	4979	
V						l			6449	
Weavin	g and No	n-Weavin	g Speeds	<u> </u>						
			Unconstr					trained		
/E 1 11 11 0		Weaving		1	ving (i = nw)	Weavi	ng (i = w)	Non-Wea	ving (= nw)	
a (Exhibit 2 b (Exhibit 2		0.15			.00					
c (Exhibit 2		0.9			.30					
d (Exhibit 2		0.80		 	.75			ĺ		
Weaving inten		1.43	3	0	.77					
Weaving and r speeds, Si (mi		33.9	5	40).97					
Number of	lanes required number of lanes		ned operation,	, Nw	1.30 1.40			•		
	If Nw < Nw	, ,					v (max) const	rained operati	on	
Weavin	ıg Segmei	nt Speed,	Density,		f Service,	and Cap	pacity			
Weaving se	egment speed,	S (mi/h)		39.13						
Weaving segment density, D (pc/mi/ln)				41.20						
Level of service, LOS			Е							
Capacity of base condition, c _b (pc/h)			6588							
Capacity as	s a 15-minute fl	ow rate, c (vel	n/h)	6523						
Capacity as	s a full-hour vol	ume, c _h (veh/h	n)	5704						
Notes										

a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 2/17/2012 1:27 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

			FREEWA	Y WEAV	ING WOR	RKSHEE	Τ				
Genera	l Informat	ion			Site Info	rmation					
Date Perfor	Agency/Company CHA Date Performed 02/15/12 Analysis Time Period PM				Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	g Location	Exit 21 NYSD	I-87 Southbound Exit 2W on to 2E off NYSDOT 2036 Diamond			
Inputs											
Freeway free-flow speed, S _{FF} (mi/h) 56 Weaving number of lanes, N 4 Weaving seg length, L (ft) 810 Terrain Leve		el	Weaving type Volume ratio, VR Weaving ratio, R			A 0.20 0.11					
Conver	sions to p	1	r Base C	1		1	<u> </u>				
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f _{HV}	fp	V		
V _{o1}	3360	0.92	2	0	1.5	1.2	0.990	1.00	3688		
V_{02}	0	0.92	2	0	1.5	1.2	0.990	1.00	0		
V_{w1}	750	0.92	2	0	1.5	1.2	0.990	1.00	823		
V_{w2}	90	0.92	2	0	1.5	1.2	0.990	1.00	98		
$V_{_{ m W}}$			_	921	V _{nw}		•	•	3688		
V					•	•			4609		
Weavin	g and No	n-Weavin	g Speeds	5							
			Unconstr	4				trained			
a (Exhibit 2	1 6	Weaving 0.15		Non-Weaving (i = nw) Wea 0.0035			ng (i = w)	Non-Wea	ving (= nw)		
b (Exhibit 2		2.20		4.00							
c (Exhibit 2		0.97		<u> </u>	30						
d (Exhibit 2	•	0.80)	0.	75						
Weaving intens Weaving and n	•	0.98			46						
speeds, Si (mi/	h)	38.1			.59						
Maximum r	lanes required number of lanes If Nw < Nw	s, Nw (max) (max) uncons	trained operat	ion	1.15 1.40		v (max) constr	ained operat	ion		
	g Segmer				Service,	and Cap	acity				
i				44.63							
Weaving segment density, D (pc/mi/ln) Level of service, LOS				25.82 C							
				6736							
Capacity of base condition, c _b (pc/h) Capacity as a 15-minute flow rate, c (veh/h)				6669							
<u> </u>	s a full-hour vol			6135							
Notes		n (- 3. //)	<u>, </u>	1 5.55							
10103							, , , , , ,				

a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 2/17/2012 1:28 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 mith 70 mith 65 mith 60 mith 55 mith 50 LOS A 10 LOS A 10 LOS A 20 0 400 800	B C C S	1600 200	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, N, FFS, LO	S, V _p N, S, D S, N V _p , S, D AADT LOS, S, D S, AADT N, S, D
General Information	Flow Rate (pc/h/lir)	Site Inforn	nation		
Analyst Agency or Company	SEB CHA		Highway/Dire From/To	ction of Travel		to Exit 4 on
Date Performed Analysis Time Period	02/15/12 PM		Jurisdiction Analysis Year	r	NYSDOT 2046 Dia	
Project Description Exit 4 Oper.(LOS)		Г	Des.(N)		□ Plar	nning Data
Flow Inputs			()			3
Volume, V AADT	4500	veh/h veh/day	Peak-Hour Fa %Trucks and		0.86 2	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	%RVs, P _R General Terra Grade %	ain: Length Up/Down %	0 Level mi	
Calculate Flow Adjustr			•	ор/Down 78		
f _p	1.00		E _R		1.2	
E _T	1.5			_r - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs				d Adj and FFS	<u> </u>	
Lane Width	12.0	ft				mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3		f_{ID}			mi/h
FFS (measured)	56.0	mi/h	f_N			mi/h
Base free-flow Speed, BFFS	00.0	mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N)	<u> </u>		
Operational (LOS) $V_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{Liv} x	n o /h // o	<u>Design (N)</u> Design LOS		£	
f _p)	^{⊓v} 1762	pc/h/ln	1.5	HV) / (PHF x N x	I _{HV} X	pc/h
S	56.0	mi/h	f _p) S			mi/h
$D = v_p / S$	31.5	pc/mi/ln	$D = v_p / S$			pc/mi/ln
LOS	D		'	mber of Lanes, N		Pommin
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fr		E _R - Exhibits2 E _T - Exhibits2 f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1 12		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho	our volume			v _p - Exhibits 23-2	_,	ID - EXHIBIT 23-7
Copyright © 2007 University of Florida,	All Pights Pesenyed		TM	Version 5.3	Go	nerated: 2/17/2012 1:43

HCS+TM Version 5.3

Generated: 2/17/2012 1:43 PM

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
S0 Free-Flow Speed FFS = 75 migh 70 migh 70 migh 65 migh 60 migh 55 migh 50 10	B C	450 (500) 1750 0		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LOS FFS, LOS FFS, LOS FFS, LOS	S, V _p N, S, D S, N V _p , S, D AADT LOS, S, D S, AADT N, S, D
0 400 800	1200 Flow Rate (pc/h/lin	1600 2000)	2400			
General Information			Site Inform			
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/15/12 PM		Highway/Dire From/To Jurisdiction Analysis Yea	ection of Travel	Southbou Exit 4 off NYSDOT 2046 Dia	to Exit 4 on
✓ Oper.(LOS)		П	Des.(N)		☐ Plan	ning Data
Flow Inputs			()			<u> </u>
Volume, V AADT Peak-Hr Prop. of AADT, K	2750	veh/h veh/day	Peak-Hour Face Strucks and RVs, P _R		0.92 2 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustr	nents			•		
fp	1.00		E _R		1.2	
E _T	1.5		f _{HV} = 1/[1+P _T (E	T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs			Calc Spee	d Adj and FFS	;	
Lane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft				mi/h
Interchange Density	0.50	I/mi	f _{LC}			
Number of Lanes, N	3		f _{ID}			mi/h
FFS (measured)	56.0	mi/h	t _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x N :		pc/h/ln	Design (N) Design LOS	DHV) / (PHF x N x :	f _{uv} x	
f _p)		F 5/ 1 // 11	f _p)	.,, (HV	pc/h
S	56.0	mi/h	S			mi/h
$D = v_p / S$	18.0	pc/mi/ln	$D = v_p / S$			pc/mi/ln
LOS	В		F	mber of Lanes, N		10 0, ,
Glossary			Factor Lo			
N - Number of lanes	S - Speed		E _R - Exhibits:			f _{LW} - Exhibit 23-4
V - Hourly volume v _p - Flow rate LOS - Level of service	D - Density FFS - Free-flow BFFS - Base fr		E _T - Exhibits f _p - Page 23-	23-8, 23-10, 23-1 ⁻¹ 12		f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6
DDHV - Directional design ho	our volume		LUS, S, FFS	, v _p - Exhibits 23-2	۷, ∠۵-۵	f _{ID} - Exhibit 23-7
Copyright © 2007 University of Florida				M Varsian 5.2	0.	nerated: 2/17/2012 1:44

HCS+TM Version 5.3

Generated: 2/17/2012 1:44 PM

	BASIC F	REEWAY SE	EGMENTS V	VORKSHEET		
S0 Free-Flow Spzed FFS = 75 mith 70 mith 70 mith 70 mith 65 mith 60 mith 55 mith 55 mith 50 LÖS A 10 10 10 10 10 10 10	B C C	150 1750 1750 1600 200	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v FFS, LOS, N FFS, N, AAU FFS, LOS, N	v _p , S, D ot los, S, D adt N, S, D
General Information		43	Site Infor	mation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/15/12 PM			ection of Travel	Northbound Exit 4 to Exi NYSDOT 2046 Diamo	t 5
✓ Oper.(LOS)		П	Des.(N)		☐ Plannir	ng Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	5800	veh/h veh/day veh/h	Peak-Hour F %Trucks and %RVs, P _R General Teri Grade %	d Buses, P _T rain: Length	0.86 2 0 Level mi	
Driver type adjustment	1.00			Up/Down %		
Calculate Flow Adjustr					4.0	
f _p	1.00		E _R	5 (5)	1.2	
E _T	1.5			ed Adj and FFS	0.990	
Speed Inputs Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 3 56.0	ft ft I/mi mi/h	f _{LW} f _{LC} f _{ID} f _N	su Auj aliu i i o		mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times N)$ f_p) S $D = v_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	f_p) S D = v_p / S		f _{HV} x	pc/h mi/h pc/mi/ln
Glossary			Factor Lo	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fr		E _R - Exhibits E _T - Exhibits f _p - Page 23	s23-8, 23-10 s 23-8, 23-10, 23-1	1 f _L (N - Exhibit 23-4 C - Exhibit 23-5 - Exhibit 23-6 - Exhibit 23-7
Copyright © 2007 University of Florida,				M Version 5.3		ited: 2/17/2012 1:44 F

HCS+TM Version 5.3

Generated: 2/17/2012 1:44 PM

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
Second Speed Spe	B C C	1450 (600 1750 0 1600 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, N FFS, LOS FFS, LOS FFS, LOS FFS, LOS	S, v _p N, S, D S, N v _p , S, D NADT LOS, S, D S, AADT N, S, D
General Information	rion rate (ponini	v.	Site Inform	nation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/15/12 PM			ection of Travel	Southbou Exit 5 to E NYSDOT 2046 Dian	Exit 4
Oper.(LOS)			Des.(N)		☐ Plan	ning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	3900	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra Grade %	Buses, P _T	0.92 2 0 Level	
Driver type adjustment	1.00	veh/h		Length Up/Down %	mi	
Calculate Flow Adjustr	nents			•		
f_p	1.00		E_R		1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E)]$	T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs			Calc Spee	d Adj and FFS	}	
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 3 56.0	ft ft I/mi mi/h	f _{LW} f _{LC} f _{ID} f _N FFS		56.0	mi/h mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS		mi/h			30.0	1111/11
LOS and Performance Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times N)$ f_p S $D = v_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	f_p) S D = v_p / S	DHV) / (PHF x N x	f _{HV} x	pc/h mi/h pc/mi/ln
			<u> </u>	mber of Lanes, N		
Glossary N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fr		f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{ID} - Exhibit 23-7
Copyright © 2007 University of Florida,	All Pighte Pecanyad		TA	M Version 5.3	Cor	nerated: 2/17/2012 1:44 F

HCS+TM Version 5.3

Generated: 2/17/2012 1:44 PM

HCS+TM Version 5.3

2/15/2012

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 mith 70 mith 65 mith 65 mith 60 mith 65 mith 60 mith 65 mith 60 mith 65 mith 60 mith 65 mith 60 mith 65 mith 60 mi	B C C	150 (600 1750 1750 1750 1750 1750 1750 1750 17	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _j FFS, LOS, FFS, N, A FFS, LOS, FFS, LOS,	v _p N, S, D N v _p , S, D ADT LOS, S, D AADT N, S, D
General Information	Flow Rate (pc/h/lin)	Site Inforn	nation		
Analyst	SEB			ction of Travel	Southbour	nd I-87
Agency or Company	CHA		From/To	olion of travel	Exit 4 to E	
Date Performed	02/14/12		Jurisdiction		NYSDOT	
Analysis Time Period	AM		Analysis Year	r	2016 Flyo	/er
Project Description Exit 4						
Oper.(LOS)			Des.(N)		☐ Planr	ning Data
Flow Inputs	5050	la /la	Peak-Hour Fa	oston DUE	0.00	
Volume, V AADT	5350	veh/h veh/day	%Trucks and		0.92 2	
Peak-Hr Prop. of AADT, K		verilday	%RVs, P _R	D0000, 1 T	0	
Peak-Hr Direction Prop, D			General Terra	ain·	Level	
DDHV = AADT x K x D		veh/h	Grade %	Length	mi	
Driver type adjustment	1.00			Up/Down %		
Calculate Flow Adjustr	nents					
f_p	1.00		E _R		1.2	
E _T	1.5		f _{HV} = 1/[1+P _T (E ₁	T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs			Calc Speed	d Adj and FFS	3	
Lane Width	12.0	ft	f	-		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3		f_ID			mi/h
FFS (measured)	56.0	mi/h	f_N			mi/h
Base free-flow Speed, BFFS	00.0	mi/h	FFS		56.0	mi/h
LOS and Performance	Measures	1111/11	Design (N)	\		
Loo and r chormanec	Measures		Design (N)			
Operational (LOS)						
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x	n o/h /ln	Design LOS	U\/\	f v	
f _p)	^{⊓v} 1958	pc/h/ln	. "	HV) / (PHF x N x	'HV *	pc/h
S	55.3	mi/h	f _p)			! A
$D = v_p / S$	35.4	pc/mi/ln	S D :: / C			mi/h
LOS	E		$D = v_p / S$			pc/mi/ln
01				mber of Lanes, N		
Glossary	0 0 '		Factor Loc	ation		
N - Number of lanes	S - Speed		E _R - Exhibits2	23-8, 23-10		f _{LW} - Exhibit 23-4
V - Hourly volume	D - Density		1 2 2	23-8, 23-10, 23-1		f _{LC} - Exhibit 23-5
v _p - Flow rate	FFS - Free-flow		f _p - Page 23-1			f _N - Exhibit 23-6
LOS - Level of service	BFFS - Base fr	ee-flow speed	F	v _p - Exhibits 23-2		f _{ID} - Exhibit 23-7
DDHV - Directional design ho	our volume		,	ρ	-	טו
Copyright © 2007 University of Florida,	All Dights Deserved	·	··· TM	Version 5.3	Con	erated: 2/15/2012 2:26

HCS+TM Version 5.3

Generated: 2/15/2012 2:26 PM

HCS+TM Version 5.3

Generated: 2/15/2012 2:26 PM

	BASIC FI	REEWAY SE	GMENTS W	ORKSHEET		
S0 Free-Flow Speed FFS = 75 minh 70 minh 70 minh 65 minh 60 minh 55 minh 50 LOS A 10 10 10 10 10 10 10	ar cr	150 (600 1750 0		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v FFS, LOS FFS, LOS FFS, LOS FFS, LOS	, v _p N, S, D , N v _p , S, D ADT LOS, S, D , AADT N, S, D
0 400 800	1200 Flow Rate (pc/h/ln)	1600 2000	2400			
General Information			Site Inform			
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/14/12 AM		Highway/Dire From/To Jurisdiction Analysis Yea	ction of Travel	Northbour Exit 4 off t NYSDOT 2016 Flyo	to Exit 4 off
✓ Oper.(LOS)			Des.(N)		☐ Plan	ning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	2450	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra	Buses, P _T	0.92 2 0 Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade %	Length Up/Down %	mi	
Calculate Flow Adjustm	1.00		E _R		1.2	
f _p E _⊤	1.5			_T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs	7.0			d Adj and FFS		
Lane Width	12.0	ft		a Aaj ana 11 c	<u> </u>	• 4
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3		f_{ID}			mi/h
FFS (measured)	56.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS	00.0	mi/h	FFS		56.0	mi/h
LOS and Performance M	/leasures	,	Design (N))		
Operational (LOS) v _p = (V or DDHV) / (PHF x N x f _p) S		pc/h/ln mi/h	<u>Design (N)</u> Design LOS) HV) / (PHF x N x	f _{HV} x	pc/h mi/h
$D = v_p / S$	16.0	pc/mi/ln				
LOS	В		D = v _p / S	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate	S - Speed D - Density FFS - Free-flow	speed	E _R - Exhibits2	23-8, 23-10 23-8, 23-10, 23-1	1	f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6
LOS - Level of service DDHV - Directional design hou	BFFS - Base fre ur volume	ee-flow speed	۲	, v _p - Exhibits 23-2		f _{ID} - Exhibit 23-7

HCS+TM Version 5.3

Generated: 2/15/2012 2:26 PM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
Wassenger	B C C	150 (600 1750 1750 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, vp FFS, LOS, FFS, N, AA FFS, LOS, FFS, LOS,	v _p N, S, D N v _p , S, D NDT LOS, S, D AADT N, S, D
General Information	Flow Rate (pc/h/ln)		Site Inform	nation		
Analyst Agency or Company Date Performed	SEB CHA 02/14/12		Highway/Dire From/To Jurisdiction	ection of Travel	Southboun Exit 4 off to NYSDOT	Exit 4 on
Analysis Time Period Project Description Exit 4	AM		Analysis Yea	r	2016 Flyov	rer
✓ Oper.(LOS)		П	Des.(N)		☐ Plann	ing Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	4750	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra	Buses, P _T	0.92 2 0 Level	
DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustm	1.00	veh/h	Grade %	Length Up/Down %	mi	
f _p	1.00		E _R		1.2	
E _T	1.5		• •	_T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs				d Adj and FFS	5	
Lane Width Rt-Shoulder Lat. Clearance	12.0 6.0	ft ft	f _{LW}			mi/h mi/h
Interchange Density Number of Lanes, N	0.50 3	I/mi	f_{ID}			mi/h
FFS (measured)	56.0	mi/h	f _N FFS		56.0	mi/h mi/h
Base free-flow Speed, BFFS LOS and Performance I	Mossuros	mi/h		\		
Operational (LOS) v _p = (V or DDHV) / (PHF x N x f _p)		pc/h/ln	. "))HV) / (PHF x N x	f _{HV} x	pc/h
S D = v _p / S LOS	56.0 31.0 D	mi/h pc/mi/ln	f _p) S D = v _p / S Required Nu	mber of Lanes, N		mi/h pc/mi/ln
Glossary			Factor Loc	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fre ur volume		f _p - Page 23-	23-8, 23-10, 23-1	1 f f	_{LW} - Exhibit 23-4 _{LC} - Exhibit 23-5 _N - Exhibit 23-6 _{ID} - Exhibit 23-7

HCS+TM Version 5.3

Generated: 2/15/2012 2:27 PM

HCS+TM Version 5.3

Generated: 2/15/2012 2:27 PM

HCS+TM Version 5.3

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
Free-Flow Spzed FFS = 75 mith 70	B C C	150 (600) 1750 E	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AAI FFS, LOS, N	
General Information	Flow Rate (pc/h/lin)		Site Inform	nation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	CLD CHA 07/30/13 AM			ection of Travel	Northbound I- Exit 5 to Exit (NYSDOT 2016 Flyover	
✓ Oper.(LOS)			Des.(N)		☐ Planning	Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	2550	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terr	Buses, P _T	0.92 2 0 Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade %	Length Up/Down %	mi	
Calculate Flow Adjustr	1.00				1.2	
f _p Ε _Τ	1.50		E _R	1)	0.990	
Speed Inputs	1.5			d Adj and FFS		
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 4 56.0	ft ft I/mi mi/h	f _{LW} f _{LC} f _{ID} f _N	a najana i re		mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance		-	Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x N :		pc/h/ln	$\frac{\text{Design (N)}}{\text{Design LOS}}$ $v_p = (V \text{ or DD})$)HV) / (PHF x N x	f _{HV} x	pc/h
S D = v _p / S LOS	56.0 12.5 B	mi/h pc/mi/ln	f _p) S D = v _p / S Required Nu	mber of Lanes, N		mi/h pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fre	•	E _R - Exhibits E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1	1 f _{LC}	- Exhibit 23-4 - Exhibit 23-5 Exhibit 23-6 Exhibit 23-7
Copyright © 2007 University of Florida,	All Rights Reserved	-	HCSTIN	M Version 5.3	Generate	ed: 8/12/2013 2:58 PN

HCS+TM Version 5.3

Generated: 8/12/2013 2:58 PM

	BASIC F	REEWAY SE	EGMENTS W	VORKSHEET		
Second S	By C.	150 (600 1750 0		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AAD FFS, LOS, N	Output LOS, S, D N, S, D v _p , S, D LOS, S, D T N, S, D v _p , S, D
0 400 800) 1200 Flow Rate (pc/h/lin	1600 200)	0 2400			
General Information			Site Infori	mation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	CLD CHA 07/30/13 AM		Highway/Dire From/To Jurisdiction Analysis Yea	ection of Travel	Southbound I- Exit 6 to Exit 5 NYSDOT 2016 Flyover	87
✓ Oper.(LOS)			Des.(N)		☐ Planning	Data
Flow Inputs			()			
Volume, V AADT Peak-Hr Prop. of AADT, K	6000	veh/h veh/day	Peak-Hour F %Trucks and %RVs, P _R	d Buses, P _T	0.92 2 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustr	1.00	veh/h	General Terr Grade %	rain: Length Up/Down %	Level mi	
			Е		1.0	
f _p E _T	1.00 1.5		E _R	= 1)	1.2 0.990	
Speed Inputs	1.5			$[E_T - 1) + P_R(E_R - 1)]$ ed Adj and FFS		
Lane Width	12.0	ft		eu Auj anu FF3		
Rt-Shoulder Lat. Clearance	6.0	ft	f_{LW}			mi/h
Interchange Density	0.50	I/mi	f_{LC}			mi/h
Number of Lanes, N	4	71111	f_{ID}			mi/h
FFS (measured)	56.0	mi/h	f_N			mi/h
Base free-flow Speed, BFFS	30.0	mi/h	FFS		56.0	mi/h
LOS and Performance	Measures	1111/11	Design (N	1		
Operational (LOS) $V_p = (V \text{ or DDHV}) / (PHF \times N)$ f_p		pc/h/ln	Design (N) Design LOS v _p = (V or DE		f _{HV} x	pc/h
S D = v _p / S LOS	56.0 29.4 D	mi/h pc/mi/ln	f _p) S D = v _p / S Required No	ımber of Lanes, N		mi/h pc/mi/ln
Glossary			Factor Lo			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fro		E _R - Exhibits E _T - Exhibits f _p - Page 23-	s23-8, 23-10 s 23-8, 23-10, 23-1	1 f _{LC} - f _N - I	Exhibit 23-4 Exhibit 23-5 Exhibit 23-6 Exhibit 23-7
Copyright © 2007 University of Florida,			ucc.T	M Version 5.3	Generated	d: 8/12/2013 2:59 F

HCS+TM Version 5.3

• • •		MPS AND	ANII JUI			<u> </u>						
General Infor	mation			Site Infor								
Analyst	SEB			reeway/Dir of Tr								
Agency or Company				unction	Exit 2W On-Ramp							
Date Performed	02/14	4/12		urisdiction		NYSDOT						
Analysis Time Period Project Description			A	nalysis Year		2016 Flyover						
	EXIL 4											
Inputs		Terrain: Level						Ь.	Α Ι'			
Jpstream Adj Ramp		Terrain. Lever						Downstre Ramp	eam Adj			
✓ Yes ☐ On	1							1 '	E 0			
	_							☐ Yes	☐ On			
□ No □ Off	İ							✓ No	Off			
- _{up} = 1100	ft						L _{down} =	ft				
S _{FF} = 56.0 mph						0.0 mph		1				
$v_{u} = 660 \text{ v}$	show lanes, L _A ,		•		$V_D =$	veh/h						
Conversion to	o pc/h Uni	der Base C			D. K. I.							
Conversion to pc/h Under Base Conditions (pc/h) V PHF Terrain %					%Rv	f	f	V – V/PH	F x f _{HV} x f _p			
	(Veh/hr)	FHF	renalli	%Truck	/0KV	f _{HV}	f _p	V - V/F'	' ^ 'HV ^ 'p			
Freeway	2850	0.92	Level	2	0	0.990	1.00		3129			
Ramp	390	0.92	Level	2	0	0.990	1.00		428			
JpStream	660	0.92	Level	2	0	0.990	1.00		725			
DownStream		<u> </u>					<u> </u>					
		Merge Areas			Diverge Areas Estimation of v ₁₂							
Estimation of	12				Estimati	ion of v ₁₂						
	$V_{12} = V_{F}$	(P _{FM})				V40	= V _R + (V _F -	V _D)P _{CD}				
-EQ =	828.40	(Equation 2	5-2 or 25-3)		L _{EQ} = (Equation 25-8 or 25-9)							
P _{FM} =	0.601	using Equation	on (Exhibit 25-5)								
' ₁₂ =	1881		•	,	P_{FD} = using Equation (Exhibit 25-12) V_{12} = pc/h							
		pc/h (Equatio	n 25-4 or 25-									
7 ₃ or V _{av34}	5)	F 5/11 (= 40.0			V_3 or V_{av34} pc/h (Equation 25-15 or 25-16) Is V_3 or $V_{av34} > 2,700$ pc/h? Yes No							
Is V_3 or $V_{av34} > 2,70$	0 pc/h?	s 🗹 No										
s V ₃ or V _{av34} > 1.5 *	V ₁₂ /2	s 🗹 No			Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No							
Yes,V _{12a} =	pc/h	(Equation 25-	8)		If Yes,V _{12a} = pc/h (Equation 25-18)							
Capacity Che	•	· ·	,		Capacit	y Checks						
o quality care	Actual	Ca	pacity	LOS F?	1000	Actual		Capacity	LOS F			
			,		V _F	1.3.0	Exhibit 2					
V	3557	Exhibit 25-7		No	$V_{FO} = V_{F}$	- \/	Exhibit 2		_			
V_{FO}	3007	EXHIBIT 25-7		INO		- VR			_			
					V _R		Exhibit 2					
Flow Entering				T	Flow Entering Diverge Influence Area							
	Actual		esirable	Violation?		Actual		esirable	Violation?			
V _{R12}	2309	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-14					
evel of Serv	ice Detern	nination (it	not F)		Level of	Service L	Determina	tion (if n	ot F)			
$D_R = 5.475 +$	0.00734 v _R + 0	0.0078 V ₁₂ - 0.00)627 L _A			$D_R = 4.252 +$	0.0086 V ₁₂	- 0.009 L _D				
$P_{R} = 18.0 \text{ (pc)}$	/mi/ln)				$D_R = (p$	c/mi/ln)						
.OS = B (Exhib	oit 25-4)				LOS = (Exhibit 25-4)							
Speed Detern	•				,	Determina	tion					
•					 	xhibit 25-19)						
3						ph (Exhibit 25-1	0)					
.,	(Exhibit 25-19)											
	(Exhibit 25-19)			S ₀ = mph (Exhibit 25-19)								
	(Exhibit 25-14)				S = mph (Exhibit 25-15)							

	4.	INAIVIE	S AND RAM			11110	···						
General Info				Site Infor									
Date Performed	Agency or Company CHA Junction					Exit 4 NB Off to ASR NYSDOT							
Project Description			A	naiysis Year		2016 F	lyover						
Inputs	I EXIL 4												
•		Terrain: Leve	<u> </u>						Downstras	m Adi			
Upstream Adj Ran	•		•						Downstrea Ramp				
									✓ Yes	☐ On			
M No □	Off								□ No	✓ Off			
$L_{up} = ft$		S	_{FF} = 56.0 mph		S _{FR} = 4	10.0 mj	 oh		down	2600 ft			
V _u = veh	n/h		• •	show lanes, L _A					V _D =	190 veh/l			
Conversion	to pc/h Un	der Base (Conditions						,				
(pc/h)	(pc/h) V PHF Terrain %Truck				%Rv		${\rm f}_{\rm HV}$	f _p	v = V/PHF	x f _{HV} x f _p			
Freeway	3250	0.92	Level	2	0	0	.990	1.00	356	58			
Ramp	800	0.82	Level	2	0	0	.990	1.00	98	5			
UpStream DownStream	190	0.82	Level	2	0	+	.990	1.00	23	1			
Downstream		Merge Areas	Levei		0			Diverge Areas		4			
Estimation					Estimation of v ₁₂								
		(P)			1			= V _R + (V _F - V	_ \P				
$V_{12} = V_F (P_{FM})$ $L_{FO} =$ (Equation 25-2 or 25-3)								48.23 (Equation		5-9)			
L _{EQ} = P _{FM} =		Equation (E			L _{EQ} = P _{FD} =			.625 using Ed					
V ₁₂ =	pc/h	_900.0 (2			V ₁₂ =			601 pc/h	quation (EXII	DI 25 12)			
V ₃ or V _{av34}	•	(Equation 25	-4 or 25-5)		V_3 or V_{av34} 967 pc/h (Equation 25-15 or 25-16)								
Is V ₃ or V _{av34} > 2			,		Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No								
Is V_3 or $V_{av34} > 1$								Yes ✓ No					
If Yes,V _{12a} =	:=	(Equation 25	i-8)		If Yes, V_{12a} = pc/h (Equation 25-18)								
Capacity Cl		(= 4	-/		Capacit			(= 4*******					
	Actual	С	apacity	LOS F?	Journal	,	Actual	Ca	pacity	LOS F			
			- 1		V _F		3568	Exhibit 25-1		No			
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _D	2583	Exhibit 25-1	+	No			
FO		ZALIBAT ZO			V _R	K	985	Exhibit 25-3		No			
Elow Entori	na Maraa Ir	ofluonos A	* 00										
Flow Enteri	Actual	1	rea Desirable	Violation?	Flow Entering Diverge Influence Area Actual Max Desirable					Violation			
V _{R12}	, iotaai	Exhibit 25-7	_ 30 40.10		V ₁₂	2601		Exhibit 25-14	4400:All	No			
Level of Se	rvice Deteri		if not F)	1				eterminatio					
	0.00734 v _R +	•								/			
$D_{R} = (pc/mi/ln)$						$D_R = 4.252 + 0.0086 V_{12} - 0.009 L_D$ $D_R = 20.3 \text{ (pc/mi/ln)}$							
LOS = (Exhibit 25-4)						LOS = C (Exhibit 25-4)							
Speed Dete					Speed D	•		on					
	25-19)						xhibit 25						
· ·	xhibit 25-19)						h (Exhibit	,					
	xhibit 25-19)				1	-	` h (Exhibit						
	xhibit 25-14)				1.	-	h (Exhibit						
· (-				ام	,	,							

		RAMP	S AND RAI	MP JUNCTI	ONS WO	RKS	HEET							
General Infor	mation			Site Infor										
Analyst Agency or Company Date Performed Analysis Time Perioc	reeway/Dir of Tr Junction Jurisdiction Analysis Year													
Project Description	Exit 4													
Inputs		Terrain: Leve	1					1	Б	A 1:				
Upstream Adj Ramp		Torium. Love							Downstrea Ramp	m Aaj				
✓ Yes ☐ Or	Ì								□ Yes	□ On				
□ No Of	f								✓ No	Off				
2/00	•									ft				
L _{up} = 2600	ft	S	_{FF} = 56.0 mph		S _{FR} = 40	0 0 mr	h		L _{down} =	п				
$V_u = 800 \text{ Ve}$	eh/h		• •	(show lanes, L _A		0.0p			V _D =	veh/h				
Conversion to	o pc/h Und	der Base (DKI									
(nc/h) V PHF Terrain %Trucl					%Rv		f _{HV}	f _p	v = V/PHF	x f _{uv} x f _a				
Freeway	(Veh/hr) 2450	0.92	Level	2	0	-	.990	1.00	26					
Ramp	190	0.72	Level	2	0	+	990	1.00	23					
UpStream	800	0.82	Level	2	0	0.	990	1.00	98	35				
DownStream														
Merge Areas Estimation of v ₁₂						Diverge Areas Estimation of V ₁₂								
ESUMATION OF		<i>-</i> .			Estimati	OII C								
[$V_{12} = V_F$	1 101)		$V_{12} = V_R + (V_F - V_R)P_{FD}$									
L _{EQ} =		ation 25-2 or			L _{EQ} = (Equation 25-8 or 25-9)									
P _{FM} =	_	Equation (E	xhibit 25-5)		P_{FD} = 0.682 using Equation (Exhibit 25-12)									
V ₁₂ = V ₃ or V _{av34}	pc/h	/Equation 25	4 or 25 5)		V_{12} = 1909 pc/h V_3 or V_{av34} 781 pc/h (Equation 25-15 or 25-16)									
Is V_3 or V_{av34}		(Equation 25	-4 01 25-5)		V_3 or V_{av34} 781 pc/h (Equation 25-15 or 25-16) Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No									
Is V_3 or $V_{av34} > 2,70$					Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No									
If Yes,V _{12a} =	· -	(Equation 25	-8)		If Yes,V _{12a} = pc/h (Equation 25-18)									
Capacity Che		(1	- /		Capacity			(,					
	Actual	C	apacity	LOS F?		Actual		l Capacity		LOS F?				
					V_{F}		2690	Exhibit 25-1	4 6780	No				
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2456	Exhibit 25-1	4 6780	No				
					V _R		234	Exhibit 25-3	2100	No				
Flow Entering	g Merge In	fluence A	rea	*	Flow Entering Diverge Influence Area									
	Actual		Desirable	Violation?		_	Actual	Max Desirab		Violation?				
V _{R12}		Exhibit 25-7			V ₁₂		1909	Exhibit 25-14	4400:All	No				
Level of Serv								eterminatio		F)				
$D_R = 5.475 + 0.$	••	0.0078 V ₁₂ -	0.00627 L _A					.0086 V ₁₂ - 0.	009 L _D					
D _R = (pc/mi/ln)						$D_{R} = 17.5 \text{ (pc/mi/ln)}$								
LOS = (Exhibit 25-4)						LOS = B (Exhibit 25-4)								
Speed Determination						Speed Determination								
M _S = (Exibit 2					L °	•	xhibit 25 ı (Exhibit	*						
S _R = mph (Exhibit 25-19)						•	,	,						
							S ₀ = 61.4 mph (Exhibit 25-19) S = 53.3 mph (Exhibit 25-15)							
S ₀ = mph (Exh	ibit 25-19) ibit 25-14)													

1		RAMP	S AND RAM	IP JUNCTI	ONS WOL	RKS	HEET							
General Info	rmation			Site Infor										
Analyst Agency or Company Date Performed Analysis Time Perio	reeway/Dir of Tr lunction lurisdiction Analysis Year													
Project Description	Exit 4													
Inputs		Terrain: Leve	I					1	<u> </u>	A 11				
Upstream Adj Ramp		Terrum. Leve	'						Downstrea Ramp	am Aaj				
✓ No ☐ Of									✓ Yes	✓ On				
	l l								□ No	☐ Off				
L _{up} = ft			_{FF} = 56.0 mph		S _{FR} = 40	0 0 mr	, h		L _{down} =	1300 ft				
V _u = veh/ł	า		• •	(show lanes, L _A		u.u iiik	ЛІ		V _D =	340 veh/h				
Conversion t	o pc/h Und	der Base (Conditions											
(pc/h)	(pc/h) V PHF Terrain %Truck				%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p				
Freeway	5350	0.92	Level	2	0	0	.990	1.00	58	73				
Ramp	740	0.92	Level	2	0	0	.990	1.00	812					
UpStream DownStream	340	0.92	Level	2	0	+	200 1.00		272					
Downstieam								1.00 Diverge Areas	373					
Estimation o		Estimation of v ₁₂												
	V ₁₂ = V _F	(P)			 			= V _R + (V _F - V _F	-)P					
L _{EQ} =	12 1	This is a strong in the strong in t	25-3)		L _{FO} =			Equation 25-8						
P _{FM} =		Equation (E			P _{FD} =			•		nihit 25-12)				
V ₁₂ =	pc/h	qua (2			P_{FD} = 0.576 using Equation (Exhibit 25-12) V_{12} = 3726 pc/h									
V ₃ or V _{av34}	•	(Equation 25	5-4 or 25-5)		V ₃ or V _{av34} 2147 pc/h (Equation 25-15 or 25-16									
Is V ₃ or V _{av34} > 2,70			,		Is V_3 or $V_{av34} > 2,700$ pc/h? Yes $\overline{\lor}$ No									
Is V ₃ or V _{av34} > 1.5					Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No									
If Yes,V _{12a} =	·=	(Equation 25	5-8)		If Yes, $V_{12a} = pc/h$ (Equation 25-18)									
Capacity Che		<u> </u>	,		Capacity		·	\ 1						
	Actual	С	apacity	LOS F?		Actua		al Capacity		LOS F				
					V _F		5873	Exhibit 25-1	4 6780	No				
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	5061	Exhibit 25-1	4 6780	No				
					V _R		812	Exhibit 25-3	2100	No				
Flow Enterin	g Merge In	fluence A	rea	8		terir	ng Dive	rge Influen	ce Area	•				
	Actual	ı	Desirable	Violation?		1	Actual	Max Desirab		Violation'				
V _{R12}		Exhibit 25-7			V ₁₂		3726	Exhibit 25-14	4400:All	No				
Level of Serv		•			Level of	Ser	vice De	eterminatio	n (if not	F)				
$D_{R} = 5.475 + 0$.00734 v _R +	0.0078 V ₁₂ -	0.00627 L _A			O _R = 4	4.252 + 0).0086 V ₁₂ - 0.	009 L _D					
D _R = (pc/mi/ln)						$D_R = 33.6 \text{ (pc/mi/ln)}$								
LOS = (Exhibit 25-4)						LOS = D (Exhibit 25-4)								
Speed Deteri	mination				Speed D	eter	minati	on						
M _S = (Exibit 2	5-19)					•	xhibit 25	*						
S_R = mph (Exhibit 25-19)						.9 mpł	S _R = 49.9 mph (Exhibit 25-19)							
S _R = mph (Ext							S ₀ = 57.0 mph (Exhibit 25-19)							
S ₀ = mph (Ext					$S_0 = 57$.0 mpł	ı (Exhibit	25-19)						

• • • •					ONS WO								
General Info				Site Infor									
Date Performed	Agency or Company CHA Junction Date Performed 02/14/12 Jurisdiction Analysis Time Period AM Analysis Year				Travel Southbound I-87 Exit 4 SB Off NYSDOT 2016 Flyover								
Project Description				analysis real	•	20101	1,000						
Inputs													
Upstream Adj Ramp						Downstrea Ramp	m Adj						
☐ Yes ☐ O	n								✓ Yes	☑ On			
™ No □ O	ff								□ No	☐ Off			
L _{up} = ft		S	_{FF} = 56.0 mph		S _{FR} = 4	0.0 mp	h		down	1585 ft			
$V_u = veh/I$			Sketch ((show lanes, L _A					V _D =	600 veh/			
Conversion t		der Base (Conditions										
(pc/h)	(pc/h) V PHF Terrain %Truck				%Rv	<u> </u>	f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p			
Freeway	5300	0.92	Level	2	0	0.	990	1.00	58	18			
Ramp	560	0.92	Level	2	0	0.	990	1.00	61	15			
UpStream		 		 		+-							
DownStream	600	0.93	Level	5	0	0.	976	1.00 Diverge Areas	66	1			
Merge Areas Estimation of v ₁₂						Estimation of V ₁₂							
Littination o		<i>,</i>			LStillati	011 0							
	$V_{12} = V_F$							$= V_R + (V_F - V_F)$					
L _{EQ} =		ation 25-2 or			L _{EQ} =			Equation 25-8					
P _{FM} =	using	Equation (E	xhibit 25-5)		P _{FD} =		0	.586 using Ed	uation (Exh	bit 25-12)			
V ₁₂ =	pc/h				$V_{12} = 3665 \text{ pc/h}$								
V ₃ or V _{av34}		(Equation 25	-4 or 25-5)		V_3 or V_{av34} 2153 pc/h (Equation 25-15 or 25-16								
Is V_3 or $V_{av34} > 2.7$	00 pc/h?	s 🗆 No			Is V ₃ or V _{av3}	$_{34} > 2.7$	00 pc/h?	TYes ✓ No					
Is V_3 or $V_{av34} > 1.5$	* V ₁₂ /2	s 🗆 No			Is V ₃ or V _{av3}	₃₄ > 1.5	* V ₁₂ /2	Tyes ✓ No					
If Yes,V _{12a} =	pc/h	(Equation 25	-8)		If Yes,V _{12a} = pc/h (Equation 25-18)								
Capacity Che	ecks				Capacity	y Ch	ecks						
	Actual	С	apacity	LOS F?		Actual		Ca	pacity	LOS F			
					V _F		5818	Exhibit 25-1	4 6780	No			
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	5203	Exhibit 25-1	4 6780	No			
10					V _R		615	Exhibit 25-3	3 2100	No			
Flow Enterin	a Morao Ir	ofluence A	<u></u>		Flow Entering Diverge Influence Area								
i iow Eiileiin	Actual	1	rea Desirable	Violation?	FIOW EN	-	Actual	Max Desiral		Violation			
V _{R12}	/ iciuai	Exhibit 25-7	D G SII UDIO	violation:	V ₁₂	_	3665	Exhibit 25-14	4400:All	No			
Level of Serv	ice Deterr		f not F)					eterminatio	l				
$D_{R} = 5.475 + 0$					_			0.0086 V ₁₂ - 0.	_	,			
$D_R = 3.473 + 0$ $D_R = (pc/mi)$		0.0070 V ₁₂ -	0.00021 LA			• • •		12 - 0.	OO3 LD				
LOS = (Exhibit 25-4)						D _R = 26.3 (pc/mi/ln) LOS = C (Exhibit 25-4)							
						•		<u> </u>					
Speed Deter					Speed D								
$M_S = $ (Exibit 2					1. "	•	xhibit 25	*					
	nibit 25-19)				1	-	(Exhibit						
S ₀ = mph (Exhibit 25-19)						S ₀ = 56.9 mph (Exhibit 25-19)							
	nibit 25-14)		1 -	-									

	RAI	MPS AND	RAMP JUNG	<u>CTIONS W</u>	<u>ORKSHE</u>	ET_				
General Info	rmation			Site Infor	mation					
Analyst Agency or Compan Date Performed Analysis Time Perio	02/14	1/12	Jui Jui	eeway/Dir of Tr nction risdiction alysis Year	<u> </u>	Southboun Exit 4 SB (NYSDOT 2016 Flyov	On-Ramp)		
Project Description			All	arysis i car		201011y01	CI			
nputs	LAIC I									
Jpstream Adj Ram	0	Terrain: Level							Downstre Ramp	am Adj
Yes C	n								☐ Yes	□ On
□ No C	ff								™ No	□ Off
- _{up} = 1585	ft		F/ 0 1			0.0 1			L _{down} =	ft
/ _u = 560 v	/eh/h	5	FF = 56.0 mph Sketch (s	show lanes, L _A ,	$S_{FR} = 40$ $L_{D'}V_{R'}V_{f}$	0.0 mph			V _D =	veh/h
Conversion	to pc/h Und	der Base C	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}		f_p	v = V/PHF	x f _{HV} x f _p
Freeway	4750	0.92	Level	2	0	0.990		1.00	!	5215
Ramp	600	0.93	Level	5	0	0.976		1.00		661
UpStream	560	0.92	Level	2	0	0.990	_	1.00		615
DownStream		Merge Areas					Di	verge Areas	<u> </u>	
Estimation o		werge Areas			Estimati	on of v		verge Areas		
	V ₁₂ = V _F	(P _{EM})						. (\/_\/	/ \D	
- _{EQ} =		• • • • • • • • • • • • • • • • • • • •	25-2 or 25-3)		_			R + (V _F - V		n)
P _{FM} =			on (Exhibit 25-5)		L _{EQ} =			Equation 25		
' ₁₂ =	3204		OTT (EXTINOR 20 0)		P _{FD} =			sing Equat	ion (Exnibit	25-12)
			n 25-4 or 25-		V ₁₂ =		-	c/h -//- (=+	25 15 25	1/)
7 ₃ or V _{av34}	5)				V ₃ or V _{av34}	2 700		c/h (Equation		-10)
Is V_3 or $V_{av34} > 2.7$					Is V ₃ or V _{av3}	-				
Is V_3 or $V_{av34} > 1.5$:=				Is V ₃ or V _{av3}	•				
Yes,V _{12a} =		(Equation 25	-8)		If Yes,V _{12a} =			c/h (Equati	On 25-18)	
Capacity Ch	ecks				Capacity	/ Chec	ks			
	Actual	Ca	apacity	LOS F?	<u> </u>		Actual	7	apacity	LOS F
					V _F			Exhibit 25	-14	
V_{FO}	5876	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		Exhibit 25	-14	
					V _R			Exhibit 25	5-3	
Flow Enterin	ig Merge In				Flow En	tering	Diver			
	Actual		Desirable	Violation?		Actu		Max Des	irable	Violation?
V _{R12}	3865	Exhibit 25-7	4600:All	No	V ₁₂	<u> </u>		xhibit 25-14		
Level of Ser								erminati		ot F)
$D_{R} = 5.475$	+ 0.00734 v _R + 0	0.0078 V ₁₂ - 0.0	0627 L _A			$O_{R} = 4.25$	52 + 0.0	0086 V ₁₂ -	0.009 L _D	
Ι	c/mi/ln)					c/mi/ln)				
	ibit 25-4)				LOS = (E	xhibit 25	5-4)			
Speed Deter	mination				Speed D	etermi	inatio	n		
M _S = 0.402 (Ex	kibit 25-19)				$D_s = (E)$	xhibit 25-1	9)			
=	(Exhibit 25-19)				S _R = mp	oh (Exhibit	25-19)			
	(Exhibit 25-19)				$S_0 = mp$	oh (Exhibit	25-19)			
	(Exhibit 25-14)				S = mp	oh (Exhibit	25-15)			
					HCS+ TM					

		MPS AND	RAMP JUNG			<u> </u>			
General Infor	mation			Site Infor	mation				
Analyst Agency or Company Date Performed Analysis Time Period		1/12	Ju Ju	eeway/Dir of Tr nction risdiction alysis Year	E	Southbound I- Exit 5 SB On-F NYSDOT 2016 Flyover			
Project Description	Exit 4								
Inputs		h							
Jpstream Adj Ramp		Terrain: Level						Downstro Ramp	eam Adj
Yes □ On No □ Off								✓ Yes	□ On
M NO II OII								□ No	✓ Off
- _{up} = ft			F/ 0 b		0 4	2 0 h		L _{down} =	4700 ft
/ _u = veh/h		5	FF = 56.0 mph Sketch (s	show lanes, L _A ,	$S_{FR} = 40$ $L_{D'}V_{R'}V_{f}$	J.U mpn		V _D =	560 veh/h
Conversion to	pc/h Und	der Base C	Conditions					·	
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p
Freeway	4950	0.92	Level	2	0	0.990	1.00		5434
Ramp	340	0.93	Level	3	0	0.985	1.00		371
UpStream									
DownStream	560	0.92	Level	2	0	0.990	1.00		615
Estimation of	Merge Areas stimation of v₁₂					on of w	Diverge Ar	eas	
ะรแกลแบก บา	V ₁₂				Esuman	on of v ₁₂			
	$V_{12} = V_F$	(P _{FM})				V ₁₂	= V _R + (V _F	- V _R)P _{FD}	
-EQ =	2472.86	(Equation :	25-2 or 25-3)		L _{EQ} =	12		n 25-8 or 25-	·9)
P _{FM} =	0.614	using Equation	on (Exhibit 25-5)		P _{FD} =			uation (Exhibi	
/ ₁₂ =	3336 p	oc/h			V ₁₂ =		pc/h	(,
/ ₃ or V _{av34}	2098 բ	oc/h (Equatio	n 25-4 or 25-		V ₃ or V _{av34}		•	ition 25-15 or 2	5-16)
	5)					< 2.700 nc/h	? TYes		J-10)
Is V_3 or $V_{av34} > 2,700$						-			
Is V_3 or $V_{av34} > 1.5$ *						4 > 1.5 V ₁₂ /2	☐ Yes ☐		
Yes,V _{12a} =	pc/h ((Equation 25	-8)		If Yes,V _{12a} =		pc/n (Equ	uation 25-18)
Capacity Che	cks				Capacity	Checks			
	Actual	Ca	pacity	LOS F?		Actu	ıal	Capacity	LOS F
					V_{F}		Exhibit	t 25-14	
V_{FO}	5805	Exhibit 25-7		No	$V_{FO} = V_{F}$	· V _R	Exhibit	t 25-14	
					V_R		Exhibit	t 25-3	
Flow Entering	Merge In	fluence A	rea		•	terina Di	verae Infl	uence Ar	<u>'</u>
2	Actual)esirable	Violation?	 	Actual		Desirable	Violation?
V _{R12}	3707	Exhibit 25-7	4600:All	No	V ₁₂	1	Exhibit 25-		1
Level of Servi	ice Detern	nination (i	f not F)			Service		ation (if n	ot F)
		0.0078 V ₁₂ - 0.0						₂ - 0.009 L _D	,
$O_{R} = 26.1 \text{ (pc)}$		12	А			c/mi/ln)	1	ZD	
$C_R = C_R $						xhibit 25-4)			
Speed Detern	•				`	etermina	tion		
•					-	chibit 25-19)	uon		
$M_{\rm S} = 0.376 (Exit)$					3		10)		
	Exhibit 25-19)				., .	h (Exhibit 25-			
. = /	Exhibit 25-19)				$S_0 = mp$	h (Exhibit 25-	19)		
	Exhibit 25-14)					h (Exhibit 25-	•		

			FREEWA	Y WEA\	/ING WOF	RKSHEE	Τ		
Genera	I Informat	ion			Site Info	rmation			
Analyst Agency/Co Date Perfor Analysis Tir	rmed	SEB CHA 02/14/ AM	12		Freeway/Dir Weaving Sec Jurisdiction Analysis Yea	g Location	Exit 2 NYSE	lorthbound E on to 2W o OOT Flyover	ff
Inputs					•				
Weaving nu	ee-flow speed, umber of lanes, eg length, L (ft)		56 4 815 Lev		Weaving type Volume ratio Weaving ratio	, VR			27 31
Conver	sions to p	c/h Unde	r Base C	ondition	าร				
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f_{HV}	fp	V
V _{o1}	2550	0.92	2	0	1.5	1.2	0.990	1.00	2799
V _{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0
V _{w1}	660	0.92	2	0	1.5	1.2	0.990	1.00	724
V _{w2}	300	0.92	2	0	1.5	1.2	0.990	1.00	329
V _W	-	ļ	<u> </u>	1053	V _{nw}				2799
V	-				TIW	J			3852
	g and No	n-Weavin	a Speeds	 S					
	<u>J</u>		Unconstr				Cons	trained	
		Weaving			ving (i = nw)	Weavir	ng (i = w)	Non-Wea	ving (= nw)
a (Exhibit 2		0.15			0035				
b (Exhibit 2 c (Exhibit 2		2.20 0.9			.30				
d (Exhibit 2		0.9			.30 .75				
Weaving intens		0.94			.46				
Weaving and n	non-weaving	38.7			5.59				
speeds, Si (mi/ Number of	lanes required	for unconstrai	ned operation,	Nw	1.37	<u> </u>		ļ	
Maximum r	number of lanes	s, Nw (max)			1.40				
	If Nw < Nw	· ,					v (max) const	rained operat	ion
	ig Segmer		Density,	1	f Service,	and Cap	acity		
─	egment speed,	<u> </u>		44.14					
	egment density,	D (pc/mi/ln)		21.82					
Level of ser		/ "		С					
	base condition	D ·		6336					
	s a 15-minute fl			6273					
	s a full-hour vol	ume, c _h (veh/l	1)	5771					
Notes									

a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 2/15/2012 2:30 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

			FREEWA	Y WEAV	/ING WOF	RKSHEE	Г		
General	Informat	ion			Site Info	rmation			
Analyst Agency/Con Date Perforr Analysis Tim	ned	SEB CHA 02/14/ AM	12		Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	g Location	I-87 Southbound Exit 2W on to 2E off NYSDOT 2016 Flyover		
Inputs									
Weaving nu	e-flow speed, and the speed of lanes, greatly length, L (ft)	11 '	56 4 810 Lev		Weaving type Volume ratio Weaving rati	, VR		A 0.: 0.:	
Convers	sions to p	c/h Unde	r Base C	ondition	าร				_
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f_{HV}	fp	V
V_{o1}	3860	0.92	2	0	1.5	1.2	0.990	1.00	4237
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0
V_{w1}	740	0.92	2	0	1.5	1.2	0.990	1.00	812
V _{w2}	340	0.92	2	0	1.5	1.2	0.990	1.00	373
V _W				1185	V _{nw}				4237
V	1				I TIW	ı			5422
Weaving	and No	n-Weavin	g Speeds	 S					
			Unconstr	ained				trained	
<u> </u>		Weaving			ving (i = nw)	Weavir	ıg (i = w)	Non-Wea	ving (= nw)
a (Exhibit 24 b (Exhibit 24		0.15 2.20			.00				
c (Exhibit 24		0.97		1	.30				
d (Exhibit 24		0.80			.75				
Weaving intensi		1.19		1	.60				
Weaving and no speeds, Si (mi/h		35.9	8	43	3.76				
Number of la	anes required	for unconstrain	ned operation,	Nw	1.24				
1	umber of lanes	, ,			1.40	=			
		(max) uncons			_		(max) constr	rained operati	on
		S (mi/h)		41.79	f Service,	and Cap	acity		
	gment density,			32.44					
Level of serv		, D (pormini)		D					
	pase condition	n, c _h (pc/h)		6633					
		ow rate, c (vel	n/h)	6567					
	Capacity as a full-hour volume, c _h (veh/h)			6042					
Notes		. 11.	•						

a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 2/15/2012 2:30 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
S0 Free-Flow Speed FFS = 75 mith 70 mith 70 mith 70 mith 65 mith 65 mith 55 mith 55 mith 75 mi	B C C	150 (600 1750 0 1750 1600 2001	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, N FFS, LOS FFS, N, A FFS, LOS FFS, LOS	S, v _p N, S, D S, N v _p , S, D AADT LOS, S, D S, AADT N, S, D
General Information	Flow Rate (pc/h/lin)	Site Inforn	nation		
Analyst	SEB			ction of Travel	Northbou	nd I-87
Agency or Company	CHA		From/To	olion of thavel	Exit 2 to E	
Date Performed	02/14/12		Jurisdiction		NYSDOT	
Analysis Time Period	AM		Analysis Year	r	2026 Flyc	over
Project Description Exit 4						
✓ Oper.(LOS)			Des.(N)		☐ Plan	ning Data
Flow Inputs	2250	la /la	Peak-Hour Fa	oston DUE	0.00	
Volume, V AADT	3350	veh/h veh/day	%Trucks and	•	0.92 2	
Peak-Hr Prop. of AADT, K		veri/day	%RVs, P _R	Du303, 1 T	0	
Peak-Hr Direction Prop, D			General Terra	ain·	Level	
DDHV = AADT x K x D		veh/h	Grade %	Length	mi	
Driver type adjustment	1.00			Up/Down %		
Calculate Flow Adjustr	nents					
f_p	1.00		E _R		1.2	
E _T	1.5		$f_{HV} = 1/[1 + P_T(E_T)]$	_T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs				d Adj and FFS	<u> </u>	
Lane Width	12.0	ft		•		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			
Interchange Density	0.50	l/mi	f _{LC}			mi/h
Number of Lanes, N	3		f_ID			mi/h
FFS (measured)	56.0	mi/h	f_N			mi/h
Base free-flow Speed, BFFS	30.0	mi/h	FFS		56.0	mi/h
LOS and Performance	Moscuros	1111/11	Docian (N)	<u> </u>		
LOS and Performance	Weasures		Design (N) Design (N)	1		
Operational (LOS) v _p = (V or DDHV) / (PHF x N	x f _{HV} x 1226	pc/h/ln	Design LOS	HV) / (PHF x N x	f _{⊔√} x	_
f_p)		•	f _p)	, ,	110	pc/h
S	56.0	mi/h	S			mi/h
$D = v_p / S$	21.9	pc/mi/ln	$D = v_p / S$			pc/mi/ln
LOS	С		F	mber of Lanes, N		PO/1111/111
Glossary			Factor Loc			
N - Number of lanes	S - Speed					
V - Hourly volume	D - Density		E _R - Exhibits2			f _{LW} - Exhibit 23-4
v _p - Flow rate	FFS - Free-flow	/ speed	I .	23-8, 23-10, 23-1		f _{LC} - Exhibit 23-5
LOS - Level of service	BFFS - Base fr		f _p - Page 23-1			f _N - Exhibit 23-6
		cc-now speed	LOS, S, FFS,	v _p - Exhibits 23-2	2, 23-3	f _{ID} - Exhibit 23-7
DDHV - Directional design ho				Version 5.3		nerated: 2/16/2012 9:40

HCS+TM Version 5.3

Generated: 2/16/2012 9:40 AM

HCS+TM Version 5.3

2/16/2012

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
Wernige Passenger (mith) 20 20 20 20 20 20 20 20 20 2	B C C	450 (600 1750 0		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	Input FFS, N, V FFS, LOS FFS, N, A FFS, LOS FFS, LOS	S, v _p N, S, D S, N v _p , S, D NADT LOS, S, D S, AADT N, S, D
0 400 800	1200 Flow Rate (pc/h/lin	1600 2000)	2400			
General Information			Site Inform			
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/14/12 AM		Highway/Dire From/To Jurisdiction Analysis Yea	ection of Travel	Northboul Exit 4 off NYSDOT 2026 Flyc	to Exit 4 on
Oper.(LOS)		П	Des.(N)		☐ Plan	ning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	2200	veh/h veh/day veh/h	Peak-Hour Fa %Trucks and %RVs, P _R General Terra Grade %	Buses, P _T	0.92 2 0 Level mi	
Driver type adjustment Calculate Flow Adjustr	1.00			Up/Down %		
f _p	1.00		E _R		1.2	
E _T	1.5			T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs	7.0			d Adj and FFS		
Lane Width	12.0	ft		a riaj alia i i o	<u> </u>	so;/b
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3		f _{ID}			mi/h
FFS (measured)	56.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N))		
Operational (LOS) v _p = (V or DDHV) / (PHF x N : f _p) S D = v _p / S	x f _{HV} x 805 56.0 14.4 B	pc/h/ln mi/h pc/mi/ln	$\frac{\text{Design (N)}}{\text{Design LOS}}$ $v_p = (V \text{ or DD})$ $f_p)$ S $D = v_p / S$)HV) / (PHF x N x f	f _{HV} x	pc/h mi/h pc/mi/ln
LOS	Ь		Required Nur	mber of Lanes, N		
Glossary			Factor Loc	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base from the source with the second seco		f _p - Page 23-	23-8, 23-10, 23-11		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{ID} - Exhibit 23-7
Copyright © 2007 University of Florida				M Varsian 5.3	0	perated: 2/16/2012 9:40

HCS+TM Version 5.3

Generated: 2/16/2012 9:40 AM

	BASIC F	REEWAY SI	EGMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 mith 70 mith 65 mith 60 mith 70 mith 55 mith 70 mi	B C	150 (600 1750 1750 1750 1750 1750 1750 1750 17	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, 9 FFS, LOS FFS, LOS FFS, LOS	S, v _p N, S, D S, N v _p , S, D AADT LOS, S, D S, AADT N, S, D
General Information	Flow Rate (pc/h/lin)	Site Inforn	nation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/14/12 AM			ction of Travel	Northbou Exit 4 off NYSDOT 2026 Flyd	to Exit 4 off
Oper.(LOS)			Des.(N)		☐ Plan	ning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	2400	veh/h veh/day veh/h	Peak-Hour Fa %Trucks and %RVs, P _R General Terra Grade %	Buses, P _T	0.92 2 0 Level mi	
Driver type adjustment	1.00		ĺ	Up/Down %		
Calculate Flow Adjustr	1.00		E _R		1.2	
f _p E _T	1.5			_T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs	7.0			d Adj and FFS		
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 3 56.0	ft ft I/mi mi/h	f _{LW} f _{LC} f _{ID} f _N FFS	•	56.0	mi/h mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS	Mossuros	mi/h		<u> </u>		
LOS and Performance Operational (LOS) v _p = (V or DDHV) / (PHF x N x f _p) S D = v _p / S LOS		pc/h/ln mi/h pc/mi/ln	f_p) S D = v_p / S	HV) / (PHF x N x	f _{HV} x	pc/h mi/h pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base from		E _R - Exhibits2 E _T - Exhibits : f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
Copyright © 2007 University of Florida,			TM	Version 5.3	Gov	nerated: 2/16/2012 9:41

HCS+TM Version 5.3

Generated: 2/16/2012 9:41 AM

HCS+TM Version 5.3

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
Free-Flow Spzed FFS = 75 mith 70	B C C	150 (600 1750 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, N, FFS, LO FFS, LO	S, v _p N, S, D S, N v _p , S, D AADT LOS, S, D S, AADT N, S, D
General Information	Flow Rate (pc/h/lin	1	Site Infori	mation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/14/12 AM		-	ection of Travel	Northbou Exit 4 to NYSDOT 2026 Fly	Exit 5 -
✓ Oper.(LOS)			Des.(N)		☐ Plar	nning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	2750	veh/h veh/day veh/h	Peak-Hour F %Trucks and %RVs, P _R General Terr Grade %	d Buses, P _T	0.92 2 0 Level mi	
Calculate Flow Adjustr				Op/Down 70		
f _p	1.00		E _R		1.2	
E _T	1.5		f _{HV} = 1/[1+P _T (E	E _T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs			Calc Spee	ed Adj and FFS	3	
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 4 56.0	ft ft I/mi mi/h	f _{LW} f _{LC} f _{ID} f _N		50.0	mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times N)$ f_p) S $D = v_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	f_p) S D = v_p / S	•	f _{HV} x	pc/h mi/h pc/mi/ln
Glossary			Factor Lo	cation		-
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fr		f _p - Page 23-	23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{ID} - Exhibit 23-7
Copyright © 2007 University of Florida				M Varsion 5.2		nerated: 2/17/2012 1:09 l

HCS+TM Version 5.3

	BASIC F	REEWAY SE	GMENTS WC	RKSHEET		
S0 Froe-Flow Speed FFS = 75 mith 70 mi	B. C.	1450 (600 1750 1750 1600 2000 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AADT FFS, LOS, N	Output LOS, S, D N, S, D v _p , S, D LOS, S, D N, S, D v _p , S, D
General Information	Flow Rate (pc/h/l	ln)	Sito Inform	ation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/14/12 AM		Site Information Highway/Direct From/To Jurisdiction Analysis Year		Southbound I-87 Exit 5 to Exit 4 NYSDOT 2026 Flyover	
✓ Oper.(LOS)		П	Des.(N)		☐ Planning Da	ta
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	5600	veh/h veh/day veh/h	Peak-Hour Fac %Trucks and E %RVs, P _R General Terrai Grade % U	Buses, P _T	0.92 2 0 Level mi	
Calculate Flow Adjustn	nents					
f _p	1.00		E _R		1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - E_T)]$		0.990	
Speed Inputs	10.0		Calc Speed	Adj and FFS	<u> </u>	
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 3 56.0	ft ft I/mi mi/h	f _{LW} f _{LC} f _{ID} f _N			mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times N)$ f_p) S $D = v_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	f_p) S D = v_p / S	IV) / (PHF x N x ber of Lanes, N	f _{HV} x	pc/h mi/h pc/mi/ln
Glossary			Factor Loca			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base four volume		E _R - Exhibits23 E _T - Exhibits 23 f _p - Page 23-12	3-8, 23-10 3-8, 23-10, 23-1	1 f _{LC} - Ex f _N - Exl	xhibit 23-4 xhibit 23-5 nibit 23-6 hibit 23-7
Copyright © 2007 University of Florida,			HCS+ TM	Version 5.3	Generated: 2	/17/2012 1:09 F

	BASIC F	REEWAY SE	GMENTS W	VORKSHEET		
Free-Flow Speed FFS = 75 mith 70 mith	B C C	150 (600 1750 0		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AADT FFS, LOS, N	Output LOS, S, D N, S, D V _p , S, D LOS, S, D N, S, D V _p , S, D
0 400 800	1200 Flow Rate (pc/h/ln)	1600 2000)	2400			
General Information			Site Infori	mation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	CLD CHA 07/30/13 AM		Highway/Dire From/To Jurisdiction Analysis Yea	ection of Travel	Northbound I-8 Exit 5 to Exit 6 NYSDOT 2026 Flyover	7
✓ Oper.(LOS)			Des.(N)		☐ Planning I	Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K	2600	veh/h veh/day	Peak-Hour F %Trucks and %RVs, P _R	•	0.92 2 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustr	1.00 nents	veh/h	General Terr Grade %	rain: Length Up/Down %	Level mi	
f _p	1.00		E _R		1.2	
E _T	1.5			E _T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs				ed Adj and FFS		
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 4 56.0	ft ft I/mi mi/h	f _{LW} f _{LC} f _{ID} f _N FFS		56.0	mi/h mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS		mi/h			30.0	1111/11
LOS and Performance Operational (LOS) $V_p = (V \text{ or DDHV}) / (PHF \times N \times f_p)$ S $D = V_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	f_p) S D = v_p / S	DHV) / (PHF x N x	f _{HV} x	pc/h mi/h pc/mi/ln
				imber of Lanes, N		
Glossary N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho Copyright © 2007 University of Florida,			f _p - Page 23- LOS, S, FFS	23-8, 23-10 23-8, 23-10, 23-1	1 f _{LC} - f _N - E 2, 23-3 f _{ID} - I	Exhibit 23-4 Exhibit 23-5 Exhibit 23-6 Exhibit 23-7 8/12/2013 3:24 F

HCS+TM Version 5.3

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
_ 00						
Froe-Flow Speed FFS = 75 mith 70 mith	B, C	450 (600 1750		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	FFS, N, V _p FFS, LOS, V FFS, LOS, V FFS, N, AA FFS, LOS, V	√ v _p , S, D DT LOS, S, D AADT N, S, D
0 400 200) 1200 Flow Rate (pc/h/lin	1600 200 0)	2400			
General Information	1945/1944/1945/1945/1945/1945/1945/1945/	7.5	Site Inform	nation		
Analyst Agency or Company Date Performed Analysis Time Period	CLD CHA 07/30/13 AM		Highway/Dire From/To Jurisdiction Analysis Year	ction of Travel	Southbound Exit 6 to Ex NYSDOT 2026 Flyov	it 5
Project Description Exit 4			,			
Oper.(LOS)			Des.(N)		☐ Planni	ng Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K	6100	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R	Buses, P _T	0.92 2 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustr	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
<u> </u>	1.00		E _R		1.2	
f _p E _⊤	1.5			_T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs	7.0			d Adj and FFS		
Lane Width	12.0	ft		a Aaj ana 110	<u> </u>	mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	4		f _{ID}			mi/h
FFS (measured)	56.0	mi/h	f_N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N)			
Operational (LOS) v _p = (V or DDHV) / (PHF x N : f_)	x f _{HV} x 1674	pc/h/ln	$\frac{\text{Design (N)}}{\text{Design LOS}}$ $v_p = (V \text{ or DD})$	9HV) / (PHF x N x t	f _{HV} x	pc/h
S $D = v_p / S$	56.0 29.9	mi/h pc/mi/ln	f _p) S D = v _p / S			mi/h pc/mi/ln
LOS	D			mber of Lanes, N		·
Glossary			Factor Loc			
N - Number of lanes	S - Speed		E _R - Exhibits2	23-8 23-10	f	_{.W} - Exhibit 23-4
V - Hourly volume	D - Density			23-6, 23-10 23-8, 23-10, 23-11	-	_{.W} - Exhibit 23-4
v _p - Flow rate	FFS - Free-flow	speed	f _p - Page 23-		-	_{.C} - Exhibit 23-5
LOS - Level of service	BFFS - Base fr	ee-flow speed		ız , v _p - Exhibits 23-2		_D - Exhibit 23-7
DDHV - Directional design ho	our volume		, 0, 113,	, _p =	., 20 0 I _I	D EXHIBIT 20-7
Copyright © 2007 University of Florida,	All Rights Reserved		HCS+TM	Version 5.3	Gener	ated: 8/12/2013 3:25 PI

_		MPS AND	RAMP JUNG			<u>:EI</u>				
General Infol	mation			Site Infor	mation					
Analyst Agency or Company Date Performed Analysis Time Perio	02/14		Jui Jui	eeway/Dir of Tranction risdiction alysis Year				p		
	Exit 4		All	alysis i cai	•	20201	iyovei			
nputs	LAIL 4									
Jpstream Adj Ramp		Terrain: Level							Downstrea	ım Adi
Yes O									Ramp	-
No ✓ Ot	f								☐ Yes ☑ No	☐ On ☐ Off
- 1100	f4								L _{down} =	ft
$t_{up} = 1100$ $t_{u} = 670 \text{ V}$		S	FF = 56.0 mph	show lanes, L _A ,	S _{FR} = 4	0.0 mp	h		V _D =	veh/h
Conversion t	o nc/h Un/	der Rase (now lanes, L _A ,	D' R' f					
	<i>0 pc/11 011</i> 0				Ī	1	,	,	\//5!!5	
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv	1	f _{HV}	f _p	v = V/PHF	хт _{НV} хт _р
Freeway	2950	0.92	Level	2	0	0.9	990	1.00	3:	239
Ramp	400	0.92	Level	2	0	0.9	990	1.00	 	39
UpStream	670	0.92	Level	2	0	0.9	990	1.00	7	36
DownStream		Merge Areas						Diverge Areas		
stimation of v ₁₂					Estimati	ion o		Diverge Areas	<u> </u>	
		(D.)			20077740		12			
	$V_{12} = V_F$	• • • • • • • • • • • • • • • • • • • •					V ₁₂ =	V _R + (V _F - V	/ _R)P _{FD}	
EQ =		(Equation 2			L _{EQ} =			(Equation 2	5-8 or 25-9))
P _{FM} =	0.601	using Equati	on (Exhibit 25-5)		P _{FD} =			using Equat	ion (Exhibit 2	25-12)
12 =	1948				V ₁₂ =			pc/h		
' ₃ or V _{av34}		pc/h (Equatio	n 25-4 or 25-		V ₃ or V _{av34}			pc/h (Equation	1 25-15 or 25-	16)
s V ₃ or V _{av34} > 2,70	5) 00 nc/h? □ ∨o.	o V No				₃₄ > 2,7	'00 pc/h?	□ Yes □ N	0	
s V_3 or $V_{av34} > 2,7$								□ Yes □ N		
4 Yes, $V_{12a} =$		Equation 25	_Q\		If Yes,V _{12a} =		12	pc/h (Equati		
Capacity Che	•	(Lqualion 23	-0)		Capacity		ooks		,	
Sapacity Crie	Actual		apacity	LOS F?	Capacity	y CII	Actual		anacity	LOS F
	Actual		ірасіту	LUSF!	V _F	\dashv	Actual	Exhibit 25	apacity	LUST
V	2/70	E 177.05.7				1/			_	+
V_{FO}	3678	Exhibit 25-7		No	$V_{FO} = V_{F}$	- v _R		Exhibit 25		
				<u> </u>	V _R			Exhibit 25		
low Enterin		T			Flow En			erge Influe		
	Actual		Desirable	Violation?	\ , .	A	ctual	Max Des	sirable	Violation?
V _{R12}	2387	Exhibit 25-7	4600:All	No	V ₁₂	<u>Ļ</u>		Exhibit 25-14		. =\
evel of Serv					1			eterminati		t <i>F)</i>
	0.00734 v _R + 0	0.0078 V ₁₂ - 0.0	0627 L _A			$D_R = 4$	1.252 + (0.0086 V ₁₂ -	0.009 L _D	
$O_{R} = 18.6 \text{ (pc)}$	c/mi/ln)				$D_R = (p)$	c/mi/l	n)			
•	bit 25-4)						25-4)			
Speed Deteri	mination				Speed D	Deter	minati	on		
N _S = 0.295 (Ex	ibit 25-19)				$D_s = (E)$	xhibit 2				
•	(Exhibit 25-19)					ph (Exh	nibit 25-19)		
	(Exhibit 25-19)				.,		nibit 25-19			
					I -		nibit 25-15			
5 = 52.3 mph	(EXPIDIT 25-14)				D = 1111	יא זון ווע	IIDIL ZU-TU)		

		RAMPS	S AND RAM	P JUNCTI	ONS WO	RKS	HEET				
General Info	rmation			Site Infor							
Analyst Agency or Company Date Performed Analysis Time Perio Project Description	SEB / CHA 02/1 ⁴ d AM		Ju Ju	eeway/Dir of Tr Inction Irisdiction nalysis Year	avel			SR			
Inputs	LAIL 4										
Upstream Adj Ramp)	Terrain: Level							Downstrea Ramp	m Adj	
□ Yes □ O	n								✓ Yes	□ On	
™ No □ O	ff								□ No	✓ Off	
L _{up} = ft		9	_{FF} = 56.0 mph		S _{FR} = 4	10 0 mi	nh		L _{down} =	2600 ft	
V _u = veh/l			Sketch (show lanes, L _A ,		10.0 111	JII		V _D =	190 veh/h	
Conversion		der Base (Conditions	1	Υ			Υ	1		
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		\boldsymbol{f}_{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	3350	0.92	Level	2	0	0	.990	1.00	36	78	
Ramp	910	0.82	Level	2	0	0	.990	1.00	11:	21	
UpStream DownStream	190	0.82	Lovel	2	0	+	000	1.00	22		
Downstieam		Merge Areas	Level	2	U	0	.990	1.00 Diverge Areas	23	14	
Estimation of v ₁₂					Estimat	ion d		2.10.go7.10do			
	V ₁₂ = V _F	(P _{FM})					V ₁₂ =	= V _R + (V _F - V	_R)P _{ED}		
L _{EQ} =		L _{EQ} =		3	78.49 (Equation	on 25-8 or 2	25-9)				
P _{FM} =	using	Equation (E	xhibit 25-5)		P _{FD} =		0	.616 using Ed	quation (Exh	ibit 25-12)	
V ₁₂ =	pc/h				V ₁₂ =		2	697 pc/h			
V ₃ or V _{av34}		(Equation 25	-4 or 25-5)		V_3 or V_{av34}		9	81 pc/h (Equa	ation 25-15	or 25-16)	
Is V_3 or $V_{av34} > 2.7$								TYes ✓ No			
Is V_3 or $V_{av34} > 1.5$	· -				Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No						
120		(Equation 25	-8)		If Yes,V _{12a} =			oc/h (Equation	1 25-18)		
Capacity Ch					Capacit					_	
	Actual	Ca	apacity	LOS F?	1		Actual		pacity	LOS F?	
, ,					V _F	١,,	3678	Exhibit 25-1	+	No	
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2557	Exhibit 25-1		No	
	<u> </u>				V _R		1121	Exhibit 25-	ļ	No	
Flow Enterin		1		\/iolotion?	Flow En	-1		rge Influer		Violation	
V _{R12}	Actual	Exhibit 25-7	Desirable	Violation?	V ₁₂	\neg	Actual 2697	Max Desira Exhibit 25-14	4400:All	Violation?	
Level of Serv	l vice Detern		f not F)	<u> </u>				eterminatio			
$D_R = 5.475 + 0$		•						.0086 V ₁₂ - 0	•	,	
$D_R = 0.076$		12	- A				:/mi/ln)	12			
	oit 25-4)						bit 25-4)				
Speed Deter					Speed L	•		on			
$M_S = $ (Exibit 2							xhibit 25				
-	nibit 25-19)				1		n (Exhibit				
	nibit 25-19)				1	-	n (Exhibit				
	nibit 25-14)				1 -	-	n (Exhibit				
		. 02	_ ····[21	\	/						

		RAMP	S AND RAM	MP JUNCTI	ONS WO	RKS	HEET				
General Infor	mation			Site Infor							
Analyst Agency or Company Date Performed Analysis Time Perioc	SEB CHA 02/14 I AM			Freeway/Dir of Tr Junction Jurisdiction Analysis Year	Travel Northbound I-87 Exit 4 NB Off to Wolf NYSDOT 2026 Flyover						
Project Description	Exit 4										
Inputs		Terrain: Leve	1					1	<u> </u>	A 1:	
Upstream Adj Ramp		Torium. Love	•						Downstrea Ramp	m Aaj	
Yes Or	1								☐ Yes	□ On	
□ No Of	f								✓ No	Off	
L _{up} = 2600	ft		_{FF} = 56.0 mph		S _{FR} = 40	Λ Λ mr	\h		L _{down} =	ft	
V _u = 910 ve	eh/h		• •	(show lanes, L _A ,		o.o m	,,,,		V _D =	veh/h	
Conversion to	o nc/h Uni	l der Base (D' R' f						
(pc/h)	V	PHF	Terrain	%Truck	%Rv		f	f	v = V/PHF	vf vf	
* '	(Veh/hr)				_	_	f _{HV}			г	
Freeway	2400	0.92	Level	2	0	+	990	1.00	26		
Ramp UpStream	190 910	0.82	Level Level	2 2	0	┿	.990 .990	1.00 1.00	23 11:		
DownStream	710	0.02	Level	2	0	1 0	.770	1.00	11.	2 1	
		Merge Areas						Diverge Areas			
Estimation of	^f v ₁₂				Estimati	on c	of v ₁₂				
	V ₁₂ = V _F	(P _{FM})					V ₁₂ =	= V _R + (V _F - V _F	R)P _{FD}		
L _{EQ} =	(Equ	ation 25-2 or	25-3)		L _{EQ} =		(Equation 25-8	or 25-9)		
P _{FM} =	using	Equation (E	Exhibit 25-5)		P _{FD} =		0	.683 using Eq	uation (Exh	ibit 25-12)	
V ₁₂ =	pc/h				V ₁₂ =		1	875 pc/h			
V ₃ or V _{av34}		(Equation 25	-4 or 25-5)		V_3 or V_{av34}			60 pc/h (Equa	tion 25-15	or 25-16)	
Is V_3 or $V_{av34} > 2,70$					Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No						
Is V_3 or $V_{av34} > 1.5$	· -				Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No						
If Yes,V _{12a} =		(Equation 25	5-8)		If Yes,V _{12a} = pc/h (Equation 25-18)						
Capacity Che		•		1	Capacity	y Ch					
	Actual	C	apacity	LOS F?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Actual	<u> </u>	oacity	LOS F	
.,		l l			V _F		2635	Exhibit 25-1	_	No	
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2401	Exhibit 25-1	_	No	
	<u>L</u>				V _R		234	Exhibit 25-3		No	
Flow Entering		1		Violotion	Flow En	_		rge Influen		Violetia	
V _{R12}	Actual	Exhibit 25-7	Desirable	Violation?	V ₁₂	1	Actual 1875	Max Desirab Exhibit 25-14	4400:All	Violation?	
Level of Serv	ice Deterr		if not F)	1				eterminatio			
$D_R = 5.475 + 0.$.0086 V ₁₂ - 0.	•	,	
$D_R = 0.470 \cdot 0.1$	•••	12	A				/202	12 0.	- D		
LOS = (Exhibi	,				1		bit 25-4)				
Speed Deterr					Speed D	`		on			
											
$M_S = (Exibit 28)$ $S_{-} = mnh (Exh)$	ibit 25-19)				$D_{S} = 0.384$ (Exhibit 25-19) $S_{R} = 50.6$ mph (Exhibit 25-19)						
	iibit 25-19) iibit 25-19)				S_0 = 61.4 mph (Exhibit 25-19)						
	いいに とい ・ (ガ)				. U 01.	pi	. ,=	,			
	ibit 25-14)					3 mnh	ı (Exhibit	25-15)			

		NAIVIE	S AND RAM							
General Inf				Site Infor						
Analyst Agency or Compa Date Performed Analysis Time Pe	02/1	1	Ji Ji	reeway/Dir of Tr unction urisdiction		Southb Exit 2V NYSD	V Off TC			
Project Description			A	nalysis Year	•	2020 F	lyover			
Inputs	JII LAIL 4									
Upstream Adj Ra	mn	Terrain: Leve							Downstrea	m Adi
•	On								Ramp	
✓ No	Off								✓ Yes ✓ No	✓ On Off
L _{up} = ft										1300 ft
ир	h/h	S	FF = 56.0 mph	show lanes, L _A ,	$S_{FR} = 4$	0.0 m	oh			350 veh/
Conversion	n to pc/h Un	der Base (-Д	-D' - R' - 1'					
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	5400	0.92	Level	2	0	0	.990	1.00	592	28
Ramp	760	0.92	Level	2	0	0	.990	1.00	83	4
UpStream DownStream	350	0.92	Level	2	0	1	.990	1.00	38	1
Downsticani		Merge Areas	FEAGI		0			Diverge Areas		4
Estimation		Estimati	ion d							
	V ₁₂ = V _F	(P _{EM})						= V _R + (V _F - V	P)PED	
L _{EQ} = (Equation 25-2 or 25-3)					L _{EQ} =			Equation 25-8		
P _{FM} = using Equation (Exhibit 25-5)					P _{FD} =		0	.573 using Ed	uation (Exhi	bit 25-12)
V ₁₂ =	pc/h				V ₁₂ =		3	755 pc/h		
V_{3} or V_{av34}		(Equation 25	-4 or 25-5)		V_3 or V_{av34}			173 pc/h (Equ	ation 25-15	or 25-16
0 4101	2,700 pc/h? ☐ Ye							TYes ✓ No		
	1.5 * V ₁₂ /2				Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No					
If Yes,V _{12a} =		(Equation 25	5-8)		If Yes,V _{12a} = pc/h (Equation 25-18)					
Capacity C	hecks				Capacity	y Ch	ecks			
	Actual	С	apacity	LOS F?	1		Actual		pacity	LOS F
					V _F		5928	Exhibit 25-1		No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	5094	Exhibit 25-1	-	No
					V _R		834	Exhibit 25-3		No
Flow Enter	ing Merge Ir			1 10 1 11 -	Flow En	1		rge Influen		
\/	Actual	+	Desirable	Violation?	\/	_	Actual	Max Desiral		Violation
V _{R12}	rvice Deteri	Exhibit 25-7	if not E)	<u> </u>	V ₁₂		3755	Exhibit 25-14	4400:All	No
	- 0.00734 v _R +							eterminatio	_)
	- 0.00734 V _R + mi/ln)	0.0070 V ₁₂	0.00021 LA			• •	4.252 + 0 :/mi/ln)	0.0086 V ₁₂ - 0.	oo₃ ∟D	
1.5.5	nibit 25-4)						bit 25-4)			
Speed Dete					Speed D	•		on		
	t 25-19)				` '		xhibit 25			
· ·	Exhibit 25-19)					•	n (Exhibit	*		
	Exhibit 25-19)				S_0 = 56.9 mph (Exhibit 25-19)					
1	Exhibit 25-14)				1.	-	n (Exhibit			
Copyright © 2007 University of Florida, All Rights Reserved					1. 52	- pı	. \-~	,		

1		RAMP	S AND RAM	IP JUNCTI	ONS WO	RKS	HEET			
General Infor	mation			Site Infor						
Analyst Agency or Company Date Performed Analysis Time Period	SEB CHA 02/14 d AM		J	reeway/Dir of Tr unction urisdiction Analysis Year	ravel S	Exit 4 S NYSD(oound I-87 SB Off OT Ilyover			
Project Description	Exit 4									
Inputs		Terrain: Leve								Α Ι'
Upstream Adj Ramp		Terrain. Leve	•						Downstrea Ramp	am Aaj
									✓ Yes	☑ On
Mo □ Of	ı								□ No	☐ Off
L _{up} = ft									L _{down} =	1585 ft
V _u = veh/h	1	S	$_{FF}$ = 56.0 mph Sketch ((show lanes, L _A	$S_{FR} = 40$ $L_{D'}V_{R'}V_{f}$	0.0 mp	oh		V _D =	650 veh/h
Conversion t	o pc/h Und	der Base (Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	5600	0.92	Level	2	0	0	.990	1.00	61	48
Ramp	640	0.92	Level	2	0	0	.990	1.00	7(03
UpStream DownStream	650	0.93	Lovel	5	0	1	.976	1.00	7:	16
Downsteam		Merge Areas	Level))	0	0		Diverge Areas	1	10
Estimation o		Estimati	on c		5.1. o. go 7 oa o					
	V ₁₂ = V _F	(P)			 			= V _R + (V _F - V _F	-)P	
L _{EQ} =	12 1	ation 25-2 or	25-3)		L _{FO} =			Equation 25-8		
P _{FM} =		Equation (E			P _{FD} =			574 using Eq		nihit 25-12)
V ₁₂ =	pc/h	_qaa(2			V ₁₂ =			828 pc/h	dation (Exi	11011 25 12)
V ₃ or V _{av34}	•	(Equation 25	5-4 or 25-5)		V ₃ or V _{av34}			320 pc/h (Equ	ation 25-1	5 or 25-16
Is V_3 or $V_{av34} > 2,70$			/			, > 2,7		Yes Mo	u0	0 0. 20 .0
Is V ₃ or V _{av34} > 1.5								Yes ✓ No		
If Yes,V _{12a} =	·=	(Equation 25	5-8)		If Yes, V_{12a} = pc/h (Equation 25-18)					
Capacity Che					Capacity		ecks			
	Actual	С	apacity	LOS F?			Actual	Ca	pacity	LOS F
					V_{F}		6148	Exhibit 25-1	4 6780	No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	5445	Exhibit 25-1	4 6780	No
					V _R		703	Exhibit 25-3	2100	No
Flow Entering	g Merge In	fluence A	rea		Flow En	terir	ng Dive	rge Influen	ce Area	•
	Actual	1	Desirable	Violation?		1	Actual	Max Desirab		Violation
V _{R12}		Exhibit 25-7			V ₁₂		3828	Exhibit 25-14	4400:All	No
Level of Serv		•						terminatio	•	F)
$D_R = 5.475 + 0.$.00734 v _R +	0.0078 V ₁₂ -	0.00627 L _A			O _R = 4	4.252 + 0	.0086 V ₁₂ - 0.	009 L _D	
D _R = (pc/mi/	/ln)				$D_R = 27$.7 (pc	:/mi/ln)			
,	it 25-4)				LOS = C	(Exhi	bit 25-4)			
Speed Deterr	mination				Speed D	eter)	minatio	on		
M _S = (Exibit 2	5-19)				J.	•	xhibit 25	•		
i e	nibit 25-19)				S_R = 50.0 mph (Exhibit 25-19)					
S _R = mph (Ext	,									
S ₀ = mph (Exh	nibit 25-19) nibit 25-14)				$S_0 = 56$.3 mpł	ı (Exhibit	25-19)		

	RAI	<u>MPS A</u> ND	RAMP JUNG	<u>CTIONS</u> W	<u>ORKSHE</u>	ET				
General Info	rmation			Site Infor	mation					
Analyst Agency or Company Date Performed Analysis Time Perio	02/14	1/12	Jui Jui	eeway/Dir of Tr nction risdiction alysis Year	E N	Southbound Exit 4 SB C NYSDOT 2026 Flyove	n-Ramp			
Project Description	Exit 4									
Inputs										
Jpstream Adj Ramp		Terrain: Level							Downstrea Ramp	am Adj
Yes O									Yes	□ On
∏ No	ff								☑ No	☐ Off
- _{up} = 1585	ft	S	_{FF} = 56.0 mph		$S_{FR} = 40.0 \text{ mph}$					
$V_{\rm u} = 640 \text{ V}$	eh/h			show lanes, L _A ,				ľ	$V_D =$	veh/h
Conversion	to pc/h Und	der Base C	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}		f _p	v = V/PHF	x f _{HV} x f _p
Freeway	4950	0.92	Level	2	0	0.990		1.00	Ę	434
Ramp	650	0.93	Level	5	0	0.976		1.00		716
UpStream	640	0.92	Level	2	0	0.990		1.00		703
DownStream	<u> </u>	Merge Areas					Div	verge Areas		
Estimation o		Estimati	on of v		reige Aleas					
	V ₁₂ = V _F	(D)								
_		• • • • • • • • • • • • • • • • • • • •	0E 0 or 0E 0\			\		+ (V _F - V _F		
-EQ = D _			25-2 or 25-3)		L _{EQ} =			quation 25		
P _{FM} =			on (Exhibit 25-5)		P _{FD} =			ing Equation	on (Exhibit	25-12)
1 ₁₂ =	3336		- 05 4 05		V ₁₂ =		pc	:/h		
V_3 or V_{av34}	2098 p 5)	oc/n (Equation	n 25-4 or 25-		V ₃ or V _{av34} pc/h (Equation 25-15 or 25-16)					
Is V ₃ or V _{av34} > 2,7		s 🗹 No			Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No					
Is V ₃ or V _{av34} > 1.5					Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No					
Yes,V _{12a} =		(Equation 25	-8)		If Yes,V _{12a} =		pc	:/h (Equatio	on 25-18)	
Capacity Ch		(1	-/		Capacity	/ Checl	rs			
aparenty con-	Actual	Ca	apacity	LOS F?		1	ctual	Ca	pacity	LOS F
					V _F			Exhibit 25-	14	
V_{FO}	6150	Exhibit 25-7		No	$V_{FO} = V_F$	· V _D		Exhibit 25-	14	
FO					V _R	K		Exhibit 25		+
Flow Enterin	n Merge In	fluence A			•	terina l	Divorc	je Influei		<u></u>
TOW LINEITH	Actual		Desirable	Violation?	I IOW LII	Actua		Max Desi		Violation?
V _{R12}	4052	Exhibit 25-7	4600:All	No	V ₁₂			chibit 25-14		
Level of Serv	ice Detern					Servic		erminatio	on (if no	t F)
	+ 0.00734 v _R + 0							086 V ₁₂ - 0		/
) _R = 28.5 (p		12	М			c/mi/ln)		12	U	
10	ibit 25-4)					xhibit 25	-4)			
Speed Deter	-				Speed D			<u> </u>		
	ibit 25-19)				 	khibit 25-19				
=	(Exhibit 25-19)					h (Exhibit				
••						h (Exhibit				
S ₀ = 50.2 mph (Exhibit 25-19)] ° .	-	-			
i = 50.0 mph	(Exhibit 25-1/1)	S = 50.0 mph (Exhibit 25-14) Copyright © 2007 University of Florida, All Rights Reserved				h (Exhibit :	ノケートケト			

			MPS AND	RAMP JUNG							
General	Inforn	nation			Site Infor	mation					
Analyst Agency or C Date Perforr Analysis Tim	med	SEB CHA 02/14 AM	/12	Jui Jui	eeway/Dir of Tr nction isdiction alysis Year]]			mp		
Project Desc	cription E	xit 4									
nputs											
Jpstream A			Terrain: Level							Downstre Ramp	eam Adj
Yes	□ On									Yes	☐ On
™ No	☐ Off									□ No	✓ Off
- _{up} = / _u =	ft veh/h		S	FF = 56.0 mph	show lanes, L _a ,	S _{FR} = 4	0.0 mp	h		L _{down} = V _D =	4700 ft 640 veh/h
	sion to	nc/h l Inc	lar Rasa (Conditions	mow lanes, L _A ,	D' R' f					
		<i>γ</i>			0/7	0/5	1	. 1	r		Ftt
(pc/l	n)	(Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	V = V/PH	F x f _{HV} x f _p
Freeway		5200	0.92	Level	2	0	0.9	990	1.00	ļ	5709
Ramp		390	0.93	Level	3	0	0.9	985	1.00	1	426
UpStream		/ 10	0.00	1				200	1.00	-	700
DownStrear	m	640	0.92	Level	2	0	0.9	990	1.00))	703
Estimat	ion of		Merge Areas			Estimati	ion o		Diverge Area	15	
_Stimat	1011 01					LStillati		'' ' 12			
		$V_{12} = V_F$	(P _{FM})					V ₁₂ =	$V_R + (V_F -$	$V_R)P_{FD}$	
EQ =		2826.70	(Equation :	25-2 or 25-3)		L _{EQ} =			(Equation 2	25-8 or 25-	9)
P _{FM} =		0.614	using Equati	on (Exhibit 25-5)		P _{FD} =			using Equa		
/ ₁₂ =		3505 p	oc/h			V ₁₂ =			pc/h		,
₃ or V _{av34}		2204 p	c/h (Equatio	n 25-4 or 25-		V ₃ or V _{av34}			-	on 25-15 or 21	5-16)
		5)				V_3 or V_{av34} pc/h (Equation 25-15 or 25-16) Is V_3 or $V_{av34} > 2,700$ pc/h? Yes No					
		pc/h? TYes									
Is V_3 or V_{av}	₃₄ > 1.5 * \	$I_{12}/2 \square \text{ Yes}$	s ☑ No			Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No If Yes, $V_{12a} =$ pc/h (Equation 25-18)					
Yes,V _{12a} =	=	pc/h (Equation 25	-8)		If Yes,V _{12a} =			pc/h (Equa	ition 25-18)	
Capacit	y Chec	ks				Capacity	y Ch	ecks			
		Actual	Ca	pacity	LOS F?			Actual		Capacity	LOS F?
						V_{F}			Exhibit 2	5-14	
V _{FC}	,	6135	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		Exhibit 2	5-14	
						V _R	Ť		Exhibit 2	25-3	
Flow En	torina	Morgo In	fluence A	roa	<u> </u>		torin	a Dive	erge Influ		<u></u>
IOW LI	Itering	Actual		Desirable	Violation?	I IOW LII	-	ctual	Max De		Violation?
V _{R1}	-	3931	Exhibit 25-7	4600:All	No	V ₁₂	 	oluui	Exhibit 25-14		violation:
evol of	f Sonii		nination (i		140		Sor	vice D	etermina) of F)
			.0078 V ₁₂ - 0.0							•	J(F)
			.0076 v ₁₂ - 0.0	0027 L _A			• •		0.0086 V ₁₂	- 0.009 L _D	
IX.	27.8 (pc/n	•					c/mi/l	•			
	C (Exhibit							25-4)			
Speed L	Determ	ination				Speed D			on		
$M_{\rm S} = 0.$	416 (Exibi	t 25-19)				$D_s = (E_s)$	xhibit 2	:5-19)			
-	0.2 mph (E	xhibit 25-19)				S _R = mp	oh (Exh	nibit 25-19)		
••	-	xhibit 25-19)				S ₀ = mp	oh (Ext	nibit 25-19)		
S = 50.1 mph (Exhibit 25-14)						1	oh (Exh	nibit 25-15)		
Copyright © 2007 University of Florida, All Rights Reserved											

			FREEWA	Y WEAV	/ING WOR	KSHEE	Т				
Genera	l Informat	ion			Site Information						
Analyst Agency/Cor Date Perfor Analysis Tir	med	SEB CHA 02/14/ AM	12		Freeway/Dir of Weaving Seg Jurisdiction Analysis Yea	Location	Exit 2 NYSE	lorthbound E on to 2W of OOT Flyover	f		
Inputs											
Weaving nu Weaving se Terrain	ee-flow speed, and spe	, N	56 4 815 Lev	el	Weaving type Volume ratio, Weaving ratio	VR		A 0.27 0.32			
Conver	sions to p	oc/h Unde	r Base C	ondition				,	_		
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f_{HV}	fp	V		
V_{o1}	2640	0.92	2	0	1.5	1.2	0.990	1.00	2898		
V_{02}	0	0.92	2	0	1.5	1.2	0.990	1.00	0		
V _{w1}	670	0.92	2	0	1.5	1.2	0.990	1.00	735		
V_{w2}	310	0.92	2	0	1.5	1.2	0.990	1.00	340		
V _w	1	•		1075	V _{nw}			Į.	2898		
V				<u> </u>		l			3973		
Weavin	g and No	n-Weavin	g Speeds	3							
			Unconstr					trained			
- /F. H.H.H.O.	4 ()	Weaving			aving (i = nw)	Weavii	ng (i = w)	Non-Wea	ving (= nw)		
a (Exhibit 24 b (Exhibit 24		0.15 2.20			0035						
c (Exhibit 24		0.97		}	.30						
d (Exhibit 2		0.80			0.75						
Weaving intens		0.96)	0).47						
Weaving and no speeds, Si (mi/h		38.4	5	46	5.27						
Number of I Maximum n	anes required umber of lanes	s, Nw (max)			1.36 1.40	ie Ni Ni.	(== ==) = = == ==				
	If Nw < Nw	• •			f Service,		w (max) const	iairieu operati	UII		
	gment speed,		Denisity,	43.86	i Jei vice,	unu vap	Jacity				
	gment density,			22.65							
Level of ser		. d		C							
	base condition	n, c _h (pc/h)		6352							
	a 15-minute fl		ı/h)	6289							
	Capacity as a full-hour volume, c _h (veh/h)										
Notes											

a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

			FREEWA	Y WEAV	ING WOR	KSHEE	Τ				
General	Informat	ion			Site Info	rmation					
Analyst Agency/Con Date Perforr Analysis Tim	med	SEB CHA 02/14/ AM	12	Freeway/Dir of Travel Weaving Seg Location Jurisdiction Analysis Year			Exit 2' NYSD	outhbound W on to 2E of OOT Flyover	if		
Inputs											
Weaving nui Weaving seq Terrain	e-flow speed, s mber of lanes, g length, L (ft)	Ň	56 4 810 Lev	IVVEAVITIO TATIO. N				A 0.22 0.31			
Convers	sions to p	oc/h Unde	er Base C	ondition		r	1	1			
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f_{HV}	fp	V		
V_{o1}	3880	0.92	2	0	1.5	1.2	0.990	1.00	4259		
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0		
V _{w1}	770	0.92	2	0	1.5	1.2	0.990	1.00	845		
V_{w2}	350	0.92	2	0	1.5	1.2	0.990	1.00	384		
$V_{_{\mathrm{W}}}$	1	•	•	1229	V _{nw}		•	•	4259		
V	1				,	ı			5488		
Weaving	g and No	n-Weavin	g Speeds	3							
			Unconstr	4				trained			
o /Fubibit 0.4	1.()	Weaving			ving (i = nw)	Weavir	ng (i = w)	Non-Wea	ving (= nw)		
a (Exhibit 24 b (Exhibit 24		0.15 2.20			.00			-			
c (Exhibit 24		0.97			.30						
d (Exhibit 24		0.80			.75						
Weaving intensi	•	1.22)	0	.62						
Weaving and no speeds, Si (mi/h		35.7	4	43	3.40						
Number of la	anes required annes		ned operation,	Nw	1.26 1.40						
	▼ If Nw < Nw	,					v (max) constr	rained operat	ion		
					f Service,	and Cap	acity				
Weaving se	gment speed,	S (mi/h)		41.41							
	gment density,	D (pc/mi/ln)		33.13							
Level of serv		,		D							
	base condition	<u> </u>		6603 6538							
	Capacity as a 15-minute flow rate, c (veh/h)										
	a full-hour vol	ume, c _h (veh/h	1)	6015							
Notes											

a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

HCS+TM Version 5.3

HCS+TM Version 5.3

HCS+TM Version 5.3

	BASIC F	REEWAY SI	EGMENTS W	ORKSHEET		
S0 Free-Flow Speed FFS = 75 mith 70 mith 70 mith 65 mith 65 mith 60 mith 55 mith 60 mith 65 mith 60 mi	B C	450 (600) 1750 0 1600 200	00 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N FFS, L FFS, N FFS, L FFS, L	OS, V _p N, S, D OS, N V _p , S, D , AADT LOS, S, D OS, AADT N, S, D
General Information	Flow Rate (pc/h/lin	l.	Site Inform	mation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/14/12 AM			ection of Travel		
✓ Oper.(LOS)			Des.(N)		□ Pla	inning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K	2450	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.92 2 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustr	1.00		E _R		1.2	
f _p E _T	1.5		• •	T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs				d Adj and FFS		
Lane Width	12.0	ft		<u> </u>		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3		f_{ID}			mi/h
FFS (measured)	56.0	mi/h	f_N			mi/h
Base free-flow Speed, BFFS	00.0	mi/h	FFS		56.0	mi/h
LOS and Performance	Measures	,	Design (N))		
Operational (LOS) v _p = (V or DDHV) / (PHF x N x		pc/h/ln	<u>Design (N)</u> Design LOS)HV) / (PHF x N x 1	f _{HV} x	pc/h
f _p) S	56.0	mi/h	f _p)			μι/Π
$D = v_p / S$	16.0	pc/mi/ln	s			mi/h
LOS	16.0 B	ρο/πι/π	$D = v_p / S$			pc/mi/ln
				mber of Lanes, N		
Glossary			Factor Loc	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base from		f _p - Page 23-	23-8, 23-10, 23-11 12		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho	our volume			, v _p - Exhibits 23-2	., 20-0	ID - EXHIBIT 23-7
Copyright © 2007 University of Florida,	All Rights Reserved		HCS_TM	Nersion 5.3	G	enerated: 2/17/2012 1:33

HCS+TM Version 5.3

HCS+TM Version 5.3

HCS+TM Version 5.3

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
S0 Free-Flow Spzed FIS = 75 mith	B C C	150 (600 1750 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, vp FFS, LOS, vp FFS, LOS, N FFS, N, AAD FFS, LOS, AF FFS, LOS, N	v _p , S, D LOS, S, D
	Flow Rate (pc/h/lin		S SERVER			
General Information			Site Inform		0 11 1	
Analyst	SEB		Highway/Dire	ection of Travel	Southbound Exit 5 to Exit	
Agency or Company Date Performed	CHA 02/14/12		Jurisdiction		NYSDOT	4
Analysis Time Period	AM		Analysis Yea	r	2036 Flyove	-
Project Description Exit 4	,,			-		
✓ Oper.(LOS)			Des.(N)		☐ Plannin	g Data
Flow Inputs						
Volume, V	5850	veh/h	Peak-Hour Fa		0.92	
AADT		veh/day	%Trucks and	Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R		0	
Peak-Hr Direction Prop, D		1.0	General Terra		Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade %	Length Up/Down %	mi	
Calculate Flow Adjustr				оргосин 70		
f _p	1.00		E _R		1.2	
E _T	1.5			_T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs				d Adj and FFS		
Lane Width	12.0	ft		a Auj ana i i c	<u> </u>	
Rt-Shoulder Lat. Clearance	6.0	ft	f_{LW}			mi/h
Interchange Density	0.50	I/mi	f_LC			mi/h
- ·		1/1111	f_ID			mi/h
Number of Lanes, N	3	• 11	f _N			mi/h
FFS (measured)	56.0	mi/h	FFS		56.0	mi/h
Base free-flow Speed, BFFS		mi/h			30.0	1111/11
LOS and Performance	Measures		Design (N			
Operational (LOS)			<u>Design (N)</u> Design LOS			
$v_p = (V \text{ or DDHV}) / (PHF x N : f_p)$	x f _{HV} x 2141	pc/h/ln	$v_p = (V \text{ or } DD)$	PHV) / (PHF x N x	f _{HV} x	pc/h
S	53.0	mi/h	f _p)			
$D = v_p / S$	40.4	pc/mi/ln	S D · · · / C			mi/h
LOS	E		$D = v_p / S$			pc/mi/In
Ola a a a m -				mber of Lanes, N		
Glossary			Factor Loc	cation		
N - Number of lanes	S - Speed		E _R - Exhibits	23-8, 23-10	f, 1,	, - Exhibit 23-4
V - Hourly volume	D - Density		.,	23-8, 23-10, 23-1		- Exhibit 23-5
v _p - Flow rate	FFS - Free-flow		f _n - Page 23-			- Exhibit 23-6
LOS - Level of service	BFFS - Base fr	ee-flow speed	۲	, v _p - Exhibits 23-2		- Exhibit 23-7
DDHV - Directional design ho	our volume			, p = 1.11.51.6 20 2	., 'ID	
Copyright © 2007 University of Florida	All Dights Deconved		TA	1 Varaian 5.2	C	ed: 2/17/2012 1:34

HCS+TM Version 5.3

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
Washington (mill) 70 Free-Flow Spzed FIS = 75 mith 70 mith 7	B C C	150 (500) 1750 (1750) (2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AADT FFS, LOS, N	Output LOS, S, D N, S, D v _p , S, D LOS, S, D N, S, D v _p , S, D
General Information	Flow Rate (pc/h/lin)	ł į	Site Inform	mation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	CLD CHA 07/30/13 AM			ection of Travel	Northbound I-8 Exit 5 to Exit 6 NYSDOT 2036 Flyover	7
Oper.(LOS)			Des.(N)		Planning [Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	2650	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terr	l Buses, P _T	0.92 2 0 Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade %	Length Up/Down %	mi	
Calculate Flow Adjustr					4.0	
f _p	1.00 1.5		E _R	. 4) . D (5 4)1	1.2 0.990	
E _⊤ Speed Inputs	1.5			ed Adj and FFS		
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 4	ft ft I/mi	f _{LW} f _{LC} f _{ID} f _N	a Adjuna 11 c		mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS	56.0	mi/h mi/h	FFS		56.0	mi/h
LOS and Performance		1111/11	Design (N	1		
Operational (LOS) $V_p = (V \text{ or DDHV}) / (PHF \times N)$ f_p		pc/h/ln mi/h	<u>Design (N)</u> Design LOS))HV) / (PHF x N x ⁻	f _{HV} x	pc/h
D = v _p / S LOS	13.0 B	pc/mi/ln	S D = v _p / S Required Nu	mber of Lanes, N		mi/h pc/mi/ln
Glossary			Factor Loc	cation		
N - Number of Ianes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base freedour volume	-	f _p - Page 23-	23-8, 23-10, 23-1	1 f _{LC} - f _N - E	Exhibit 23-4 Exhibit 23-5 (xhibit 23-6 Exhibit 23-7
Copyright © 2007 University of Florida,	All Rights Reserved	-	HCSTIN	M Version 5.3	Generated	8/12/2013 3:31 PM

HCS+TM Version 5.3

Generated: 8/12/2013 3:31 PM

	BASIC F	REEWAY SE	EGMENTS V	VORKSHEET		
Store Free	By C.	150 (600) 1750 0 (600)		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AAD FFS, LOS, AA FFS, LOS, N	v _p , S, D LOS, S, D
0 400 800) 1200 Flow Rate (pc/h/lin	1600 200)	0 2400			
General Information			Site Infor	mation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	CLD CHA 07/30/13 AM		Highway/Dir From/To Jurisdiction Analysis Yea	ection of Travel	Southbound Exit 6 to Exit NYSDOT 2036 Flyover	5
✓ Oper.(LOS)			Des.(N)		☐ Plannin	g Data
Flow Inputs						<u> </u>
Volume, V AADT Peak-Hr Prop. of AADT, K	6150	veh/h veh/day	Peak-Hour F %Trucks and %RVs, P _R	d Buses, P _T	0.92 2 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Teri Grade %		Level mi	
Calculate Flow Adjustr					4.0	
f _p E _T	1.00 1.5		E _R	F 4) · D /F 4)]	1.2 0.990	
•	1.5		-	$E_{T} - 1) + P_{R}(E_{R} - 1)$		
Speed Inputs Lane Width	12.0	ft		ed Adj and FFS)	
Rt-Shoulder Lat. Clearance	6.0	ft	f_{LW}			mi/h
Interchange Density	0.50	I/mi	f_{LC}			mi/h
Number of Lanes, N	4	,,,,,	f_{ID}			mi/h
FFS (measured)	, 56.0	mi/h	f_N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance		1111/11	Design (N	1)		
Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF x N f_p)$		pc/h/ln	Design (N) Design LOS v _p = (V or DI	-	f _{HV} x	pc/h
S D=v _p /S LOS	56.0 30.1 D	mi/h pc/mi/ln	f_p) S $D = v_p / S$			mi/h pc/mi/ln
Glossam			Factor Lo	umber of Lanes, N		
Glossary N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base frour volume		E _R - Exhibits E _T - Exhibits f _p - Page 23	s23-8, 23-10 s 23-8, 23-10, 23-1	1 f _{LC}	- Exhibit 23-4 - Exhibit 23-5 - Exhibit 23-6 - Exhibit 23-7
Copyright © 2007 University of Florida,	. All Rights Reserved		HCS+T	TM Version 5.3	Generat	ed: 8/12/2013 3:31 F

HCS+TM Version 5.3

		MPS AND	RAMP JUNG	CTIONS W	<u>ORKSHE</u>	<u>EET</u>						
General Info	rmation			Site Infor	mation							
Analyst Agency or Compan Date Performed Analysis Time Peric	02/14	Jui Jui	Junction Ex- Jurisdiction N			Northbound I-87 Exit 2W On-Ramp NYSDOT 2036 Flyover						
Project Description				<u>, </u>			,					
nputs												
Jpstream Adj Ramı)	Terrain: Level							Downstrea Ramp	am Adj		
Yes O									☐ Yes	□ On		
□ No O	ff								™ No	Off		
L _{up} = 1100 ft						10.0			L _{down} =	ft		
$V_u = 690 \text{ veh/h}$ $S_{FF} = 56.0 \text{ mph}$ Sketch (show lanes, $L_{A'}$						10.0 mp)h		V _D =	veh/h		
Conversion	to pc/h Und	der Base C	Conditions									
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p		
reeway	3100	0.92	Level	2	0	0.	990	1.00	3	403		
Ramp	420	0.92	Level	2	0	0.	990	1.00	_	161		
UpStream	690	0.92	Level	2	0	0.	990	1.00	ļ	757		
DownStream		Morgo Aroas						Diverge Areas	<u> </u>			
Merge Areas Estimation of v ₁₂						Estimation of V ₁₂						
		(P.,,)						\/ (\) / \	/ \D			
$V_{12} = V_F (P_{FM})$ $L_{FO} = 894.10$ (Equation 25-2 or 25-3)						$V_{12} = V_R + (V_F - V_R)P_{FD}$ $L_{FO} =$ (Equation 25-8 or 25-9)						
EQ = P _{FM} =			on (Exhibit 25-5)		Lee							
¹ 12 =	2046		SIT (EXHIBIT 25-5)		P _{FD} = using Equation (Exhibit 25-12)							
			n 25-4 or 25-		$V_{12} = pc/h$							
or V _{av34}	5)	oom (Equatio	11 20 4 01 20		V_3 or V_{av34} pc/h (Equation 25-15 or 25-16) Is V_3 or $V_{av34} > 2,700$ pc/h? Yes No							
s V_3 or $V_{av34} > 2.7$	00 pc/h?	s 🗹 No										
s V ₃ or V _{av34} > 1.5	* V ₁₂ /2	s 🗹 No			Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No							
Yes,V _{12a} =	pc/h	(Equation 25	-8)		If Yes,V _{12a} = pc/h (Equation 25-18)							
Capacity Ch	ecks				Capacit	y Ch	ecks					
	Actual	Ca	ıpacity	LOS F?			Actual	C	apacity	LOS F		
					V _F			Exhibit 25	i-14			
V_{FO}	3864	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		Exhibit 25	5-14			
					V_R			Exhibit 2	5-3			
low Enterin	g Merge In	fluence A	rea	<u> </u>		terir	ng Dive	erge Influe	ence Are	 a		
	Actual		Desirable	Violation?			Actual	Max Des		Violation'		
V _{R12}	2507	Exhibit 25-7	4600:All	No	V ₁₂			Exhibit 25-14				
evel of Serv	vice Detern	nination (i	f not F)			Ser	vice D	eterminati	ion (if no	t F)		
	+ 0.00734 v _R + 0	<u>-</u>				D _R = 4	4.252 +	0.0086 V ₁₂ -	0.009 L _D			
) _R = 19.5 (p	c/mi/ln)				$D_R = (pc/mi/ln)$							
	ibit 25-4)					xhibit	25-4)					
Speed Deter					Speed L			on				
-	ribit 25-19)				 	xhibit 2						
=	(Exhibit 25-19)				1		ribit 25-19)				
	(Exhibit 25-19)						nibit 25-19					
	(Exhibit 25-14)				ľ		nibit 25-15					
5 = 52.2 mph	(FX[][NII /n-141											

<u> </u>			107 (1711)	S AND RAM									
General	Informa				Site Infor								
Analyst Agency or Co Date Perform	ned	SEB CHA 02/14	1 /12	Jı Jı	avel Northbound I-87 Exit 4 NB Off to ASR NYSDOT								
Analysis Time		AM		A	nalysis Year		2036 I	lyover					
Project Desci	ription Exit	4											
Inputs			Terrain: Leve							D	A -I:		
Upstream Ad Yes	J Ramp ☐ On		Terrain. Leve							Downstrea Ramp	m Aaj		
										✓ Yes	☐ On		
™ No	☐ Off									□ No	✓ Off		
L _{up} =	ft		S	_{FF} = 56.0 mph		S _{FR} = 4	0.0 m	oh		L _{down} =	2600 ft		
V _u =	veh/h			Sketch (show lanes, L_A , L_D , V_R , V_P)							190 veh/		
Convers	ion to p	c/h Und	der Base (Conditions									
(pc/h) V PHF Terrain %Truck					%Rv		f _{HV}	f _p	v = V/PHF x f _{HV} x				
Freeway		3500	0.92	Level	2	0		.990	1.00	3842			
Ramp		1040	0.82	Level	2	0	C	.990	1.00	1281			
UpStream		100	0.00	1 1			+	000	1.00	00	4		
DownStream	1	190	0.82 Merge Areas	Level	2	0		.990	1.00 Diverge Areas	23	4		
Estimati	on of v		ivier ge Areas			Estimation of V ₁₂							
	1. 0. 1	_	/D)						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\D			
$V_{12} = V_F (P_{FM})$						$V_{12} = V_R + (V_F - V_R)P_{FD}$							
L _{EQ} = (Equation 25-2 or 25-3)						L _{EQ} = 422.43 (Equation 25-8 or 25-9)							
P _{FM} = using Equation (Exhibit 25-5)						P_{FD} = 0.605 using Equation (Exhibit 25-12)							
V ₁₂ =		pc/h				$V_{12} = 2830 \text{ pc/h}$							
V ₃ or V _{av34}			(Equation 25	-4 or 25-5)		V_3 or V_{av34} 1012 pc/h (Equation 25-15 or 25-16 Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No							
Is V ₃ or V _{av3}	•												
Is V ₃ or V _{av3}						Is V ₃ or V _{av34} > 1.5 * V ₁₂ /2 Yes No							
If Yes,V _{12a} =			(Equation 25	-8)		If Yes,V _{12a} =			oc/h (Equation	25-18)			
Capacity	/ Checks		1		1	Capacity	y Cr	1			_		
		Actual	C	apacity	LOS F?	.,		Actual		pacity	LOS F		
						V _F		3842	Exhibit 25-1	4 6780	No		
V _{FO}			Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2561	Exhibit 25-1	4 6780	No		
						V _R		1281	Exhibit 25-3	3 2100	No		
Flow En	tering M	erge In	fluence A	rea		Flow En	teri	ng Dive	rge Influen	ce Area			
		Actual	 	Desirable	Violation?		Actual		Max Desiral		Violation		
V _{R12}			Exhibit 25-7			V ₁₂		2830	Exhibit 25-14	4400:All	No		
			nination (i						terminatio	•	<u>F)</u>		
$D_{R} = 5.47$	75 + 0.007	34 v _R + 0	0.0078 V ₁₂ -	0.00627 L _A		"	D _R =	4.252 + 0	0.0086 V ₁₂ - 0.	.009 L _D			
D _R = (pc/mi/ln)						$D_R = 22.3 \text{ (pc/mi/ln)}$							
	Exhibit 25						•	bit 25-4)					
Speed D	etermin	ation				Speed D)ete	rminati	on				
M _S = (E	xibit 25-19))				$D_s = 0.4$	478 (E	xhibit 25	-19)				
S _R = mp	h (Exhibit	25-19)				S _R = 49).3 mp	h (Exhibit	25-19)				
	h (Exhibit					$S_0 = 61$.4 mp	h (Exhibit	25-19)				
1	h (Exhibit					S = 52	2.0 mp	h (Exhibit	25-15)				
	07 University					HCS+ TM							

		TVAIII V	S AND RAM				· · ·						
General Infor	mation			Site Infor									
Analyst Agency or Company Date Performed Analysis Time Perioc	SEB CHA 02/14 AM	4/12	F J A	avel Northbound I-87 Exit 4 NB Off to Wolf NYSDOT 2036 Flyover									
Project Description				j			,						
Inputs													
Upstream Adj Ramp		Terrain: Level							Downstrea Ramp	m Adj			
Yes Or									☐ Yes	□ On			
I No I Of	•								✓ No	☐ Off			
L _{up} = 2600 ft						0.0	- h		L _{down} =	ft			
$V_u = 1040 \text{ veh/h}$ Sketch (show lanes, L _j						0.0 mp	on		V _D =	veh/h			
Conversion to	pc/h Und	der Base (Conditions										
(pc/h) V PHF Terrain %Truck							f_{HV}	f _p	v = V/PHF x f _{HV} x				
Freeway	2450	0.92	Level	2	0	0	.990	1.00	269	90			
Ramp	190	0.82	Level	2	0	0	.990	1.00	234				
UpStream	1040	0.82	Level	2	0	0	.990	1.00	128	31			
DownStream		Merge Areas			-			l Diverge Areas					
Estimation of		ivier ge Areas			Estimati	ion d		Diverge Areas					
		(D.)			20077740			., ., .,	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>				
	$V_{12} = V_F$		>					= V _R + (V _F - V					
L _{EQ} = (Equation 25-2 or 25-3)								Equation 25-8					
P _{FM} = using Equation (Exhibit 25-5)						P _{FD} = 0.682 using Equation (Exhibit 25-12)							
V ₁₂ =	pc/h				V ₁₂ = 1909 pc/h								
V ₃ or V _{av34}		(Equation 25	-4 or 25-5)		V_3 or V_{av34} 781 pc/h (Equation 25-15 or 25-16) Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No								
Is V_3 or $V_{av34} > 2,70$													
Is V_3 or $V_{av34} > 1.5$	· -				Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No								
If Yes,V _{12a} =		(Equation 25	-8)		If Yes,V _{12a} = pc/h (Equation 25-								
Capacity Che	cks				Capacity	y Ch							
	Actual	Ca	apacity	LOS F?			Actual		pacity	LOS F			
					V _F		2690	Exhibit 25-1	4 6780	No			
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2456	Exhibit 25-1	4 6780	No			
					V_R		234	Exhibit 25-3	3 2100	No			
Flow Entering	n Merge In	fluence A	rea		Flow En	terir	ng Dive	rge Influen	ce Area				
	Actual	1	Desirable	Violation?				Max Desiral		Violation			
V_{R12}		Exhibit 25-7			V ₁₂		1909	Exhibit 25-14	4400:All	No			
Level of Serv	ice Detern	nination (i	f not F)		Level of	Ser	vice De	terminatio	n (if not l	-)			
$D_R = 5.475 + 0.$	00734 v _R +	0.0078 V ₁₂ -	0.00627 L _A		[D _R = 4	4.252 + 0	.0086 V ₁₂ - 0.	.009 L _D				
$D_{R} = (pc/mi/ln)$						'.5 (pc	:/mi/ln)		_				
LOS = (Exhibit 25-4)						D _R = 17.5 (pc/mi/ln) LOS = B (Exhibit 25-4)							
Speed Determ					Speed D	•		on					
$M_S = $ (Exibit 25)							xhibit 25						
o .	ibit 25-19)				l "	,	n (Exhibit	*					
						-	n (Exhibit						
	ibit 25-19) ibit 25-14)				1.	-	n (Exhibit						

-		IVAIAIL	S AND RAM			1110							
	nformation			Site Infor									
Analyst Agency or Com Date Performed Analysis Time F	d 02/	IA /14/12	Ji Ji	ravel Southbound Exit 2W Off NYSDOT 2036 Flyover									
Project Descrip		ı		nalysis Year	2	2030 1	iyovei						
Inputs	tion Exit												
Upstream Adj R	Ramp	Terrain: Leve	I						Downstrea Ramp	m Adj			
□ Yes □	On								✓ Yes	☑ On			
☑ No ☐	Off								□ No	☐ Off			
L _{up} = f	ft	S	_{FF} = 56.0 mph		S _{FR} = 40	0.0 mp)h		down	1300 ft			
<u>u</u>	reh/h		Sketch (show lanes, $L_{A'}L_{D'}V_{R'}V_{f}$)							360 veh/h			
Conversion	on to pc/h Ui	nder Base (Conditions		1								
(pc/h) V PHF Terrain %Truck					%Rv	L	f _{HV}	f _p	v = V/PHF x f _{HV} x				
Freeway	5450	0.92	Level	2	0	0	990	1.00	5983				
Ramp	770	0.92	Level	2	0	0.990 1.00		1.00	845				
UpStream					_								
DownStream	360	0.92	Level	2	0	0	990	1.00 Diverge Areas	39	5			
Estimatio	n of v	Merge Areas			Estimati	on c		Diverge Areas					
Louinado					LStillati	011							
		/ _F (P _{FM})						= V _R + (V _F - V _I					
L _{EQ} =		uation 25-2 or			L _{EQ} = (Equation 25-8 or 25-9)								
P _{FM} = using Equation (Exhibit 25-5)						P_{FD} = 0.572 using Equation (Exhibit 25-12)							
V ₁₂ =	pc/l	า			V ₁₂ = 3782 pc/h								
V_3 or V_{av34}	pc/l	h (Equation 25	5-4 or 25-5)		V_3 or V_{av34} 2201 pc/h (Equation 25-15 or 25-16								
Is V ₃ or V _{av34} >	> 2,700 pc/h?	es □ No			Is V ₃ or V _{av3}	₁₄ > 2,7	'00 pc/h?	Tyes ✓ No					
Is V ₃ or V _{av34} >	> 1.5 * V ₁₂ /2	es □ No			Is V ₃ or V _{av3}	₄ > 1.5	* V ₁₂ /2	Tyes ✓ No					
If Yes,V _{12a} =	pc/l	n (Equation 25	5-8)		If Yes, V _{12a} = pc/h (Equation 25-18)								
Capacity	Checks				Capacity		ecks						
	Actual	С	apacity	LOS F?			Actual	Ca	pacity	LOS F			
		i i	· · · ·	ĺ	V _F		5983	Exhibit 25-1	· ·	No			
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _D	5138	Exhibit 25-1		No			
1 10		Extribit 20 7			V _R	·ĸ	845	Exhibit 25-3	-	_			
					-					No			
riow Ente	ring Merge			Violation?	riow En	1		rge Influen		Violation			
\/	Actual	Exhibit 25-7	Desirable	Violation?	W	Actual 3782		Max Desirable Exhibit 25-14 4400:All					
V _{R12}	Yorking Date:		if not []	<u> </u>	V ₁₂					No			
	Service Deter							terminatio		<u> </u>			
	+ 0.00734 v _R	+ 0.0078 V ₁₂ -	0.00627 L _A					0.0086 V ₁₂ - 0.	009 LD				
D _R = (pc/mi/ln)						$D_R = 34.1 \text{ (pc/mi/ln)}$							
`	xhibit 25-4)					•	bit 25-4)						
Speed De	termination				Speed D								
M _S = (Exil	bit 25-19)				. "	•	xhibit 25	*					
S _R = mph	(Exhibit 25-19)				1	.9 mpł	(Exhibit	25-19)					
	(Exhibit 25-19)				$S_0 = 56$.7 mpł	(Exhibit	25-19)					
	(Exhibit 25-14)				S = 52.	.2 mpł	(Exhibit	25-15)					
								· · · · · · · · · · · · · · · · · · ·					

•		IXAIIII	S AND RAM										
General In	formation			Site Infor									
Analyst Agency or Com Date Performed Analysis Time F	02	HA /14/12	F Ji Ji A	avel Southbound I-87 Exit 4 SB Off NYSDOT 2036 Flyover									
Project Descript	tion Exit 4			•									
Inputs													
Upstream Adj R	•	Terrain: Leve	·l						Downstrea Ramp	m Adj			
	On								✓ Yes	☑ On			
✓ No	Off								□ No	☐ Off			
L _{up} = f	t		_{FF} = 56.0 mph		S - 1	0 0 mr	nh		L _{down} =	1585 ft			
u	eh/h		$S_{FF} = 56.0 \text{ mph}$ $S_{FR} = 40.0 \text{ mph}$ Sketch (show lanes, $L_{A'}L_{D'}V_{R'}V_{f}$)							700 veh/			
Conversion	on to pc/h U	nder Base	Conditions										
(pc/h) V PHF Terrain %Truck					%Rv		f_{HV}	f _p	v = V/PHF x f _{HV} x				
Freeway	5850	0.92	Level	2	0	0	.990	1.00	6422				
Ramp	730	0.92	Level	2	0	0	.990	1.00	801				
UpStream DownStream	700	0.93	Lovel	5	0	1	.976	1.00	77	າ			
Downsteam	700	Merge Areas	Level	5	0	0		L 1.00 Diverge Areas	11				
Estimation	n of v	Werge Areas			Estimation of v ₁₂								
		V _F (P _{FM})						\/ . (\/ \/	\D				
h	$V_{12} = V_R + (V_F - V_R)P_{FD}$ $L_{FO} = $ (Equation 25-8 or 25-9)												
L _{EQ} = (Equation 25-2 or 25-3)						1 2							
P _{FM} = using Equation (Exhibit 25-5)						P_{FD} = 0.563 using Equation (Exhibit 25-12) V_{12} = 3963 pc/h							
V ₁₂ =	pc/		. 4 05 5)		V ₁₂ =								
V ₃ or V _{av34}		h (Equation 25	o-4 or 25-5)		V_3 or V_{av34} 2459 pc/h (Equation 25-15 or 25-16 Is V_3 or $V_{av34} > 2,700$ pc/h? \checkmark Yes \checkmark No								
0 4,0,1	2,700 pc/h? ∏ γ												
	· 1.5 * V ₁₂ /2		. 0)		Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No If Yes, $V_{12a} = pc/h$ (Equation 25-18)								
If Yes,V _{12a} =		h (Equation 25	9-8)					oc/n (Equation	1 25-18)				
Capacity (T T	1 .		1	Capacity	y Ch		1 .		Linns			
	Actual		apacity	LOS F?	.,,		Actual		pacity	LOS F			
					V _F		6422	Exhibit 25-1	-	No			
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	5621	Exhibit 25-1	4 6780	No			
					V _R		801	Exhibit 25-3	2100	No			
Flow Ente	ring Merge	Influence A	rea		Flow En	terir	ng Dive	rge Influen	ce Area				
	Actual	_	Desirable	Violation?		Actual		Max Desirable		Violation			
V _{R12}		Exhibit 25-7			V ₁₂		3963	Exhibit 25-14	4400:All	No			
	ervice Dete	•			Level of	Ser	vice De	terminatio	n (if not l	=)			
$D_{R} = 5.475$	+ 0.00734 v _R	+ 0.0078 V ₁₂ -	0.00627 L _A			$D_R = \frac{1}{4}$	4.252 + 0	.0086 V ₁₂ - 0.	009 L _D				
D _R = (pc/mi/ln)						3.9 (pc	:/mi/ln)						
LOS = (Exhibit 25-4)						D _R = 28.9 (pc/mi/ln) LOS = D (Exhibit 25-4)							
Speed De	termination				Speed D	<u> Deter</u>	mination at its	on					
M _S = (Exil	bit 25-19)				D _S = 0.4	435 (E	xhibit 25	-19)					
, and the second	(Exhibit 25-19)					.9 mpl	n (Exhibit	25-19)					
	(Exhibit 25-19)				1	-	n (Exhibit						
T	(Exhibit 25-14)				1.	-	` n (Exhibit						
17.11	/				1	. المار	,	,					

		MPS AND	RAMP JUN			<u> </u>			
General Infor	mation			Site Infor	mation				
Analyst Agency or Company Date Performed Analysis Time Perioc	02/1		Jı Jı	reeway/Dir of Tr unction urisdiction		Southbound I-8 Exit 4 SB On-R NYSDOT			
Project Description			Α.	nalysis Year		2036 Flyover			
nputs	LXII T								
Jpstream Adj Ramp		Terrain: Level						Downstre	eam Adi
✓ Yes	1							Ramp Yes	□ On
■ No Of	f							✓ No	Off
- _{up} = 1585	ft							L _{down} =	ft
$v_{\rm u} = 730 \text{ v}$		S	_F = 56.0 mph Sketch (show lanes, L _A ,	$S_{FR} = 4$ $L_{D_t}V_{D_t}V_{t}$	0.0 mph		V _D =	veh/h
Conversion to	o pc/h Und	der Base C		^	D K I				
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p
Freeway	5100	0.92	Level	2	0	0.990	1.00		5599
Ramp	700	0.93	Level	5	0	0.976	1.00		772
JpStream	730	0.92	Level	2	0	0.990	1.00		801
DownStream		Merge Areas					Diverge Are	20	
Estimation of		ivier ge Areas			Estimat	ion of v ₁₂	Diverge Are	as	
		(D)							
	$V_{12} = V_F$	• • • • • • • • • • • • • • • • • • • •	25.0 25.0			V ₁₂	$= V_R + (V_F -$	$V_R)P_{FD}$	
EQ =		Equation 2			L _{EQ} =		(Equation	25-8 or 25-	9)
r _{FM} =			on (Exhibit 25-5))	P _{FD} =		using Equ	ation (Exhibi	t 25-12)
12 =	3420	•	- 05 4 05		V ₁₂ =		pc/h		
or V _{av34}	5)	pc/h (Equatio	n 25-4 or 25-		V_3 or V_{av34}			on 25-15 or 2	5-16)
s V ₃ or V _{av34} > 2,70		s 🗹 No				$_{34} > 2,700 \text{ pc/h}^2$			
s V ₃ or V _{av34} > 1.5	V ₁₂ /2	s 🗹 No				$_{34} > 1.5 * V_{12}/2$			
Yes,V _{12a} =	pc/h	(Equation 25-	·8)		If Yes,V _{12a} =	:	pc/h (Equa	ation 25-18))
Capacity Che	cks				Capacit	y Checks			
•	Actual	Ca	pacity	LOS F?		Actu	al	Capacity	LOS F
					V _F		Exhibit 2	25-14	
V_{FO}	6371	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhibit 2	25-14	
					V _R		Exhibit	25-3	
Flow Entering	a Merae In	fluence A	rea			tering Div	erae Influ	ience Are	<u></u>
	Actual)esirable	Violation?		Actual		esirable	Violation?
V _{R12}	4192	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-1	i i	
Level of Serv	ice Deterr	nination (in	not F)			Service L			ot F)
		0.0078 V ₁₂ - 0.00			1	D _R = 4.252 +			<u>, </u>
) _R = 29.6 (pc		14				c/mi/ln)	12	J	
OS = D (Exhib	oit 25-4)					xhibit 25-4)			
Speed Detern					<u> </u>	Determina	tion		
M _S = 0.474 (Exi						xhibit 25-19)			
-	(Exhibit 25-19)					ph (Exhibit 25-1	9)		
	(Exhibit 25-19)				1	ph (Exhibit 25-1			
	(Exhibit 25-14)				ľ	ph (Exhibit 25 1 ph (Exhibit 25-1	•		
S = 49.6 mph (

		AMPS AND	RAMP JUNG			<u> </u>				
General In:	formation			Site Infor	mation					
Analyst Agency or Comp Date Performed Analysis Time Pe	02	HA /14/12	Ju Ju	eeway/Dir of Tr nction risdiction nalysis Year	E N	Southbound I- Exit 5 SB On-F NYSDOT 2036 Flyover				
Project Descripti	on Exit 4									
Inputs		<u> </u>								
Jpstream Adj Ra	•	Terrain: Leve						Downstr Ramp	eam Adj	
	On							✓ Yes	□ On	
	Off							□ No	✓ Off	
$J_{u} = ft$ $J_{u} = ve$	h/h	S	FF = 56.0 mph	show longs I	S _{FR} = 40	0.0 mph		L _{down} = V _D =	4700 ft 730 veh/h	
		ndor Paca (show lanes, L _A	L _D , V _R , V _f)					
	1 to pc/11 0	nder Base (Г	T	Ι.	Τ.			
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	IF x f _{HV} x f _p	
Freeway	5400	0.92	Level	2	0	0.990	1.00		5928	
Ramp	470	0.93	Level	3	0	0.985	1.00		513	
UpStream DownStream	730	0.92	Level	2	0	0.990	1.00	-	801	
Downsteam	730	Merge Areas	Level	2	0	0.990	Diverge A	Areas	801	
					Estimati	Estimation of v ₁₂				
		V _F (P _{FM})								
_			25 2 or 25 2)			V ₁₂		' _F - V _R)P _{FD}		
-EQ =		.75 (Equation			L _{EQ} =			on 25-8 or 25		
P _{FM} =			on (Exhibit 25-5)		P _{FD} =		_	quation (Exhib	it 25-12)	
/ ₁₂ =		pc/h	05 4 05		V ₁₂ =		pc/h			
V_3 or V_{av34}	2289 5)	pc/h (Equation	on 25-4 or 25-		V_3 or V_{av34}		pc/h (Eq	uation 25-15 or 2	25-16)	
Is V ₂ or V ₂₄₂₄ >	2,700 pc/h?	∕es ☑ No			Is V ₃ or V _{av3}	4 > 2,700 pc/h	? ☐ Yes	☐ No		
	1.5 * V ₁₂ /2				Is V ₃ or V _{av3}	₄ > 1.5 * V ₁₂ /2	☐ Yes	☐ No		
f Yes,V _{12a} =	· -	h (Equation 25	-8)		If Yes,V _{12a} =		pc/h (E	quation 25-18)	
Capacity C		(_qua.io	3)		Capacity	/ Checks				
supuony c	Actual	C	apacity	LOS F?	Joupaon	Actu	ıal	Capacity	LOS F	
		i			V _F	- 133		bit 25-14		
V_{FO}	6441	Exhibit 25-7		No	$V_{FO} = V_{F}$	· \/_		bit 25-14		
* FO	0441	LAIIIDIC 25-7		INO		*R			_	
	· • • • • • • • • • • • • • • • • •	/ f/ A			V _R	(bit 25-3		
-iow Enter	Actual	Influence A	rea Desirable	Violation?	FIOW En	Actual		fluence Are x Desirable	Violation?	
V	4152	Exhibit 25-7	4600:All	No No	V ₁₂	Aciuai	Exhibit 2		violation?	
V _{R12}		rmination (INU		Service		nation (if n	ot E)	
		+ 0.0078 V ₁₂ - 0.0						/ ₁₂ - 0.009 L _D	ur)	
• • • • • • • • • • • • • • • • • • • •	(pc/mi/ln)	10.0070 12 - 0.0	A A				- U.UUOU \	12 - 0.009 LD		
IX	(pc/m/m) (xhibit 25-4)					c/mi/ln) xhibit 25-4)				
	ermination				`	etermina	tion			
•						(hibit 25-19)	aon			
3	(Exibit 25-19)	2)					10)			
••	ph (Exhibit 25-19				I ''	h (Exhibit 25-				
i – 10 6 m	ph (Exhibit 25-19	7)			$S_0 = mp$	h (Exhibit 25-	19)			
U	ph (Exhibit 25-1	-			S = mp	h (Exhibit 25-	4.5\			

			FREEWA	Y WEAV	ING WOR	RKSHEE	T			
Genera	l Informat	ion			Site Info	rmation				
Analyst Agency/Co Date Perfor Analysis Ti	med	SEB CHA 02/14/ AM	12		Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	g Location	Exit 2 NYSD	I-87 Northbound Exit 2E on to 2W off NYSDOT 2036 Flyover		
Inputs										
Weaving no	ee-flow speed, and spe	11	56 4 815 Leve		Weaving type Volume ratio Weaving ratio	, VR		27 32		
Conver	sions to p	c/h Unde	r Base C	ondition						
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f _{HV}	fp	٧	
V_{o1}	2780	0.92	2	0	1.5	1.2	0.990	1.00	3051	
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0	
V_{w1}	690	0.92	2	0	1.5	1.2	0.990	1.00	757	
V_{w2}	320	0.92	2	0	1.5	1.2	0.990	1.00	351	
$V_{\rm w}$			•	1108	V _{nw}		•	•	3051	
V	7					1			4159	
Weavin	g and No	n-Weavin	g Speeds	S						
			Unconstr	4				trained		
o /Evhibit 2	4 ()	Weaving 0.15	<u> </u>		ving (i = nw)	Weavir	ng (i = w)	Non-Wea	ving (= nw)	
a (Exhibit 2 b (Exhibit 2		2.20			035 00					
c (Exhibit 2		0.97			30			 		
d (Exhibit 2		0.80)	<u> </u>	75					
Weaving intensive		1.00			49					
speeds, Si (mi/	h)	38.0			.81					
Maximum r	lanes required number of lanes If Nw < Nw	s, Nw (max) (max) unconst	rained operati	ion			v (max) constr	rained operati	on	
Weavin	g Segmer	nt Speed,	Density,		Service,	and Cap	acity			
	egment speed,			43.44						
	egment density	, D (pc/mi/ln)		23.94						
Level of se		, "		С						
	base condition		11.3	6375						
	a 15-minute fl			6312						
	a full-hour vol	ume, c _h (veh/h)	5807						
Notes										

a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

			FREEWA	Y WEAV	/ING WOR	KSHEE	Т			
Genera	l Informat	ion			Site Info	rmation				
Analyst Agency/Cor Date Perfor Analysis Tir	med	SEB CHA 02/14/ AM	12		Freeway/Dir of Weaving Seg Jurisdiction Analysis Yea	Location	Exit 2 NYSE	I-87 Southbound Exit 2W on to 2E off NYSDOT 2036 Flyover		
Inputs										
Weaving nu Weaving se Terrain	ee-flow speed, and spe	N	56 4 810 Lev	el	Weaving type Volume ratio, Weaving ratio	VR		A 0.2 0.3		
Conver	sions to p	c/h Unde	r Base C	onditio			1	1	1	
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f_{HV}	fp	V	
V_{o1}	3910	0.92	2	0	1.5	1.2	0.990	1.00	4292	
V_{02}	0	0.92	2	0	1.5	1.2	0.990	1.00	0	
V _{w1}	790	0.92	2	0	1.5	1.2	0.990	1.00	867	
V_{w2}	360	0.92	2	0	1.5	1.2	0.990	1.00	395	
V _w	1			1262	V _{nw}			,	4292	
V									5554	
Weavin	g and No	n-Weavin	g Speeds	3						
			Unconstr					trained		
- /F. H.H. 1. 0	4 ()	Weaving			aving (i = nw)	Weavi	ng (i = w)	Non-Wea	ving (= nw)	
a (Exhibit 24 b (Exhibit 24		0.15 2.20		1	0035					
c (Exhibit 24		0.97		!	.30					
d (Exhibit 2		0.80			0.75					
Weaving intens		1.24		C	0.64					
Weaving and no speeds, Si (mi/l		35.5	4	43	3.11					
Number of I Maximum n	anes required umber of lanes If Nw < Nw	s, Nw (max)			1.27 1.40	if Nw > N	v (max) consti	rained aperati	on	
		<u> </u>	<u> </u>		f Service,			ameu operati	UII	
	gment speed,		Definity,	41.12	i Joi viog,	una vap	Jaoney			
	gment density,			33.77						
Level of ser		ч /		D						
Capacity of	Capacity of base condition, c _h (pc/h)			6585						
	a 15-minute fl	<u> </u>	ı/h)	6520						
	a full-hour vol			5998						
Notes		.1								

a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

HCS+TM Version 5.3

HCS+TM Version 5.3

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 migh 70 mish 65 mish 60 mish 55 mish 60 mi	B C	150 (600 1750 1750 1750 1750 1750 1750 1750 17	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, LO FFS, LO	S, V _p N, S, D S, N V _p , S, D AADT LOS, S, D S, AADT N, S, D
General Information	Flow Rate (pc/h/lin)	Site Inforn	nation		
Analyst Agency or Company Date Performed Analysis Time Period	SEB CHA 02/14/12 AM			ection of Travel	Southboo Exit 4 off NYSDOT 2046 Fly	to Exit 4 on
Project Description Exit 4 Oper.(LOS)		П	Des.(N)		□ Plar	nning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	5100	veh/h veh/day veh/h	Peak-Hour Fa %Trucks and %RVs, P _R General Terra Grade %	Buses, P _T	0.92 2 0 Level mi	
Driver type adjustment Calculate Flow Adjustr	1.00 nents	Verifit		Up/Down %		
f _p	1.00		E _R		1.2	
E _T	1.5		• •	T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs			Calc Spee	d Adj and FFS	3	
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 3 56.0	ft ft I/mi mi/h	f_{LW} f_{LC} f_{ID}			mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times N \times f_p)$ S $D = v_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	f_p) S D = v_p / S) OHV) / (PHF x N x mber of Lanes, N	f _{HV} x	pc/h mi/h pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fro		E _R - Exhibits2 E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{ID} - Exhibit 23-7
Copyright © 2007 University of Florida,				Nersion 5.3		nerated: 2/17/2012 1:52

HCS+TM Version 5.3

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
Wassender Car Speed FFS = 75 mith 70 mith 70 mith 65 mith 60 mith 55 mith 55 mith 60 mith 65 m	B. C.	1450 1600 1750 1600 200	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, V _p FFS, LOS, V FFS, LOS, I FFS, N, AA FFS, LOS, I	v _p , S, D DT LOS, S, D AADT N, S, D
General Information	Those Note (permis	"7	Site Infori	mation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/14/12 PM		-	ection of Travel	Northbound Exit 2 to Ex NYSDOT 2016 Flyov	it 4
✓ Oper.(LOS)			Des.(N)		☐ Planni	ng Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	5500	veh/h veh/day veh/h	Peak-Hour F %Trucks and %RVs, P _R General Terr Grade %	d Buses, P _T rain: Length	0.86 2 0 Level mi	
Driver type adjustment Calculate Flow Adjustr	1.00			Up/Down %		
<u> </u>	1.00		E _R		1.2	
f _p E _T	1.50		• •	= 1)	0.990	
Speed Inputs	1.5			ed Adj and FFS		
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 3 56.0	ft ft I/mi mi/h	f _{LW} f _{LC} f _{ID} f _N FFS	a rajuna i i e	56.0	mi/h mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS		mi/h				
LOS and Performance Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times N)$ f_p S $D = v_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	f_p) S D = v_p / S	DHV) / (PHF x N x the sum of the	f _{HV} x	pc/h mi/h pc/mi/ln
Glossary			Factor Lo			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base for		E_R - Exhibits E_T - Exhibits f_p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1	1 f _L	_W - Exhibit 23-4 _C - Exhibit 23-5 _A - Exhibit 23-6 _D - Exhibit 23-7
Copyright © 2007 University of Florida,			T	M Version 5.3	Gener	ated: 2/15/2012 2:30

HCS+TM Version 5.3

Generated: 2/15/2012 2:30 PM

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
80 Free-Flow Spzed FFS = 75 mith 70 mith 70 mith 65 mith 55 mith 55 mith 65 mi	B C C	150 (500 1750 1750 1750 1750 1750 1750 1750 1	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	Input FFS, N, Vp FFS, LOS, FFS, LOS, FFS, N, AA FFS, LOS, FFS, LOS,	N V _P , S, D DT LOS, S, D AADT N, S, D
General Information	Flow Rate (pc/h/lin)	Site Inform	nation		
Analyst	SEB			ection of Travel	Southbound	d I-87
Agency or Company	CHA		From/To	cuon or maver	Exit 4 to Ex	
Date Performed	02/14/12		Jurisdiction		NYSDOT	
Analysis Time Period	PM		Analysis Yea	r	2016 Flyov	er
Project Description Exit 4						
Oper.(LOS)			Des.(N)		☐ Planni	ng Data
Flow Inputs						
Volume, V	3900	veh/h	Peak-Hour Fa		0.92	
AADT		veh/day	%Trucks and	Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R		0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terra		Level	
Driver type adjustment	1.00	ven/n	Grade %	Length Up/Down %	mi	
Calculate Flow Adjustr				оргин 70		
f _p	1.00		E _R		1.2	
E _T	1.5			1) . D /E 1)]	0.990	
	1.5			$T - 1 + P_R(E_R - 1)$		
Speed Inputs	40.0		Caic Spee	d Adj and FFS)	
Lane Width	12.0	ft	f_{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
Interchange Density	0.50	l/mi	f _{ID}			mi/h
Number of Lanes, N	3		f			mi/h
FFS (measured)	56.0	mi/h	'N			
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N))		
On anational (LOC)			Design (N)			
Operational (LOS)	v f v		Design LOS			
$v_p = (V \text{ or DDHV}) / (PHF x N)$	1427 1427	pc/h/ln	$v_p = (V \text{ or } DD)$	HV) / (PHF x N x	f _{HV} x	//-
f _p)		. /-	f _p)			pc/h
S	56.0	mi/h	s			mi/h
$D = v_p / S$	25.5	pc/mi/ln	$D = v_p / S$			pc/mi/ln
LOS	С		F	mber of Lanes, N		I- 20
 Glossary			Factor Loc			
N - Number of lanes	S - Speed		1 43131 200			
V - Hourly volume	D - Density		E _R - Exhibits2	23-8, 23-10	f _l	_{.W} - Exhibit 23-4
I		, sneed	E_T - Exhibits	23-8, 23-10, 23-1	1 f _l	_{-C} - Exhibit 23-5
v _p - Flow rate	FFS - Free-flow		f _p - Page 23-	12	-	- Exhibit 23-6
LOS - Level of service	BFFS - Base fr	ee-flow speed	P	, v _p - Exhibits 23-2		D - Exhibit 23-7
DDHV - Directional design ho	our volume			<u>'</u>	I	
Copyright © 2007 University of Florida,	, All Rights Reserved		HCSLTN	M Version 5.3	Gener	rated: 2/15/2012 2:31

HCS+TM Version 5.3

Generated: 2/15/2012 2:31 PM

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 migh 70 mish 65 mish 60 mish 55 mish 60 mi	B C C	150 (600 1750 1750 1750 1750 1750 1750 1750 17	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, LO FFS, LO	S, v _p N, S, D S, N v _p , S, D AADT LOS, S, D S, AADT N, S, D
General Information	Flow Rate (pc/h/lin)	Site Inforn	nation		
Analyst Agency or Company Date Performed Analysis Time Period	SEB CHA 02/14/12 PM			ction of Travel	Northbou Exit 4 off NYSDOT 2016 Fly	to Exit 4 on
Project Description Exit 4 Oper.(LOS)		П	Des.(N)		□ Plar	nning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	4300	veh/h veh/day veh/h	Peak-Hour Fa %Trucks and %RVs, P _R General Terra Grade %	Buses, P _T	0.86 2 0 Level mi	
Driver type adjustment Calculate Flow Adjustr	1.00 nents	Venin		Length Up/Down %	1111	
fp	1.00		E _R		1.2	
E _T	1.5		f _{HV} = 1/[1+P _T (E	T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs			Calc Spee	d Adj and FFS	6	
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 3 56.0	ft ft I/mi mi/h	f_{LW} f_{LC} f_{ID}			mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N))		
Operational (LOS) V _p = (V or DDHV) / (PHF x N : f _p) S	56.0	pc/h/ln mi/h	<u>Design (N)</u> Design LOS	HV) / (PHF x N x	f _{HV} x	pc/h mi/h
D = v _p / S LOS	30.1 D	pc/mi/ln	D = v _p / S Required Nu	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base free		f _p - Page 23-	23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho				Version 5.3		nerated: 2/15/2012 2:31

HCS+TM Version 5.3

Generated: 2/15/2012 2:31 PM

HCS+TM Version 5.3

Generated: 2/17/2012 3:27 PM

HCS+TM Version 5.3

Generated: 2/15/2012 2:32 PM

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
Wassengle Passengle C C	1600 200	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	Input FFS, N, vp FFS, LOS, vp FFS, LOS, N FFS, N, AADT FFS, LOS, AA FFS, LOS, N		
General Information	now wate (pontini	V.	Site Inform	mation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/14/12 PM			ection of Travel	Northbound I Exit 4 to Exit NYSDOT 2016 Flyover	
Oper.(LOS)			Des.(N)		☐ Planning	Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	5900	veh/h veh/day veh/h	Peak-Hour Fa %Trucks and %RVs, P _R General Terra Grade %	I Buses, P _T ain: Length	0.86 2 0 Level mi	
Driver type adjustment Calculate Flow Adjustr	1.00 nents			Up/Down %		
f _p	1.00		E _R		1.2	
E _T	1.5			T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs				d Adj and FFS		
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 4 56.0	ft ft I/mi mi/h	f _{LW} f _{LC} f _{ID} f _N FFS		56.0	mi/h mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS	Magaziras	mi/h		\		
LOS and Performance Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $f_p)$ S $D = v_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	f_p) S D = v_p / S	DHV) / (PHF x N x mber of Lanes, N	f _{HV} x	pc/h mi/h pc/mi/ln
Glossary			Factor Lo			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fr		E _R - Exhibits E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1	1 f _{LC}	- Exhibit 23-4 - Exhibit 23-5 Exhibit 23-6 - Exhibit 23-7
Copyright © 2007 University of Florida,				M Version 5.3	0	ed: 2/15/2012 2:32 l

HCS+TM Version 5.3

Generated: 2/15/2012 2:32 PM

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
80 Froe-Flow Speed FFS = 75 mith 70 mith 70 mith 65 mith 55 mith 55 mith 60 mith 75 mi	B C C S	1450 (600 1750 0 1600 1600 2001	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v FFS, LOS FFS, LOS FFS, LOS FFS, LOS	, v _p N, S, D , N v _p , S, D , ADT LOS, S, D , AADT N, S, D
General Information	Flow Rate (pc/h/lir	1)	Site Inform	nation		
Analyst	SEB			ction of Travel	Southbou	nd I-87
Agency or Company	CHA		From/To	ollon of maron	Exit 5 to E	
Date Performed	02/14/12		Jurisdiction		NYSDOT	
Analysis Time Period	PM		Analysis Year		2016 Flyd	ver
Project Description Exit 4						
Oper.(LOS)			Des.(N)		☐ Plan	ning Data
Flow Inputs Volume, V	3650	veh/h	Peak-Hour Fa	otor DUE	0.92	
AADT	3030	ven/n veh/day	%Trucks and	•	2	
Peak-Hr Prop. of AADT, K		vorwaay	%RVs, P _R	2 4 6 6 6 7 1	0	
Peak-Hr Direction Prop, D			General Terra	nin:	Level	
DDHV = AADT x K x D		veh/h	Grade %	Length	mi	
Driver type adjustment	1.00		l	Jp/Down %		
Calculate Flow Adjustr	nents					
f_p	1.00		E_R		1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T)]$	1) + P _R (E _R - 1)]	0.990	
Speed Inputs			Calc Speed	d Adj and FFS	}	
Lane Width	12.0	ft		-		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3		f_ID			mi/h
FFS (measured)	56.0	mi/h	f_N			mi/h
Base free-flow Speed, BFFS	00.0	mi/h	FFS		56.0	mi/h
LOS and Performance	Moseuros	1111/11	Dosign (N)			
LOS and Feriormance	Weasures		Design (N) Design (N)			
Operational (LOS) v _p = (V or DDHV) / (PHF x N	x f _{HV} x		Design LOS			
f _p)	^{nv} 1336	pc/h/ln	. 5.	HV) / (PHF x N x	r _{HV} x	pc/h
S	56.0	mi/h	f _p)			- "
$D = v_p / S$	23.9	pc/mi/ln	S			mi/h
LOS	С	·	$D = v_p / S$			pc/mi/ln
	-			nber of Lanes, N		
Glossary			Factor Loc	ation		
N - Number of lanes	S - Speed		E _R - Exhibits2	23-8, 23-10		f _{LW} - Exhibit 23-4
V - Hourly volume	D - Density		1.7	23-8, 23-10, 23-1 ⁻¹		f _{LC} - Exhibit 23-5
v _p - Flow rate	FFS - Free-flov	v speed	f _p - Page 23-1			f _N - Exhibit 23-6
LOS - Level of service	BFFS - Base fr	ee-flow speed	F-	v _p - Exhibits 23-2		f _{ID} - Exhibit 23-7
DDHV - Directional design ho	our volume			• _р Елііріі 20-2	_,	ID EXHIBIT 20-1
Copyright © 2007 University of Florida,	All Pights Pasanyad		TM	Version 5.3	Ger	erated: 2/15/2012 2:32

HCS+TM Version 5.3

Generated: 2/15/2012 2:32 PM

	BASIC FI	REEWAY SE	GMENTS W	ORKSHEET		
Free-Flow Speed FFS = 75 mith 70	B C C	50 (600 1750 E	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AADT FFS, LOS, N	Output LOS, S, D N, S, D V _p , S, D LOS, S, D N, S, D V _p , S, D
General Information	Flow Rate (pc/h/lin)	3	Site Inform	nation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	CLD CHA 07/30/13 PM			ection of Travel	Northbound I-87 Exit 5 to Exit 6 NYSDOT 2016 Flyover	7
✓ Oper.(LOS)			Des.(N)		☐ Planning □	ata
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	6150	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra	Buses, P _T	0.86 2 0 Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade %	Length Up/Down %	mi	
Calculate Flow Adjustr					10	
f _p	1.00 1.5		E _R	4) . D /E 4)1	1.2 0.990	
E _⊤ Speed Inputs	1.5			_T - 1) + P _R (E _R - 1)] d Adj and FFS		
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 4 56.0	ft ft I/mi mi/h	f _{LW} f _{LC} f _{ID} f _N	a Aaj ana 11 o		mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS	30.0	mi/h	FFS		56.0	mi/h
LOS and Performance	Measures	111//11	Design (N)	<u> </u>		
Operational (LOS) $V_p = (V \text{ or DDHV}) / (PHF \times N)$ f_p S		pc/h/ln mi/h	<u>Design (N)</u> Design LOS)HV) / (PHF x N x i	f _{HV} x	pc/h
D = v _p / S LOS	32.3 D	pc/mi/ln	S $D = v_p / S$ Required Number 1	mber of Lanes, N		mi/h pc/mi/ln
Glossary			Factor Loc	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base freedour volume	-	f _p - Page 23-	23-8, 23-10, 23-1	1 f _{LC} - E f _N - E:	Exhibit 23-4 Exhibit 23-5 xhibit 23-6 Exhibit 23-7
Copyright © 2007 University of Florida,	All Rights Reserved		UCS.TM	Version 5.3	Generated:	8/12/2013 3:01 PM

HCS+TM Version 5.3

Generated: 8/12/2013 3:01 PM

HCS+TM Version 5.3

Generated: 8/12/2013 3:03 PM

	RAI	MPS AND	KAINIP JUIN	CHONS W	OKKONE	<u></u>			
General Infor	mation			Site Infor	mation				
Analyst	SEB		Fre	eeway/Dir of Tra		Northbound I-8	37		
gency or Company	CHA			nction		Exit 2W On-Ra			
ate Performed	02/14	4/12	Ju	risdiction	I	NYSDOT	•		
nalysis Time Period	l PM		An	nalysis Year	:	2016 Flyover			
Project Description	Exit 4					-			
nputs									
Jpstream Adj Ramp		Terrain: Level						Downstre Ramp	eam Adj
▼ Yes ☐ On								☐ Yes	☐ On
No	f							✓ No	☐ Off
_{rup} = 1100	ft		_{-F} = 56.0 mph		S _{FR} = 4	0 0 mph		L _{down} =	ft
$V_{\rm u} = 800 \text{ v}$	eh/h	3	•	show lanes, L _A ,		o.o mpn		$V_D =$	veh/h
Conversion to	o pc/h Und	der Base C				_			
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f_{HV}	fp	v = V/PH	$F \times f_{HV} \times f_{p}$
reeway	4650	0.86	Level	2	0	0.990	1.00		5461
Ramp	870	0.92	Level	2	0	0.990	1.00		955
JpStream	800	0.92	Level	2	0	0.990	1.00	1	878
DownStream			_2.0.	 	Ť	3	1		
		Merge Areas					Diverge Are	eas	
stimation of									
	V ₁₂ = V _F	(P _{EM})			<u> </u>			\/ \D	
_	12 1		OF 0 ~* OF 0\			V ₁₂	$= V_R + (V_F)$		
EQ =		(Equation 2			L _{EQ} =		(Equation	25-8 or 25-	9)
FM =			on (Exhibit 25-5)		P _{FD} =		using Equ	uation (Exhibit	t 25-12)
12 =	3166				V ₁₂ =		pc/h		
or V _{av34}		pc/h (Equatio	n 25-4 or 25-		V ₃ or V _{av34}		pc/h (Equat	tion 25-15 or 2	5-16)
	5)					> 2 700 pc/h	? ☐ Yes ☐		,
s V_3 or $V_{av34} > 2,70$							☐ Yes ☐		
s V_3 or $V_{av34} > 1.5$ *									
Yes,V _{12a} =	pc/h	(Equation 25-	·8)		If Yes,V _{12a} =		pc/n (Equ	ation 25-18)	
Capacity Che	cks				Capacity	y Checks			
	Actual	Ca	pacity	LOS F?		Actu	al	Capacity	LOS F
					V _F		Exhibit	25-14	
V_{FO}	6416	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _D	Exhibit	25-14	
· FU				""		K			+
	<u> </u>				V _R		Exhibit		
low Entering		T .		\/\(\text{i}_{c}\rightarrow\)	Flow En			uence Are	
\/	Actual	1)esirable	Violation?	17	Actual		Desirable	Violation?
V _{R12}	4121	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-		<u> </u>
evel of Serv					1			ation (if n	ot F)
$D_{R} = 5.475 +$	0.00734 v _R + 0	0.0078 V ₁₂ - 0.00	0627 L _A		[$O_{R} = 4.252 -$	+ 0.0086 V ₁₂	₂ - 0.009 L _D	
_R = 31.9 (pc					N	c/mi/ln)			
OS = D (Exhib	· ·					xhibit 25-4)			
Speed Detern	nination					etermina	tion		
1 _S = 0.493 (Exil	bit 25-19)				3	xhibit 25-19)			
_R = 49.1 mph ((Exhibit 25-19)				S _R = mp	oh (Exhibit 25-	19)		
K					ls - m	oh (Exhibit 25-	10)		
	(Exhibit 25-19)				100- IIII	JII (EXIIIDIL 23-	17)		
5 ₀ = 49.5 mph ((Exhibit 25-19) (Exhibit 25-14)				I * .	on (Exhibit 25- oh (Exhibit 25-			

			RAMP	S AND RAM	IP JUNCTI	ONS WO	RKS	HEET			
General	I Inform	nation			Site Infor						
Analyst Agency or C Date Perfori Analysis Tin	Company med me Period	SEB CHA 02/14 PM	I/12	Ju Ju	reeway/Dir of Tr unction urisdiction nalysis Year	avel I	Exit 4 NYSD	ound I-87 NB Off to A OT Flyover	SR		
Project Desc	cription I	Exit 4									
Inputs			Terrain: Leve	7						D	A .I:
Upstream A	iaj Ramp ☐ On									Downstrea Ramp	ını Auj
✓ No	□ Off									✓ Yes	□ On
140	- 011									□ No	✓ Off
L _{up} =	ft			F/ 0 b		0 4	0.0	. 1.		L _{down} =	2600 ft
V _u =	veh/h		5	$s_{FF} = 56.0 \text{ mph}$ Sketch (show lanes, L _A ,	$S_{FR} = 4$ $L_{D'}V_{R'}V_{f}$	0.0 m	on		V _D =	110 veh/h
Conver	sion to	pc/h Und	der Base	Conditions							
(pc/l	h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		\mathbf{f}_{HV}	f _p	v = V/PHF	$x f_{HV} x f_{p}$
Freeway		5500	0.86	Level	2	0	0	.990	1.00	64	59
Ramp		1090	0.86	Level	2	0	0	.990	1.00	12	80
UpStream DownStrea	ım	110	0.86	Lovel	1	0	+	005	1.00	1:	20
Downstea		110	Merge Areas	Level		U		.995	Diverge Areas	1.	29
Estimation of v ₁₂						Estimati	ion d		5.1. o. go 7 oa o		
		V ₁₂ = V _F	(P)			 			= V _R + (V _F - V _I	-)P	
L _{EQ} =		12 1	ation 25-2 o	r 25-3)		L _{FO} =			74.30 (Equatio	`	25-9)
	P _{FM} = using Equation (Exhibit 25-5)								.540 using Eq		
V ₁₂ =		pc/h	_ 100		hibit 25-5) $P_{FD} = 0.540$ using Eq. $V_{12} = 4075$ pc/h					dation (Exi	
V ₃ or V _{av34}		•	(Equation 25	5-4 or 25-5)		V ₃ or V _{av34}			384 pc/h (Equ	ation 25-1	5 or 25-16
	.24 > 2,700	pc/h? ☐ Yes					, > 2,		Yes ☑ No	u0	0. 20 .0
		V ₁₂ /2							Tyes ✓ No		
If Yes,V _{12a} =		· -	Equation 25	5-8)		If Yes, $V_{12a} = pc/h$ (Equation 25-18)					
Capacit						Capacity		ecks			
		Actual	C	apacity	LOS F?			Actual	Ca	pacity	LOS F?
						V _F		6459	Exhibit 25-1	4 6780	No
V _F	。		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	5179	Exhibit 25-1	4 6780	No
						V _R		1280	Exhibit 25-3	2100	No
Flow Er	nterina	Merge In	fluence A	rea			terir	na Dive	rge Influen	ce Area	
	Ĭ	Actual	Y	Desirable	Violation?		1	Actual	Max Desirat		Violation?
V _{R1}	12		Exhibit 25-7			V ₁₂		4075	Exhibit 25-14	4400:All	No
Level o	f Servi	ce Detern	nination (if not F)		Level of	Ser	vice De	terminatio	n (if not	F)
$D_{R} = 5.4$	175 + 0.0	0734 v _R + 0	0.0078 V ₁₂ -	0.00627 L _A) _R =	4.252 + 0	.0086 V ₁₂ - 0.	009 L _D	
D _R =	(pc/mi/lr	٦)				$D_R = 33$.0 (pc	/mi/ln)			
LOS =	(Exhibit	25-4)				LOS = D	(Exhi	bit 25-4)			
Speed L	Determ	ination				Speed D)eter	rminatio	on		
M _S = (E	Exibit 25	-19)				$D_s = 0.4$	478 (E	xhibit 25	-19)		
_	nph (Exhi	bit 25-19)				$S_{R}^{=}$ 49.3 mph (Exhibit 25-19)					
	nph (Exhi	bit 25-19)				S ₀ = 56.0 mph (Exhibit 25-19)					
S = m	nph (Exhil	bit 25-14)				S = 51	.6 mpl	h (Exhibit	25-15)		
Copyright © 2	2007 Univer	sity of Florida, A	All Rights Reser	ved		HCS+ [™]	Versio	on 5.3	Ge	nerated: 2/15	/2012 2:33

n SEB	S AND RAN	Site Infor						
SEB	_							
gency or Company CHA Junction ate Performed 02/14/12 Jurisdiction						olf		
Torrain: Love	N.					1		
lenain. Leve	71							m Adj
							•	□ On
								Off
	- 56.0 mnh		S 4	0 0 mr	h		L _{down} =	ft
3	• •	(show lanes 1		u.u mp)[]		V _D =	veh/h
Under Rase		(SHOW lattes, L _A	D' R' Vf					
		T	1	1	,	,	\//DLIE	
hr) PHF	Terrain	%Truck	%Rv		† _{HV}	† _p	v = V/PHF	x t _{HV} x t _p
	Level	2	0	_		1.00		
- 1	Level	+		┰		1.00		-
0.86	Level	1	0	0	.995	1.00	12	74
Merge Areas			1			Diverge Areas		
			Estimati	ion c		<u> </u>		
= V _E (P _{EM})			1			: V _D + (V _C - V _C	s)P _{EP}	
	(25-3)		L _{FO} =					
						-		ibit 25-12)
	,							
	5-4 or 25-5)					•	ation 25-15	or 25-16
	,			₈₄ > 2,7				
			Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No					
	5-8)		If Yes,V _{12a} = pc/h (Equation 25-18)					
			Capacity	y Ch	ecks			
al C	apacity	LOS F?			Actual	Ca	pacity	LOS F
			V_{F}		5167	Exhibit 25-1	4 6780	No
Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	5038	Exhibit 25-1	4 6780	No
			V _R		129	Exhibit 25-3	2100	No
e Influence A	rea		Flow En	terir	ng Dive	rge Influen	ce Area	•
- r		Violation?		- II				Violation
Exhibit 25-7						Exhibit 25-14	4400:All	No
·							•	F)
R + 0.0078 V ₁₂	0.00627 L _A			O _R = 4	4.252 + 0	.0086 V ₁₂ - 0.	009 L _D	
			$D_R = 29$.3 (pc	:/mi/ln)			
				•				
on			Speed D	eter	minatio	on		
				375 (E	xhibit 25	-19)		
9)			S_{R} = 50.8 mph (Exhibit 25-19)					
•			$S_0 = 58.0 \text{ mph (Exhibit 25-19)}$					
4)			S = 53	.2 mpł	n (Exhibit	25-15)		
	Terrain: Level Terrain: Level Terrain: Level Terrain: Level Terrain: Level Terrain: Level Terrain: Level Secure PHF	Terrain: Level S FF = 56.0 mph Sketch Under Base Conditions PHF Terrain 0 0.86 Level 0 0.86	Terrain: Level S FF = 56.0 mph Sketch (show lanes, L FF Sketch	Terrain: Level S _{FF} = 56.0 mph Sketch (show lanes, L _A , L _D V _R ,V _P) Sketch (show lanes, L _A , L _D V _R ,V _P) Sketch (show lanes, L _A , L _D V _R ,V _P) Sketch (show lanes, L _A , L _D V _R ,V _P) Sketch (show lanes, L _A , L _D V _R ,V _P) Sketch (show lanes, L _A , L _D V _R ,V _P) Sketch (show lanes, L _A , L _D V _R ,V _P) Sketch (show lanes, L _A , L _D V _R ,V _P) Sketch (show lanes, L _A , L _D V _R ,V _P) Sketch (show lanes, L _A , L _D V _R ,V _P) Sketch (show lanes, L _A , L _D ,V _R ,V _P) Sketch (show lanes, L _A , L _D ,V _R ,V _P) Sketch (show lanes, L _A , L _D ,V _R ,V _P) Sketch (show lanes, L _A , L _D ,V _R ,V _P) Sketch (show lanes, L _A , L _D ,V _R ,V _P) Sketch (show lanes, L _A , L _D ,V _R ,V _P) Sketch (show lanes, L _A , L _D ,V _R ,V _P) Sketch (show lanes, L _A , L _D ,V _R ,V _P) Sketch (show lanes, L _A , L _D ,V _R ,V _R) Sketch (show lanes, L _A , L _D ,V _R ,V _R) Sketch (show lanes, L _A , L _D ,V _R ,V _R) Sketch (show lanes, L _A , L _D ,V _R ,V _R) Sketch (show lanes, L _A , L _D ,V _R ,V _R) Sketch (show lanes, L _A , L _D ,V _R ,V _R) Sketch (show lanes, L _A , L _D ,V _R ,V _R) Sketch (show lanes, L _A , L _D ,V _R ,V _R) Sketch (show lanes, L _A , L _D ,V _R ,V _R) Sketch (show lanes, L _A ,L _D ,V _R ,V _R) Sketch (show lanes, L _A ,L _D ,V _R ,V _R) Sketch (show lanes, L _A ,L _D ,V _R ,V _R) Sketch (show lanes, L _A ,L _D ,V _R ,V _R) Sketch (show lanes, L _A ,L _D ,V _R ,V _R) Sketch (show lanes, L _A ,L _D ,V _R ,V _R) Sketch (show lanes, L _A ,L _D ,V _R ,V _R) Sketch (show lanes, L _A ,L _D ,V _R ,V _R) Sketch (show lanes, L _A ,L _D ,V _R ,V _R) Sketch (show lanes, L _A ,L _D ,V _R ,V _R) Sketch (show lanes, L _A ,L _D ,V _R ,V _R) Sketch (show lanes, L _A ,L _D ,V _R ,V _R) Sketch (show lanes, L _A ,L _D ,V _R ,V _R) Sketch (show lanes, L _A ,L _D ,V _R ,V _R) Sketch (show lanes, L _A ,L _D ,V _R ,V _R) Sketch (show lanes, L _A ,L _D ,V _R ,V _R) Sketch (show lanes, L _A ,L _D ,V _R ,V _R) Sketch (show lanes, L _A ,L _D ,V _R ,V _R) Sketch (show lanes, L _A ,L _D ,V _R ,V _R) Sketch (show	Terrain: Level S _{FR} = 56.0 mph S _{FR} = 40.0 mp Sketch (show lanes, L _A , L _D ,V _R ,V _p) DUnder Base Conditions Shipper Market Mar	Terrain: Level S FR 40.0 mph Sex 40.0 mph Sketch (show lanes, L L D V V V V V V V V V	Terrain: Level S FR 40.0 mph Sketch (show lanes, L L D V V V Sketch (show lanes, L L D V V V V V V V V V	Terrain: Level

		RAMP	S AND RAM	IP JUNCTI	ONS WO	RKS	HEET			
General In	formation		<u> </u>	Site Infor						
Analyst Agency or Com Date Performed Analysis Time F	SEB pany CHA l 02/1 Period PM		Jı Jı	reeway/Dir of Tr unction urisdiction nalysis Year	ravel S	Southb Exit 2V NYSD 2016 F	V Off			
Project Descript	tion Exit 4									
Inputs		Terrain: Leve	7					1	Б	A 1:
Upstream Adj R	•	Terrain. Ecve	·1						Downstrea Ramp	ım Aaj
	On								✓ Yes	✓ On
™ No	Off								□ No	☐ Off
L _{up} = f	t								L _{down} =	1300 ft
V _u = v	eh/h	S	$s_{FF} = 56.0 \text{ mph}$ Sketch (show lanes, L _A	$S_{FR} = 4$ $L_{D'}V_{R'}V_{f}$	0.0 mj	oh		V _D =	800 veh/h
Conversio	on to pc/h Un	der Base	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f_{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	3900	0.92	Level	2	0	0	.990	1.00	42	82
Ramp	430	0.92	Level	2	0	0	.990	1.00	4	72
UpStream DownStream	800	0.92	Level	2	0	+	.990	1.00	87	70
DownStream	800	Merge Areas	FeAGI					Diverge Areas	0.	70
Estimation	n of v ₁₂				Estimati	ion d				
	V ₁₂ = V _F	(P _{EM})			†			V _R + (V _F - V _F)P _{ED}	
L _{EQ} =	12 1	ıation 25-2 oı	r 25-3)		L _{FO} =			Equation 25-8		
P _{FM} =		Equation (I			P _{FD} =			631 using Eq		nibit 25-12)
V ₁₂ =	pc/h				V ₁₂ = 2877 pc/h					
V_3 or V_{av34}	pc/h	(Equation 25	5-4 or 25-5)		V_3 or V_{av34}		14	405 pc/h (Equ	ation 25-1	or 25-16
Is V ₃ or V _{av34} >	· 2,700 pc/h? ☐ Ye	es 🗆 No			Is V ₃ or V _{av3}	34 > 2,	700 pc/h? [Yes ✓ No		
	· 1.5 * V ₁₂ /2							Yes 🗹 No		
f Yes,V _{12a} =		(Equation 25	5-8)		If Yes,V _{12a} = pc/h (Equation 25-18)					
Capacity (_			Capacity	y Ch				
	Actual	C	apacity	LOS F?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Actual		pacity	LOS F
V		E 1 11 11 05 7			V _F		4282	Exhibit 25-1	+	No
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- v _R	3810	Exhibit 25-1	_	No
			<u> </u>		V _R		472	Exhibit 25-3		No
riow Ente	ring Merge II Actual	ır	A rea Desirable	Violation?	FIOW En		ng Dive Actual	rge Influen Max Desirab		Violation
V _{R12}	Actual	Exhibit 25-7	DOSHANIC	violation!	V ₁₂	_	2877	Exhibit 25-14	4400:All	No
	ervice Deteri		if not F)	1				eterminatio		<u> </u>
	+ 0.00734 v _R +	•						.0086 V ₁₂ - 0.	•	· /
••	c/mi/ln)	12	A				:/mi/ln)	12	D	
	xhibit 25-4)						bit 25-4)			
•	termination				Speed D	•		on		
-	oit 25-19)						xhibit 25			
-	(Exhibit 25-19)				S _R = 50.3 mph (Exhibit 25-19)					
	(Exhibit 25-19)				S ₀ = 59.9 mph (Exhibit 25-19)					
-	(Exhibit 25-14)				S = 53	.1 mpl	n (Exhibit	25-15)		
Copyright © 2007	University of Florida,	All Rights Reser	ved		HCS+™	Versio	n 5.3	Ge	nerated: 2/15	/2012 2:33

• • • •		IVAIVIE	S AND RAM			1110				
General Info				Site Infor						
Analyst Agency or Company Date Performed Analysis Time Perio	02/1		Ji Ji	reeway/Dir of Tr unction urisdiction .nalysis Year]]	Southb Exit 4 S NYSD(2016 F	TC			
Project Description			^	ilialysis i cai		20101	Tyovei			
Inputs	LAICT									
Upstream Adj Ramp)	Terrain: Leve							Downstrea Ramp	m Adj
□ Yes □ O	n								✓ Yes	☑ On
™ No □ O	ff								□ No	☐ Off
L _{up} = ft		S	_{FF} = 56.0 mph		S _{FR} = 4	0.0 mp	oh		down	1585 ft
V _u = veh/			Sketch (show lanes, L _A					V _D =	990 veh/
Conversion	to pc/h Un	der Base (Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	3650	0.92	Level	2	0	0.	.990	1.00	400)7
Ramp	720	0.92	Level	2	0	0	.990	1.00	79	0
UpStream	000	0.00	1	1	0	+	000	1.00	100	
DownStream	990	0.93 Merge Areas	Level	4	0	0	.980	1.00 Diverge Areas	108	36
Estimation o		ivici ye Ai eas			Estimati	ion c		Diverge Areas		
		(D.)						\/ \(\lambda\/\)	\D	
	$V_{12} = V_F$							= V _R + (V _F - V		
L _{EQ} =		ation 25-2 or			L _{EQ} =			Equation 25-8		
P _{FM} =	_	Equation (E	xhibit 25-5)		P _{FD} =			.623 using Ed	quation (Exhi	ibit 25-12)
V ₁₂ =	pc/h				$V_{12} = 2796 \text{ pc/h}$					
V_3 or V_{av34}		(Equation 25	-4 or 25-5)		V_3 or V_{av34}			211 pc/h (Equ	ation 25-15	or 25-16
Is V_3 or $V_{av34} > 2.7$								Yes Mo		
Is V_3 or $V_{av34} > 1.5$:=							TYes ✓ No		
If Yes,V _{12a} =	pc/h	(Equation 25	-8)		If Yes,V _{12a} = pc/h (Equation 25-18)					
Capacity Ch	ecks				Capacity	y Ch	ecks			
	Actual	C	apacity	LOS F?			Actual	Ca	pacity	LOS F
					V_{F}		4007	Exhibit 25-1	4 6780	No
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	3217	Exhibit 25-1	4 6780	No
					V _R		790	Exhibit 25-3	3 2100	No
Flow Enterin	a Merae In	fluence A	rea		:	terir	na Dive	rge Influen	ce Area	
	Actual	1	Desirable	Violation?		1	Actual	Max Desiral		Violation
V _{R12}		Exhibit 25-7			V ₁₂		2796	Exhibit 25-14	4400:All	No
Level of Serv	ice Deterr		f not F)			Ser	vice De	terminatio	n (if not l	-)
$D_R = 5.475 + 0$					+			0.0086 V ₁₂ - 0.		1
D _R = (pc/mi		12	A				:/mi/ln)	12	D	
**	oit 25-4)						bit 25-4)			
Speed Deter					Speed D	•		on		
$M_S = $ (Exibit 2							xhibit 25			
o .						•		*		
	hibit 25-19)				S_R = 49.9 mph (Exhibit 25-19) S_0 = 60.6 mph (Exhibit 25-19)					
	hibit 25-19) hibit 25-14)				S = 52.7 mph (Exhibit 25-15)					
S = mph(Ex)										

		MPS AND	VAINL JOIN						
General Infor	mation			Site Infor	mation				
Analyst Agency or Company	SEB CHA			reeway/Dir of Tr unction		Southbound I-8 Exit 4 SB On-R			
Date Performed	02/14			urisdiction		NYSDOT	amp		
Analysis Time Period				nalysis Year		2016 Flyover			
Project Description						,			
nputs									
Ipstream Adj Ramp		Terrain: Level						Downstre Ramp	eam Adj
Yes Or	1							☐ Yes	☐ On
No	f							✓ No	☐ Off
_{up} = 1585	ft							L _{down} =	ft
•		S	$_{\rm F} = 56.0 \; \rm mph$		$S_{FR} = 40.0 \text{ mph}$				
$v_{\rm u} = 720 \text{ v}$	eh/h		Sketch (show lanes, $L_{A'}$	$L_{D'}V_{R'}V_{f}$	V _D =	veh/h		
Conversion to	o pc/h Und	der Base C	onditions					•	
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	Fxf _{HV} xf _p
reeway	2950	0.92	Level	2	0	0.990	1.00		3239
Ramp	990	0.93	Level	4	0	0.980	1.00		1086
JpStream	720	0.92	Level	2	0	0.990	1.00		790
DownStream		<u> </u>					D' A		
Merge Areas Diverge Stimation of V ₁₂ Estimation of V ₁₂							Diverge Are	as	
Sumation of					Estimat	1011 01 V ₁₂			
	$V_{12} = V_{F}$	(P _{FM})				V ₁₂	= V _R + (V _F -	$V_{R})P_{FD}$	
EQ =	1199.21	l (Equation 2	25-2 or 25-3)		L _{EQ} =	12		25-8 or 25-	9)
P _{FM} = 0.614 using Equation (Exhibit 25-5)								ation (Exhibi	
' ₁₂ =	1990							•	,
or V _{av34}		pc/h (Equatio	n 25-4 or 25-		V ₃ or V _{av34}		-	on 25-15 or 2	5-16)
	5)				Is V_3 or $V_{av34} > 2,700$ pc/h? Yes No				
s V_3 or $V_{av34} > 2,70$					Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes \square No				
s V_3 or $V_{av34} > 1.5$			-\		If Yes, $V_{12a} = pc/h$ (Equation 25-18)				
Yes,V _{12a} =		(Equation 25-	·8)		120		po/ii (Equa	2011 20-10	1
Capacity Che					Capacit	y Checks			
	Actual	Ca	pacity	LOS F?	ļ ,,	Actua	ì	Capacity	LOS F?
					V _F		Exhibit 2	25-14	
V_{FO}	4325	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhibit 2	25-14	
					V_R		Exhibit :	25-3	
low Entering	g Merge In	fluence A	rea		Flow En	tering Div	erge Influ	ience Are	ea
	Actual	Max D	esirable	Violation?		Actual		esirable	Violation?
V _{R12}	3076	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-1	4	<u></u>
Level of Serv	ice Deterr	nination (i	not F)		Level of	Service L	Determina	tion (if n	ot F)
D _R = 5.475 +	0.00734 v _R + 0	0.0078 V ₁₂ - 0.00)627 L _A			D _R = 4.252 +	0.0086 V ₁₂	- 0.009 L _D	
O _R = 20.7 (pc	/mi/ln)				$D_R = (p$	c/mi/ln)			
OS = C (Exhib	oit 25-4)				LOS = (E	xhibit 25-4)			
Speed Detern	nination					Determina	tion		
						xhibit 25-19)			
$M_{\rm S} = 0.300 (Exi$			ph (Exhibit 25-1	9)					
	(Exhibit 25-19)				1				
5 ₀ = 53.3 mph ((Exhibit 25-19)				S_0 = mph (Exhibit 25-19) S = mph (Exhibit 25-15)				
	(Exhibit 25-14)				c	nh /Fyhih!! OF 4	E/		

		RAN	MPS AND	RAMP JUNG	CTIONS W	ORKSHE	ET				
Genera	Inform	nation			Site Infor	mation					
Analyst Agency or C Date Perfori Analysis Tin	med	SEB CHA 02/14 PM	/12	Jui Jui	eeway/Dir of Tr nction risdiction alysis Year	<u> </u>	Exit 5 S	oound I-87 SB On-Rar OT Tyover	mp		
Project Des	cription E	Exit 4									
Inputs			-								
Jpstream A —	•		Terrain: Level							Downstre Ramp	eam Adj
Yes	□ On									Yes	□ On
™ No	☐ Off									□ No	✓ Off
- _{up} = / _u =	ft veh/h		S	FF = 56.0 mph	ehow lance I	S _{FR} = 4	0.0 mp	h		L _{down} = V _D =	4700 ft 720 veh/h
		no/h I Inc	lor Pasa (show lanes, L _A ,	L _D , v _R , v _f)					
		<i>pc/n und</i> ∀		Conditions		1	Т			T	
(pc/	h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p
Freeway		3050	0.92	Level	2	0	0.	990	1.00	<u> </u>	3348
Ramp		610	0.87	Level	1	0	0.	995	1.00	1	705
UpStream	m	700	0.00	Laval	2			000	1.00	-	700
DownStrea	m	720	0.92 Merge Areas	Level	2	0	0.	990	1.00 Diverge Area		790
 Estimat	Estimation of v ₁₂ Estimation of v ₁₂							Diverge Area	15		
			(D)					<u></u>			
		$V_{12} = V_F$	• • • • • • • • • • • • • • • • • • • •	25.0 05.0)					$V_R + (V_F -$		
-EQ =				25-2 or 25-3)		L _{EQ} =			(Equation 2	25-8 or 25-	9)
_{FM} =									using Equa	ation (Exhibit	25-12)
/ ₁₂ =		2055 p		V ₁₂ = pc/h							
/ ₃ or V _{av34}			oc/h (Equatio	n 25-4 or 25-		V ₃ or V _{av34}			pc/h (Equation	on 25-15 or 2	ō-16)
ls V ₋ or V	> 2 700	5) pc/h? ☐ Yes	No.			Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No					
		V ₁₂ /2				Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No					
		· -		0)		If Yes, V_{12a} = pc/h (Equation 25-18)					
Yes,V _{12a}			Equation 25	-0)		Capacity			1 (1		
Capacit	y Criec		I c.	ana city	100.00	Сараспу	CII			Conocity	1000
		Actual		npacity	LOS F?	V _F	-	Actual	Exhibit 2	Capacity	LOS F?
		1050			.		\				_
V _F	0	4053	Exhibit 25-7		No	$V_{FO} = V_{F}$	· V _R		Exhibit 2	_	
					<u> </u>	V _R			Exhibit 2		
Flow Er	ntering		fluence A			Flow En	_		erge Influ		
	-	Actual		Desirable	Violation?	.,	-	Actual	Max De		Violation?
V _{R1}	2	2760	Exhibit 25-7	4600:All	No	V ₁₂	ب		Exhibit 25-14		
			nination (i						etermina		ot F)
.,			.0078 V ₁₂ - 0.0	0627 L _A			••		0.0086 V ₁₂	- 0.009 L _D	
) _R =	18.5 (pc/r	•					c/mi/l	,			
.OS =	B (Exhibit	•						25-4)			
Speed I	Determ	ination				Speed D			on		
$M_S = 0$.279 (Exibi	t 25-19)				3	xhibit 2				
-	2.1 mph (E	xhibit 25-19)				S _R = mp	oh (Exl	nibit 25-19)		
	3.1 mph (E	xhibit 25-19)				S ₀ = mp	oh (Exl	nibit 25-19)		
	2.4 mph (E	xhibit 25-14)				S = mp	oh (Exl	nibit 25-15)		
			All Rights Reserv			HCS+ [™]					2/15/2012 2:3

			FREEWA	Y WEAV	/ING WOR	KSHEE	Τ			
General	Informat	ion			Site Info	rmation				
Analyst Agency/Con Date Perfori Analysis Tin	med	SEB CHA 02/14/ PM	12		Weaving Seg Location Exit Jurisdiction NYS			lorthbound E on to 2W o OOT Flyover	ff	
Inputs					•					
Weaving nu Weaving se Terrain	e-flow speed, and the speed, and the speed and the speed and the speed and the speed and the speed, and the speed, and the speed and the speed, and the speed and the speed, and the speed and the speed, and the speed and th	N	56 4 815 Lev	IVVEAVILIO TAILO. IX				A 0.2 0.3		
Convers	sions to p	oc/h Unde	er Base C	í e					1	
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f _{HV}	fp	V	
V _{o1}	4200	0.86	2	0	1.5	1.2	0.990	1.00	4932	
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0	
V_{w1}	800	0.92	2	0	1.5	1.2	0.990	1.00	878	
V_{w2}	450	0.92	2	0	1.5	1.2	0.990	1.00	494	
$V_{_{ m W}}$			_	1372	V _{nw}		•	•	4932	
V	7				,	l			6304	
Weaving	g and No	n-Weavin	g Speeds	5						
			Unconstr	4				trained		
o /Evhibit O/	1./\	Weaving			ving (i = nw)	Weavir	ng (i = w)	Non-Wea	ving (= nw)	
a (Exhibit 24 b (Exhibit 24		0.15 2.20			.00					
c (Exhibit 24		0.97			.30					
d (Exhibit 24		0.80			.75					
Weaving intensi	•	1.37	1	0	.72					
Weaving and no speeds, Si (mi/h		34.4	0	41	.69					
Number of la Maximum n	anes required umber of lanes	, ,			1.26 1.40					
		(max) uncons					v (max) constr	rained operati	on	
					f Service,	and Cap	acity			
		S (mi/h)		39.85						
Weaving seg Level of serv	gment density	, υ (pc/mi/ln)		39.55 E						
	base condition	n c (nc/h)		6645						
		ow rate, c (vel	1/h)	6579						
		ume, c _h (veh/h		5748						
Notes	a fall float VOI	unio, oh (vonin	''	3740						
liance2										

a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 2/15/2012 2:34 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

			FREEWA	Y WEAV	/ING WOF	RKSHEE	Γ			
General	Informat	ion			Site Info	rmation				
Analyst Agency/Con Date Perforr Analysis Tim	ned	SEB CHA 02/14/ PM	12						îf	
Inputs										
Weaving nu	e-flow speed, and the speed of lanes, greatly length, L (ft)	11	56 4 810 Lev		Weaving type Volume ratio, VR Weaving ratio, R			A 0.2 0.7		
Convers	sions to p	c/h Unde	r Base C	ondition	าร					
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f_{HV}	fp	V	
V_{o1}	3310	0.92	2	0	1.5	1.2	0.990	1.00	3633	
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0	
V_{w1}	800	0.92	2	0	1.5	1.2	0.990	1.00	878	
V _{w2}	140	0.92	2	0	1.5	1.2	0.990	1.00	153	
V _W				1031	V _{nw}				3633	
V	1				TIW	ı			4664	
Weaving	and No	n-Weavin	g Speeds	<u> </u>						
			Unconstr	ained				trained		
<u> </u>		Weaving			ving (i = nw)	Weavir	ng (i = w)	Non-Wea	ving (= nw)	
a (Exhibit 24 b (Exhibit 24		0.15 2.20			.00			<u> </u>		
c (Exhibit 24		0.97		, 	.30					
d (Exhibit 24		0.80			.75					
Weaving intensit		1.03		1	.50					
Weaving and no speeds, Si (mi/h		37.6	1	45	5.73					
Number of la	anes required	for unconstrain	ned operation,	Nw	1.22			Į.		
1	umber of lanes				1.40	= 16.11				
		(max) uncons			-		v (max) consti	rained operati	on	
		S (mi/h)		43.64	f Service,	anu Cap	acity			
	gment speed, gment density,			26.72						
Level of serv		D (porinirin)		C C						
	pase condition	, c _h (pc/h)		6619						
		ow rate, c (vel	n/h)	6553						
		ume, c _h (veh/h		6029						
Notes		11.	-	1						

a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

Generated: 2/15/2012 2:34 PM

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

HCS+TM Version 5.3

Agency or Company CHA From/To Date Performed 02/14/12 Jurisdiction	Planning (N) FFS, Li Planning (v _p) FFS, Li mation ection of Travel Southbook Exit 4 to NYSDO ar 2026 Fly	OS, v _p N, S, D OS, N v _p , S, D I, AADT LOS, S, D OS, AADT N, S, D OS, N v _p , S, D OUNT I N, S, D OUNT I N, S, D
Flow Rate (pc/h/ln) General Information Analyst Agency or Company Date Performed Flow Rate (pc/h/ln) Site Information SEB Highway/Direction From/To Jurisdiction	ection of Travel Southbook Exit 4 to NYSDO ar 2026 Fly) Exit 2)T yover
Analyst SEB Highway/Direct Agency or Company CHA From/To Date Performed 02/14/12 Jurisdiction	ection of Travel Southbook Exit 4 to NYSDO ar 2026 Fly) Exit 2)T yover
Agency or Company CHA From/To Date Performed 02/14/12 Jurisdiction	Exit 4 to NYSDO ar 2026 Fly) Exit 2)T yover
Analysis Time Period PM Analysis Yea Project Description Exit 4		anning Data
✓ Oper.(LOS) □ Des.(N)	Factor, PHF 0.92	
Flow Inputs Volume, V 4000 veh/h Peak-Hour Fa AADT veh/day %Trucks and Peak-Hr Prop. of AADT, K %RVs, P _R Peak-Hr Direction Prop, D General Terra DDHV = AADT x K x D veh/h Grade %	rain: 0 Level Length <i>mi</i>	
Driver type adjustment 1.00 Calculate Flow Adjustments	Up/Down %	
f _p 1.00 E _R	1.2	
	$E_T - 1) + P_R(E_R - 1)$ 0.990	
	ed Adj and FFS	
Lane Width 12.0 ft ft f_{LW} Rt-Shoulder Lat. Clearance 6.0 ft f_{LC} Interchange Density 0.50 I/mi Number of Lanes, N 3 FFS (measured) 56.0 mi/h	56.0	mi/h mi/h mi/h mi/h mi/h
base free-flow Speed, BFFS ffilth		,
$ \begin{bmatrix} r_p \end{bmatrix} $ $ \begin{bmatrix} c \\ c \end{bmatrix} $ $ \begin{bmatrix} $	•	pc/h mi/h pc/mi/ln
Glossary Factor Loc		
N - Number of lanes V - Hourly volume D - Density FFS - Free-flow speed OS - Level of service BEFS - Base free-flow speed To Page 23-	\$23-8, 23-10 \$ 23-8, 23-10, 23-11	f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7

HCS+TM Version 5.3

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 mith 70 mith 70 mith 65 mith 55 mith 55 mith 40 mith 70 mi	B C C	450 (600 1750 0 1600 200	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO: FFS, LO: FFS, LO: FFS, LO:	S, v _p N, S, D S, N v _p , S, D AADT LOS, S, D S, AADT N, S, D
General Information	Flow Rate (pc/h/lin)	Site Inforn	nation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/14/12 PM			ction of Travel	Northbou Exit 4 off NYSDOT 2026 Flyo	to Exit 4 on
✓ Oper.(LOS)			Des.(N)		☐ Plar	nning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	4350	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra	Buses, P _T	0.86 2 0 Level	
DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustr	1.00 ments	veh/h	Grade %	Length Up/Down %	mi	
fp	1.00		E _R		1.2	
É _T	1.5		f _{HV} = 1/[1+P _T (E ₁	T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs			Calc Spee	d Adj and FFS	3	
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 3 56.0	ft ft I/mi mi/h	f_{LW} f_{LC} f_{ID}			mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS	00.0	mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N))		
Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $f_p)$ S $D = v_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	$\frac{\text{Design (N)}}{\text{Design LOS}}$ $v_p = (V \text{ or DD}$ $f_p)$ S $D = v_p / S$	HV) / (PHF x N x	f _{HV} x	pc/h mi/h pc/mi/ln
Classer				mber of Lanes, N		
Glossary N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fro		f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{ID} - Exhibit 23-7
Copyright © 2007 University of Florida,			TM	Version 5.3	Co	nerated: 2/17/2012 1:16

HCS+TM Version 5.3

HCS+TM Version 5.3

HCS+TM Version 5.3

HCS+TM Version 5.3

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 mith 70 mith 65 mith 60 mith 55 mith 50 LOS A 6	B C C	1500 2001	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v FFS, LOS FFS, N, A FFS, LOS FFS, LOS	, v _p N, S, D , N v _p , S, D ADT LOS, S, D , AADT N, S, D
General Information	Flow Rate (pc/h/lin)	Site Inforn	nation		
Analyst	SEB			ction of Travel	Southbou	nd I-87
Agency or Company	CHA		From/To	olion of Travel	Exit 5 to E	
Date Performed	02/14/12		Jurisdiction		NYSDOT	
Analysis Time Period	PM		Analysis Year	r	2026 Flyo	ver
Project Description Exit 4						
Oper.(LOS)			Des.(N)		☐ Plan	ning Data
Flow Inputs						
Volume, V	3800	veh/h	Peak-Hour Fa	•	0.92	
AADT		veh/day	%Trucks and	buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R General Terra	_:	0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	Grade %	Length	Level mi	
Driver type adjustment	1.00	70.4.1		Up/Down %		
Calculate Flow Adjustr	nents					
f _p	1.00		E _R		1.2	
E _T	1.5		$f_{HV} = 1/[1 + P_{T}(E - E)]$	T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs				d Adj and FFS	3	
Lane Width	12.0	ft				:/b
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f_{LC}			mi/h
Number of Lanes, N	3	,,,,,	f_ID			mi/h
FFS (measured)	<i>56.0</i>	mi/h	f_N			mi/h
	30.0		FFS		56.0	mi/h
Base free-flow Speed, BFFS	N4	mi/h				•
LOS and Performance	weasures		Design (N)			
Operational (LOS) v _p = (V or DDHV) / (PHF x N	x f _{HV} x 1391	pc/h/ln	Design (N) Design LOS v _o = (V or DD	HV) / (PHF x N x	f _{uv} x	
f _p)		•	f _p)	, ,	117	pc/h
S	56.0	mi/h	S			mi/h
$D = v_p / S$	24.8	pc/mi/ln	$D = v_p / S$			pc/mi/ln
LOS	С			mber of Lanes, N		ρο/ιιι/ιι/
Glossary			Factor Loc			
N - Number of lanes	S - Speed					
V - Hourly volume	D - Density		E _R - Exhibits2			f _{LW} - Exhibit 23-4
v _p - Flow rate	FFS - Free-flow	/ speed		23-8, 23-10, 23-1	1	f _{LC} - Exhibit 23-5
LOS - Level of service	BFFS - Base fr		f _p - Page 23-	12		f _N - Exhibit 23-6
		ee-now speed	LOS, S, FFS,	, v _p - Exhibits 23-2	2, 23-3	f _{ID} - Exhibit 23-7
DDHV - Directional design ho				Version 5.3		erated: 2/17/2012 1:17

HCS+TM Version 5.3

	BASIC FI	REEWAY SE	GMENTS W	ORKSHEET		
10 10 10 10 10 10 10 10	B C C	150 1750 E	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AADT FFS, LOS, N	Output LOS, S, D N, S, D v _p , S, D LOS, S, D N, S, D v _p , S, D
General Information	Filow Rate (pc/h/lin)	13	Site Inform	nation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	CLD CHA 07/30/13 PM			ection of Travel	Northbound I-8 Exit 5 to Exit 6 NYSDOT 2026 Flyover	7
✓ Oper.(LOS)			Des.(N)		☐ Planning [Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	6175	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terr	l Buses, P _T	0.86 2 0 Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade %	Length Up/Down %	mi	
Calculate Flow Adjustr					4.0	
f _p □	1.00 1.5		E _R	. 4) . D (5 4)1	1.2 0.990	
E _⊤ Speed Inputs	1.5			ed Adj and FFS		
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N	12.0 6.0 0.50 4	ft ft I/mi	f _{LW} f _{LC} f _{ID}	a Auj ana 11 o		mi/h mi/h mi/h mi/h
FFS (measured)	56.0	mi/h	f _N		50.0	
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times N)$ f_p) S $D = v_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	f_p) S D = v_p / S) DHV) / (PHF x N x t mber of Lanes, N	f _{HV} x	pc/h mi/h pc/mi/ln
Glossary			Factor Loc	· · · · · · · · · · · · · · · · · · ·		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base freeur volume	•	E _R - Exhibits E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1	1 f _{LC} - I f _N - E	Exhibit 23-4 Exhibit 23-5 xhibit 23-6 Exhibit 23-7
Copyright © 2007 University of Florida,	All Rights Reserved		ucc.TN	M Version 5.3	Generated:	8/12/2013 4:03 PM

HCS+TM Version 5.3

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
10 10 10 10 10 10 10 10	B C C	150 (600) 1750 E	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AAD FFS, LOS, N	Output LOS, S, D N, S, D v _p , S, D LOS, S, D N, S, D v _p , S, D
General Information	Flow Rate (pc/h/ln)		Site Inform	nation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	CLD CHA 07/30/13 PM		-	ection of Travel	Southbound I- Exit 6 to Exit 5 NYSDOT 2026 Flyover	
✓ Oper.(LOS)			Des.(N)		☐ Planning	Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	3650	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terr	Buses, P _T	0.92 2 0 Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade %	Length Up/Down %	mi	
Calculate Flow Adjustr					4.0	
f _p Ε _Τ	1.00 1.5		E _R	4) . D /E 4)1	1.2 0.990	
Speed Inputs	1.5			d Adj and FFS		
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 4 56.0	ft ft I/mi mi/h	f _{LW} f _{LC} f _{ID} f _N	a Aajana i i o		mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance			Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x N : f _p)		pc/h/ln	Design (N) Design LOS $v_p = (V \text{ or DD})$	0HV) / (PHF x N x	f _{HV} x	pc/h
S D = v _p / S LOS	56.0 17.9 B	mi/h pc/mi/ln	f_p) S $D = v_p / S$ Required Nu	mber of Lanes, N		mi/h pc/mi/ln
Glossary			Factor Loc	· · · · · · · · · · · · · · · · · · ·		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base freedour volume	•	E _R - Exhibits E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1	1 f _{LC} -	Exhibit 23-4 Exhibit 23-5 Exhibit 23-6 Exhibit 23-7
Copyright © 2007 University of Florida,	All Rights Reserved	-	HCSTIN	M Version 5.3	Generate	d: 8/12/2013 3:26 Pf

HCS+TM Version 5.3

Generated: 8/12/2013 3:26 PM

	RAI	MPS AND	RAMP JUNG	<u> </u>	OKKSHE	<u> </u>						
General Infor	mation			Site Infor	mation							
Analyst	SEB		Fre	eeway/Dir of Tra	avel	Northbound I-8	7					
gency or Company	CHA		Ju	nction		Exit 2W On-Ra	mp					
Pate Performed 02/14/12 Jurisdiction				NYSDOT								
nalysis Time Period	PM		An	alysis Year	2026 Flyover							
Project Description	Exit 4					·						
nputs												
pstream Adj Ramp		Terrain: Level						Downstre Ramp	eam Adj			
▼ Yes ☐ On								☐ Yes	□ On			
No	:							✓ No	☐ Off			
L _{up} = 1100 ft				<u> </u>	0.0 mnh		L _{down} =	ft				
/ _u = 840 ve	eh/h	3	= 56.0 mph	show lanes, L _A ,	$S_{FR} = 4$	o.o mpn		$V_D =$	veh/h			
Conversion to		dor Poss C		silow lailes, L _A ,	LD' R' Vf							
onversion to	y pc/n one	der base C	onanions	ı	1	1	1					
(pc/h)	v (Veh/hr)	PHF	Terrain	%Truck	%Rv	f_{HV}	fp	v = V/PH	$F x f_{HV} x f_{p}$			
reeway	4750	0.86	Level	2	0	0.990	1.00		5578			
Ramp	870	0.92	Level	2	0	0.990	1.00	_	955			
JpStream	840	0.92	Level	2	0	0.990	1.00	+	922			
DownStream	040	0.72	LCVCI			0.770	1.00	+	722			
own ou cam		Merge Areas				1	Diverge Are	eas				
stimation of		g			Estimation of V ₁₂							
		(D.)				12						
	$V_{12} = V_F$					V ₁₂	$= V_R + (V_F - V_F)$	- V _R)P _{FD}				
L _{EQ} = 1465.26 (Equation 25-2 or 25-3)				L _{EQ} = (Equation 25-8 or 25-9)								
P _{FM} = 0.578 using Equation (Exhibit 25-5)				P _{FD} = using Equation (Exhibit 25-12)								
$V_{12} = 3225 \text{ pc/h}$				$V_{12} = pc/h$								
0050 // /5 // 05 / 05												
₃ or V _{av34}	5)	(—			V ₃ or V _{av34} pc/h (Equation 25-15 or 25-16)							
Is V_3 or $V_{av34} > 2,700$ pc/h? Yes V No					Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No							
s V ₃ or V _{av34} > 1.5 *	V₁√2	s ▼ No			Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No							
Yes, V _{12a} =		(Equation 25	.8)		If Yes,V _{12a} = pc/h (Equation 25-18)							
	·	(Equation 25	-0)		120		. , ,					
Capacity Che				1 100 50	Capacity	y Checks	. 1	0 "	1 100 50			
	Actual	Ca	pacity	LOS F?	<u> </u>	Actu		Capacity	LOS F3			
					V _F		Exhibit	25-14				
V_{FO}	6533	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhibit	25-14				
					V _R		Exhibit	25-3				
low Entering	Morgo In	I I	<u> </u>	<u> </u>	<i>-</i>	toring Di	erge Infl					
TOW LINEINIG	Actual	T .	esirable	Violation?	FIOW EII	Actual		Desirable	Violation?			
V	4180	Exhibit 25-7	4600:All	No	V ₁₂	Actual	Exhibit 25-		violation?			
V _{R12}				INU		Comdet			<u> </u>			
evel of Serv					1		Determina		ot r)			
	11	0.0078 V ₁₂ - 0.00	J62/ L _A			$J_{R} = 4.252 -$	- 0.0086 V ₁₂	₂ - 0.009 L _D				
D _R = 32.3 (pc/mi/ln)				D _R = (pc/mi/ln)								
LOS = D (Exhibit 25-4)				LOS = (Exhibit 25-4)								
Speed Determination				Speed Determination								
•					 	xhibit 25-19)						
,				3								
-	S _R = 48.9 mph (Exhibit 25-19)				S _R = mph (Exhibit 25-19)							
R= 48.9 mph (c	L /E L !! !! O=	10)					
R= 48.9 mph (0= 49.2 mph (Exhibit 25-19) Exhibit 25-14)				* ·	oh (Exhibit 25- oh (Exhibit 25-						

•	4.	KAIVIE	S AND RAM									
General Info				Site Infor								
Analyst SEB Agency or Company CHA Date Performed 02/14/12		Freeway/Dir of Travel Junction Jurisdiction			Exit 4 NB Off to ASR NYSDOT							
Analysis Time Per Project Description			A	nalysis Year		2026 F	lyover					
Inputs	II EXIL4											
•		Terrain: Leve	1						Daywastras	na A ali		
Upstream Adj Ran	·								Downstrea Ramp	-		
									✓ Yes	☐ On		
✓ No	Off								□ No	✓ Off		
L _{up} = ft		S	_{FF} = 56.0 mph		S _{FR} = 4	10.0 mi	oh		L _{down} =	2600 ft		
V _u = veh	n/h		• •	show lanes, L _A					V _D =	120 veh/		
Conversion	to pc/h Un	der Base (Conditions									
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV} f _p		f _p	$v = V/PHF \times f_{HV} \times f_{I}$			
Freeway	5600	0.86	Level	2	0	0	.990	1.00	6577			
Ramp	1170	0.86	Level	2	0	0	.990	1.00	1374			
UpStream DownStream	120	0.0/	Lovel	1		+	005	1.00	14	0		
Downsteam	120	0.86 Merge Areas	Level	1	0	0	.995	1.00 Diverge Areas	14	0		
Estimation		morgo / irous			Estimation of V ₁₂							
	V ₁₂ = V _F	(D)			+			= V _R + (V _F - V	/D			
l -			25-2)						–	5 O)		
L _{EQ} = (Equation 25-2 or 25-3) P _{FM} = using Equation (Exhibit 25-5)				L_{EQ} = 324.22 (Equation 25-8 or 25-9) P_{FD} = 0.532 using Equation (Exhibit 25-12)								
					$V_{12} = V_{12} = V_{12}$ 4144 pc/h							
V ₁₂ = pc/h					V ₃ or V _{av34} 2433 pc/h (Equation 25-15 or 25-16							
V_3 or V_{av34} pc/h (Equation 25-4 or 25-5) Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No					V_{3} or V_{av34} 2433 pc/n (Equation 25-15 of 25-16 ls V_{3} or $V_{av34} > 2,700$ pc/h? \square Yes \square No							
Is V_3 or $V_{av34} > 2$.												
If Yes, V _{12a} =	:=	(Equation 25	-8)		Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No If Yes, $V_{12a} = pc/h$ (Equation 25-18)							
Capacity Cl		(Equation 20	-0)		Capacity			DO/II (Equation	123-10)			
Capacity Ci	Actual		apacity	LOS F?	Capacity	y Ch	Actual	Ca	pacity	LOS F		
	Actual	† Ť	араску	LOST:	V _F		6577	Exhibit 25-1	<u> </u>	No		
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- \/	5203	Exhibit 25-1	_	No		
₹FO		LAHIDIL 25-7			V _{FO} - V _F	*R						
		<u> </u>					1374	Exhibit 25-3 2100		No		
Flow Entering Merge Influence Area Actual Max Desirable Violation?					Flow Entering Diverge Influence Area Actual Max Desirable V					Violation		
V _{R12}	Actual	Exhibit 25-7	DESILANIE	Violation?	V ₁₂	+	4144	Exhibit 25-14	4400:All	No		
Level of Se	rvice Deter		f not F)	1				eterminatio				
	0.00734 v _R +	•).0086 V ₁₂ - 0.	•	,		
		0.0070 V ₁₂	0.00027 L _A						_D			
$D_R = (pc/mi/ln)$ LOS = (Exhibit 25-4)				D _R = 33.6 (pc/mi/ln) LOS = D (Exhibit 25-4)								
Speed Determination				Speed Determination								
							xhibit 25					
,	25-19)							,				
S _R = mph (Exhibit 25-19)												
S_0 = mph (Exhibit 25-19) S = mph (Exhibit 25-14)					S ₀ = 55.8 mph (Exhibit 25-19) S = 51.5 mph (Exhibit 25-15)							
	AHIDIL 20-141				- 1 - 1 h	nnn)	— vriinit	ZD-1D1				

	, -	NAME	S AND RAN			KKSI				
General Infor				Site Infor						
Analyst Agency or Company Date Performed Analysis Time Period	02/14		J	reeway/Dir of Tra unction urisdiction analysis Year				/olf		
Project Description							, , , , , ,			
Inputs										
Upstream Adj Ramp		Terrain: Level							Downstrea Ramp	m Adj
Yes Or	1								'	□ On
■ No ■ Of	f								™ No	☐ Off
L _{up} = 2600	ft		_{FF} = 56.0 mph		S 4	0.0 mnh			L _{down} =	ft
V _u = 1170 ·	veh/h	3	• •	(show lanes, L _A ,	$S_{FR} = 4$ $L_{D'}V_{R'}V_{f}$	o.o mpi	ı		V _D =	veh/h
Conversion t	o pc/h Und	der Base (Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f	: HV	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	4450	0.86	Level	2	0	0.9	90	1.00	522	26
Ramp	120	0.86	Level	2	0		90	1.00	14	
UpStream	1170	0.86	Level	1	0	0.9	95	1.00	136	57
DownStream		Merge Areas						 Diverge Areas		
Estimation o		werge 711 cus			Estimati	ion o		or or ge meas		
		/D \						\/ . (\/ \/	\D	
I _	$V_{12} = V_F$		25 2)					$= V_R + (V_F - V_I)$		
L _{EQ} =		ation 25-2 or			L _{EQ} =			Equation 25-8		L# 0E 10\
P _{FM} =	_	Equation (E	XIIIDIL 20-0)		P _{FD} =			623 using Eq	juation (Exni	DII 25-12)
V ₁₂ = V ₃ or V _{av34}	pc/h	/Equation 25	1 or 25 5)		V ₁₂ =			308 pc/h	ation OF 1F	o= 0E 4/
$V_3 \text{ or } V_{av34}$ Is $V_3 \text{ or } V_{av34} > 2,70$		(Equation 25	-4 01 25-5)		V ₃ or V _{av34}	× 2.70		918 pc/h (Equ TYes ☑ No	alion 25-15	01 25-16
Is V_3 or $V_{av34} > 2.76$ Is V_3 or $V_{av34} > 1.5$								Yes No		
If Yes, $V_{12a} =$	·=	s i i No (Equation 25	0)		If Yes, $V_{12a} =$			c/h (Equation	25 10)	
		(Equation 25	-0)					oc/ii (Equation	23-10)	
Capacity Che	Actual	I c.	apacity	LOS F?	Capacity	y Che		1 00	n a aitu	LOS F
	Actual	C.	эрасну	LUSF?	V _F	-	Actual 5226	Exhibit 25-1	pacity 4 6780	No
M		F 1 11 11 0F 7			-	\ <u>\</u>		_		+
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- v _R	5085	Exhibit 25-1	_	No
					V _R		141	Exhibit 25-3		No
Flow Entering		1		\#\#\ C	Flow En			rge Influen		10.1.1
17	Actual	* 	Desirable	Violation?	1/		ctual	Max Desirat		Violation
V _{R12}	ioo Data	Exhibit 25-7	f not F		V ₁₂		308	Exhibit 25-14	4400:All	No
Level of Serv		•						terminatio		<u> </u>
$D_R = 5.475 + 0.0$		0.0078 V ₁₂ -	U.UU627 L _A					.0086 V ₁₂ - 0.	υυ9 L _D	
D _R = (pc/mi/						% (pc/	•			
LOS = (Exhib						•	it 25-4)			
Speed Deterr	nination				Speed D					
M _S = (Exibit 2	5-19)				. "	•	hibit 25	•		
S _R = mph (Exh	nibit 25-19)				S _R = 50.7 mph (Exhibit 25-19)					
S ₀ = mph (Exh	nibit 25-19)				$S_0 = 57$.9 mph	(Exhibit	25-19)		
	ibit 25-14)				S = 53			25-15)		

		KAMP	AND RAM			KNO	псст			
General Infor	mation			Site Infor						
Analyst Agency or Company Date Performed	02/14		Ju Ju	eeway/Dir of Tr nction risdiction	 	Southb Exit 2W NYSDC	/ Off DT			
Analysis Time Period			Ar	nalysis Year	-	2026 F	lyover			
Project Description	Exit 4									
Inputs		Terrain: Level								
Upstream Adj Ramp		Terrain. Lever							Downstrea Ramp	m Adj
✓ No ☐ Of									✓ Yes	☑ On
IM NO III OI	I								□ No	☐ Off
$L_{up} = ft$		S	_{FF} = 56.0 mph		S _{FR} = 4	0.0 mp	h		L _{down} =	1300 ft
V _u = veh/h			Sketch (show lanes, L _A					V _D =	840 veh/
Conversion t		der Base C	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	\perp	f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	4000	0.92	Level	2	0	0.	990	1.00	439	91
Ramp	450	0.92	Level	2	0	0.	990	1.00	49	4
UpStream	0.40	0.00				+	000	1.00	00	
DownStream	840	0.92 Merge Areas	Level	2	0	0.	990	1.00 Diverge Areas	92	2
Estimation of		ivier ge Areas			Estimati	ion o		Diverge Areas		
		(D.)			200,,,,,			., ., .,	_	
	$V_{12} = V_F$				1			= V _R + (V _F - V _I		
L _{EQ} =		ation 25-2 or			L _{EQ} =			Equation 25-8		
P _{FM} =	_	Equation (E	khibit 25-5)		P _{FD} =			.628 using Eq	uation (Exhi	bit 25-12)
V ₁₂ =	pc/h				V ₁₂ =			939 pc/h		
V_3 or V_{av34}		(Equation 25	-4 or 25-5)		V_3 or V_{av34}			452 pc/h (Equ	ation 25-15	or 25-16
Is V_3 or $V_{av34} > 2,70$								Tyes ✓ No		
Is V_3 or $V_{av34} > 1.5$								TYes ✓ No		
f Yes,V _{12a} =	pc/h	(Equation 25	-8)		If Yes,V _{12a} =	:	ŗ	oc/h (Equation	25-18)	
Capacity Che	cks				Capacity	y Ch	ecks			
	Actual	Ca	pacity	LOS F?		\Box	Actual	Ca	pacity	LOS F
					V_{F}		4391	Exhibit 25-1	4 6780	No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	3897	Exhibit 25-1	4 6780	No
					V _R		494	Exhibit 25-3	2100	No
Flow Entering	a Merae In	fluence A	rea		<u> </u>	terin	a Dive	rge Influen	ce Area	
	Actual		Desirable	Violation?		1	Actual	Max Desirat		Violation
V _{R12}		Exhibit 25-7			V ₁₂	2	2939	Exhibit 25-14	4400:All	No
Level of Serv	ice Detern		f not F)			Serv	vice De	terminatio	n (if not l	-)
$D_R = 5.475 + 0.0$		•			_			.0086 V ₁₂ - 0.	_	1
D _R = (pc/mi/	• • • • • • • • • • • • • • • • • • • •	12	A				/mi/ln)	12	Б	
LOS = (Exhib					I ''	**	oit 25-4)			
Speed Deterr					Speed D	•		on		
$M_S = $ (Exibit 2					1 -					
· ·					$D_s = 0.407$ (Exhibit 25-19) $S_R = 50.3$ mph (Exhibit 25-19)					
	ibit 25-19)					-				
$S_0 = mph (Exh)$	ibit 25-19)			S_0 = 59.7 mph (Exhibit 25-19) S = 53.1 mph (Exhibit 25-15)						
S = mph (Exh	ihit 25 111									

		IVAINIL	S AND RAM			ININO				
General Info	rmation			Site Infor						
Analyst Agency or Company Date Performed Analysis Time Perio	02/14		J	reeway/Dir of Tr unction urisdiction .nalysis Year]]	Southb Exit 4 S NYSD(2026 F	TC			
Project Description	Exit 4									
Inputs										
Upstream Adj Ramp		Terrain: Leve							Downstrea Ramp	m Adj
□ Yes □ O									✓ Yes	✓ On
✓ No ☐ O	ff								□ No	☐ Off
L _{up} = ft		S	_{FF} = 56.0 mph		S _{FR} = 4	0 0 mr	nh		L _{down} =	1585 ft
V _u = veh/l			Sketch (show lanes, L _A		0.0 111			V _D =	1010 veh
Conversion t		der Base (Conditions		·	1		Υ	n e	
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	3800	0.92	Level	2	0	_	.990	1.00	417	
Ramp	770	0.92	Level	2	0	0	.990	1.00	84	5
UpStream DownStream	1010	0.93	Lovol	1 4	0	+	.980	1.00	110	10
Downstieam		Merge Areas	Level	4	0	0		Diverge Areas	110	J6
Estimation o		mor go 7 ii odo			Estimati	ion c		21101g07110u0		
	V ₁₂ = V _F	(D)						= V _R + (V _F - V	\D	
l –		(' _{FM}) ation 25-2 or	25. 2\		_			Equation 25-8		
L _{EQ} = P _		Equation (E			L _{EQ} =			.617 using Ed		hit 2E 12\
P _{FM} = V ₁₂ =	pc/h	Equation (L	.XIIIDI(23-3)		P _{FD} = V ₁₂ =			.017 using Ed 897 pc/h	quation (Exil	IDIL 20-12)
V ₁₂ – V ₃ or V _{av34}	•	(Equation 25	-4 or 25-5)		V ₁₂ = V ₃ or V _{av34}			275 pc/h (Equ	action OF 15	or 25 16
Is V ₃ or V _{av34} > 2,7			-4 01 25-5)			> 27		Z/3 pc/II (Equ Yes ☑ No	ialion 25-15	01 25-10
Is V_3 or $V_{av34} > 2,7$ Is V_3 or $V_{av34} > 1.5$								Yes Mo		
If Yes,V _{12a} =	·=	S I NO (Equation 25	-8)		If Yes, $V_{12a} =$			oc/h (Equation	25-18)	
Capacity Ch		(Equation 20	-0)		Capacity			on (Equation	123-10)	
Сараспу Сп	Actual	Т с	apacity	LOS F?	Capacity	y Cii	Actual	Ca	pacity	LOS F?
	Actual	† ĭ	арасну	1031:	V _F	$\overline{}$	4172	Exhibit 25-1	<u> </u>	No
V		Exhibit 25-7			-	\/		_		+
V _{FO}		EXHIBIT 23-7			$V_{FO} = V_{F}$	- v _R	3327	Exhibit 25-1		No
<u></u>					V _R		845	Exhibit 25-3		No
Flow Enterin	1	1		1 1/21/20	Flow En	- II		rge Influen		Nr. 1 . 12
V	Actual	`	Desirable	Violation?	\/		Actual	Max Desiral		Violation
V _{R12} Level of Serv	ioo Doto:::	Exhibit 25-7	f not []		V ₁₂		2897	Exhibit 25-14 Eterminatio	4400:All	No No
		•			+					-)
$D_R = 5.475 + 0$		0.0078 V ₁₂ -	0.00627 L _A					0.0086 V ₁₂ - 0.	.009 L _D	
D _R = (pc/mi							:/mi/ln)			
,	it 25-4)					•	bit 25-4)			
Speed Deter					Speed D					
$M_S = (Exibit 2)$	5-19)				. "	•	xhibit 25	*		
S _R = mph (Exl	nibit 25-19)				S _R = 49.9 mph (Exhibit 25-19)					
S ₀ = mph (Exl	nibit 25-19)				$S_0 = 60$).4 mpł	ı (Exhibit	25-19)		
· ·	nibit 25-14)									

	RAI	MPS AND F	<u>RAMP JUN</u>	<u>CTIONS W</u>	<u>/ORKSH</u> E	ET			
General Info	rmation			Site Infor	mation				
Analyst Agency or Company Date Performed	SEB CHA 02/14		Ju	reeway/Dir of Tr unction urisdiction		Southbound I- Exit 4 SB On-F NYSDOT			
Analysis Time Perio		4/12		nalysis Year		2026 Flyover			
Project Description			- 11	narjoio i oai	•	20201130101			
nputs									
Jpstream Adj Ramp		Terrain: Level						Downstr Ramp	eam Adj
Yes O								☐ Yes	□ On
□ No O	ff							✓ No	☐ Off
- _{up} = 1585	ft				L _{down} = ft				
$v_{\rm u} = 770 \text{ V}$	reh/h	S _F	$_{F} = 56.0 \text{ mph}$ Sketch (show lanes, L _A ,	$S_{FR} = 40.0 \text{ mph}$				veh/h
Conversion	to pc/h Und	der Base C	onditions					•	
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	fp	v = V/PH	IF x f _{HV} x f _p
Freeway	3050	0.92	Level	2	0	0.990	1.00		3348
Ramp	1010	0.93	Level	4	0	0.980	1.00	4	1108
UpStream	770	0.92	Level	2	0	0.990	1.00		845
DownStream	<u> </u>	Merge Areas		<u> </u>	 	<u> </u>	Diverge Are	20	
Estimation o		ivier ge Areas			Estimati	ion of v ₁₂		as	
		(D)				12	1		
	$V_{12} = V_{F}$	• • • • • • • • • • • • • • • • • • • •				V ₁₂	$= V_R + (V_F -$	$V_R)P_{FD}$	
EQ =		Equation 2			L _{EQ} =		(Equation	25-8 or 25	-9)
P _{FM} =		using Equation	on (Exhibit 25-5))	P _{FD} =		using Equ	ation (Exhib	it 25-12)
12 =	2057	•			V ₁₂ =		pc/h		
₃ or V _{av34}	1291 5)	pc/h (Equatio	n 25-4 or 25-		V_3 or V_{av34}		pc/h (Equati	on 25-15 or 2	5-16)
s V ₃ or V _{av34} > 2,7	,	s 🗹 No			Is V ₃ or V _{av3}	$_{34} > 2,700 \text{ pc/h}$? ☐ Yes ☐	No	
s V ₃ or V _{av34} > 1.5					Is V ₃ or V _{av3}	₃₄ > 1.5 * V ₁₂ /2	? ☐ Yes ☐	No	
Yes,V _{12a} =	· -	(Equation 25-	8)		If Yes,V _{12a} =		pc/h (Equa	ation 25-18)
Capacity Ch	•	(= 4	-,		Canacit	y Checks			
capacity cir.	Actual	Ca	pacity	LOS F?	Cupucit	Actu		Capacity	LOS F
			, <u></u>		V _F		Exhibit		
V_{FO}	4456	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _D	Exhibit :		
, FO	1100	EXHIBIT 20 7		110	V _R	R	Exhibit		_
Jaw Entarin	a Maraa In	fluores Ar			-	toring Di			
Flow Enterin	Actual		esirable	Violation?	FIOW EII	Actual	verge Influ	esirable	Violation?
V _{R12}	3165	Exhibit 25-7	4600:All	No	V ₁₂	Actual	Exhibit 25-1	_	violations
Level of Serv				140		Service	Determina		ot F1
		0.0078 V ₁₂ - 0.00					+ 0.0086 V ₁₂	•	<i>(1)</i>
$D_{R} = 3.473$	10	0.0070 V ₁₂ 0.00	7027 L _A			c/mi/ln)	1 0.0000 V ₁₂	0.000 LD	
.OS = C (Exhi	ibit 25-4)				LOS = (E	xhibit 25-4)			
Speed Deter	mination				Speed D	Determina	tion		
	ribit 25-19)				 '	xhibit 25-19)			
-	(Exhibit 25-19)				1	ph (Exhibit 25-	19)		
	(Exhibit 25-19)					ph (Exhibit 25-			
n JJ.Z 111011	(LAHIDIL 20-17)				I "	,	,		
	(Exhibit 25-14)				S = mi	oh (Exhibit 25-	15)		

		RAMP JUNG						
nation			Site Infor	mation				
PM	1/12	Ju Ju	nction risdiction	E	Exit 5 SB On-F NYSDOT			
Exit 4								
	h							
	Terrain: Lever						Downstro Ramp	eam Adj
							✓ Yes	□ On
							I No	✓ Off
		F/ 0 mmh		C 4	0.0 mmh		L _{down} =	4700 ft
	3		show lanes, L _A ,		o.o mpn		$V_D =$	770 veh/h
pc/h Und	der Base C	Conditions						
V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p
3150	0.92	Level	2	0	0.990	1.00		3458
640	0.87	Level	1	0	0.995	1.00		739
		Level	2	0	0.990	1.00		845
	Merge Areas			Cating ati		Diverge Are	as	
V ₁₂				Estimati	on or v ₁₂			
$V_{12} = V_{F}$	(P _{FM})				V ₁₂	= V _D + (V _E ·	- V _D)P _{ED}	
3397.67	(Equation	25-2 or 25-3)		L _{FO} =	12			.9)
0.614	using Equati	on (Exhibit 25-5)						
2123 g	oc/h						ICCIOTT (EXTINO	(20 12)
1335 p	oc/h (Equatio	n 25-4 or 25-				•	ion 25 15 or 2	E 14\
5)					> 2.700 nc/h			J-10)
					•			
$V_{12}/2 \square Yes$	s 🗹 No							
pc/h ((Equation 25	-8)		II Yes, v _{12a} =		pc/n (Equ	ation 25-18)
cks				Capacity	/ Checks			
Actual	Ca	pacity	LOS F?		Actu	al	Capacity	LOS F
				V_{F}		Exhibit	25-14	
4197	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhibit	25-14	
						Exhibit	25-3	
Merge In	fluence A	roa	ļ	•	terina Div			<u>_</u>
	Transfer of the second		Violation?	1 1011 211				Violation?
2862	Exhibit 25-7	4600:All	No	V ₁₀			1	
					Service I			ot F)
							•	/
	12 3.0	А			• •	*12	: -: - D	
•					•			
•				<u>`</u>		tion		
				-		uOH		
it 25-19)				3		1		
				S _R = mp	h (Exhibit 25-	19)		
Exhibit 25-19)								
Exhibit 25-19) Exhibit 25-19)					oh (Exhibit 25-			
	CHA 02/14 PM Exit 4 Description of the properties of the proper	SEB	SEB CHA Ju 02/14/12 Ju PM An Exit 4 Terrain: Level	SEB CHA Junction 02/14/12 Jurisdiction Analysis Year Exit 4 Terrain: Level	SEB CHA Junction 1	SEB	SEB	SEB

			FREEWA	Y WEAV	ING WOR	KSHEE	Τ		
General	Informat	ion			Site Info	rmation			
Analyst Agency/Con Date Perforr Analysis Tim	ned	SEB CHA 02/14/ PM	12		Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	Location	Exit 2 NYSD	lorthbound E on to 2W o OOT Flyover	ff
Inputs									
Weaving nui Weaving seq Terrain	e-flow speed, s mber of lanes, g length, L (ft)	Ň	56 4 815 Lev	el	Weaving type Volume ratio Weaving ratio	, VR		22 36	
Convers	sions to p	c/h Unde	er Base C	ondition		r	1	1	
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f _{HV}	fp	V
V _{o1}	4280	0.86	2	0	1.5	1.2	0.990	1.00	5026
V_{02}	0	0.92	2	0	1.5	1.2	0.990	1.00	0
V_{w1}	840	0.92	2	0	1.5	1.2	0.990	1.00	922
V_{w2}	470	0.92	2	0	1.5	1.2	0.990	1.00	515
$V_{_{\mathrm{W}}}$	1		•	1437	V _{nw}		•	•	5026
V	1					l			6463
Weaving	g and No	n-Weavin	g Speeds	5					
			Unconstr	4				trained	
o /Evhibit 24	()	Weaving			ving (i = nw)	Weavir	ng (i = w)	Non-Wea	ving (= nw)
a (Exhibit 24 b (Exhibit 24		0.15 2.20			.00				
c (Exhibit 24		0.97		1	.30				
d (Exhibit 24	-6)	0.80)	0.	.75				
Weaving intensit	•	1.42	<u>)</u>	0.	.76				
Weaving and no speeds, Si (mi/h		34.0	4	41	.15				
Maximum nı	umber of lanes				1.28 1.40				
		(max) uncons					v (max) constr	rained operati	on
					f Service,	and Cap	acity		
		S (mi/h)		39.32					
	gment density,	, D (pc/mi/ln)		41.09					
Level of serv		(n a /la)		E					
	base condition	<u> </u>	# N	6619					
		ow rate, c (veh		6553					
	a full-hour vol	ume, c _h (veh/h	1)	5728					
Notes									

a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

2/17/2012

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

			FREEWA	Y WEAV	ING WOR	KSHEE	T		
General	Informat	ion			Site Info	rmation			
Analyst Agency/Cor Date Perfori Analysis Tin	med	SEB CHA 02/14/ PM	12		Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	Location	Exit 2 NYSD	outhbound W on to 2E of OOT Flyover	f
Inputs					1				
Weaving nu Weaving se Terrain	e-flow speed, mber of lanes, g length, L (ft)	, N	56 4 810 Lev	el	Weaving type Volume ratio, Weaving ratio	, VR		23 14	
Convers	sions to p	c/h Unde	r Base C	ondition	7		1	1	1
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f _{HV}	fp	V
V_{o1}	3210	0.92	2	0	1.5	1.2	0.990	1.00	3524
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0
V_{w1}	840	0.92	2	0	1.5	1.2	0.990	1.00	922
V_{w2}	140	0.92	2	0	1.5	1.2	0.990	1.00	153
V _w	1			1075	V _{nw}		•		3524
V V	1					l			4599
Weavin	g and No	n-Weavin	g Speeds	<u> </u>					
			Unconstr					trained	
- /E. hibit 0	1.7	Weaving	<u> </u>		ving (i = nw)	Weavir	ng (i = w)	Non-Wea	ving (= nw)
a (Exhibit 24 b (Exhibit 24		0.15 2.20		!	0035				
c (Exhibit 24		0.97			.30				
d (Exhibit 24		0.80		1	.75				
Weaving intensi		1.04		0.	.51				
Weaving and no speeds, Si (mi/h		37.5)	45	.49				
Number of I Maximum n	anes required umber of lanes	for unconstrair s, Nw (max) ı(max) unconst			1.26 1.40	if Nw > Nv	v (max) consti	rained operati	on
		<u> </u>			f Service,		, ,	'	
Weaving se	gment speed,	S (mi/h)		43.33		<u> </u>			
	gment density			26.53					
Level of ser	vice, LOS			С					
Capacity of	base conditior	n, c _b (pc/h)		6549					
Capacity as	a 15-minute fl	ow rate, c (veh	/h)	6484					
Capacity as	a full-hour vol	ume, c _h (veh/h)	5965					
Notes				-					

a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

HCS+TM Version 5.3

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
S0 Free-Flow Spzed FFS = 75 mith 70 mith 70 mith 65 mith	B C C	1500 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, V _p FFS, LOS, V _f FFS, LOS, N FFS, N, AAD FFS, LOS, A	v _p , S, D T LOS, S, D ADT N, S, D
S. 2017 B0949	Flow Rate (pc/h/lin)	C 0-43.54			
General Information			Site Infori			
Analyst Agency or Company Date Performed Analysis Time Period	SEB CHA 02/14/12 PM		Highway/Dire From/To Jurisdiction Analysis Yea	ection of Travel ar	Southbound Exit 4 to Exit NYSDOT 2036 Flyove	2
Project Description Exit 4						_
Oper.(LOS)			Des.(N)		Plannin	g Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	4150	veh/h veh/day	Peak-Hour F %Trucks and %RVs, P _R General Terr	d Buses, P _T	0.92 2 0 Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade %	Length Up/Down %	mi	
Calculate Flow Adjustr						
f _p	1.00		E _R		1.2	
E _T	1.5			E _T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs	10.0	•	Calc Spee	ed Adj and FFS	5	
Lane Width	12.0	ft	f_LW			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft ./m:	f_LC			mi/h
Interchange Density Number of Lanes, N	0.50 3	I/mi	f_ID			mi/h
FFS (measured)	56.0	mi/h	f_N			mi/h
Base free-flow Speed, BFFS	30.0	mi/h	FFS		56.0	mi/h
LOS and Performance	Measures	1111/11	Design (N	<u>, </u>		
Operational (LOS) $v_{p} = (V \text{ or DDHV}) / (PHF \times N)$ f_{p} S		pc/h/ln mi/h	<u>Design (N)</u> Design LOS	•	f _{HV} x	pc/h
D = v _p / S LOS	27.1 D	pc/mi/ln	S D = v _p / S Required Nu	ımber of Lanes, N		mi/h pc/mi/ln
Glossary			Factor Lo			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fro		E _R - Exhibits E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1	1 f _{LC}	y - Exhibit 23-4 - Exhibit 23-5 - Exhibit 23-6 - Exhibit 23-7
Copyright © 2007 University of Florida,			, , , , , , , , , , , , , , , , , , ,	M Version 5.3	Genera	ted: 2/17/2012 1:37 P

HCS+TM Version 5.3

HCS+TM Version 5.3

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 mith 70 mith 70 mith 65 mith 55 mith 55 mith 40 mith 70 mi	B C	450 (600 1750 0 1600 200	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	Input FFS, N, FFS, LO: FFS, LO: FFS, LO: FFS, LO:	S, v _p N, S, D S, N v _p , S, D AADT LOS, S, D S, AADT N, S, D
General Information	Flow Rate (pc/h/lin)	Site Inform	mation		
Analyst Agency or Company Date Performed Analysis Time Period	SEB CHA 02/14/12 PM			ection of Travel	Northbou Exit 4 off NYSDOT 2036 Flyc	to Exit 4 off
Project Description Exit 4 Oper.(LOS)		П	Des.(N)		∏ Plan	ining Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	4400	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra	Buses, P _T	0.86 2 0 Level	
DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustr	1.00 nents	veh/h	Grade %	Length Up/Down %	mi	
f_p	1.00		E _R		1.2	
E_T	1.5		$f_{HV} = 1/[1+P_T(E_T)]$	T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs			Calc Spee	d Adj and FFS	6	
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N	12.0 6.0 0.50 3	ft ft I/mi	f_{LW} f_{LC} f_{ID}			mi/h mi/h mi/h
FFS (measured)	56.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance Operational (LOS)	Measures		Design (N) Design (N)			
$v_p = (V \text{ or DDHV}) / (PHF x N)$ f_p	x f _{HV} x 1722	pc/h/ln	Design LOS $v_p = (V \text{ or DD} f_p)$	PHV) / (PHF x N x	f _{HV} x	pc/h
S D=v _p /S LOS	56.0 30.8 D	mi/h pc/mi/In	S D = v _p / S	mber of Lanes, N		mi/h pc/mi/ln
Glossary			Factor Loc	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base from		f _p - Page 23-	23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho				M Version 5.3		nerated: 2/17/2012 1:38

HCS+TM Version 5.3

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 mith 70 mith 65 mith 60 mith 55 mith 50 LOS A 6	B C	1500 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO: FFS, LO: FFS, LO: FFS, LO:	S, v _p N, S, D S, N v _p , S, D AADT LOS, S, D S, AADT N, S, D
General Information	Flow Rate (pc/h/lin)	Site Inform	nation		
Analyst Agency or Company Date Performed Analysis Time Period	SEB CHA 02/14/12 PM			ection of Travel	Southbou Exit 4 off NYSDOT 2036 Flyo	to Exit 4 on
Project Description Exit 4 Oper.(LOS)		П	Des.(N)		☐ Plan	ining Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	3050	veh/h veh/day veh/h	Peak-Hour Fa %Trucks and %RVs, P _R General Terra Grade %	Buses, P _T	0.92 2 0 Level mi	
Driver type adjustment Calculate Flow Adjustr	1.00 nents	Verifii		Up/Down %		
f _p	1.00		E _R		1.2	
E _T	1.5			T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs				d Adj and FFS		
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 3 56.0	ft ft I/mi mi/h	f _{LW} f _{LC} f _{ID}			mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS	33.3	mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N))		
Operational (LOS) v _p = (V or DDHV) / (PHF x N : f _p) S		pc/h/ln mi/h	$\frac{\text{Design (N)}}{\text{Design LOS}}$ $v_p = (V \text{ or DD}$ $f_p)$	OHV) / (PHF x N x	f _{HV} x	pc/h
D = v _p / S LOS	19.9 C	pc/mi/ln	S D = v _p / S Required Nu	mber of Lanes, N		mi/h pc/mi/In
Glossary			Factor Loc	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base from		f _p - Page 23-	23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho				M Version 5.3		nerated: 2/17/2012 1:38

HCS+TM Version 5.3

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 mith 70 mith 70 mith 65 mith 55 mith 55 mith 100 A	B C C	450 (600 1750 0 1600 200	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	Input FFS, N, vp FFS, LOS, FFS, N, Ai FFS, LOS, FFS, LOS,	v _p N, S, D N v _p , S, D ADT LOS, S, D AADT N, S, D
General Information	Flow Rate (pc/h/lin	L ₂	Site Inforn	nation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/14/12 PM			ction of Travel	Northboun Exit 4 to E NYSDOT 2036 Flyon	xit 5
✓ Oper.(LOS)		П	Des.(N)		☐ Plann	ing Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	5950	veh/h veh/day veh/h	Peak-Hour Fa %Trucks and %RVs, P _R General Terra Grade %	Buses, P _T ain: Length	0.86 2 0 Level mi	
Driver type adjustment	1.00			Up/Down %		
Calculate Flow Adjustr					1.2	
f _p E _⊤	1.00 1.5		E _R	1) . D /E 1)	0.990	
Speed Inputs	1.5			_T - 1) + P _R (E _R - 1)] d Adj and FFS		
Lane Width	12.0	ft		u Auj anu FFS	<u> </u>	
Rt-Shoulder Lat. Clearance Interchange Density	6.0 0.50	ft I/mi	f _{LW} f _{LC}			mi/h mi/h mi/h
Number of Lanes, N	4		f			mi/h
FFS (measured)	56.0	mi/h	FFS		56.0	mi/h
Base free-flow Speed, BFFS		mi/h				1111/11
LOS and Performance Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times N)$ f_p) S $D = v_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	f_p) S $D = v_p / S$	PHV) / (PHF x N x	f _{HV} x	pc/h mi/h pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fro		E _R - Exhibits2 E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1	1 f f	_{LW} - Exhibit 23-4 _{LC} - Exhibit 23-5 _N - Exhibit 23-6 _{ID} - Exhibit 23-7
Copyright © 2007 University of Florida,				Version 5.3		rated: 2/17/2012 1:38

HCS+TM Version 5.3

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
80 Free-Flow Spzed FFS = 75 mith 70 mith 70 mith 65 mith 65 mith 55 mith 55 mith 70 LOS A 10	B C C	150 (500 1750 1750 1750 1750 1750 1750 1750 1	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (M) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v FFS, N, AA FFS, LOS, f FFS, LOS, f	v _p , S, D DT LOS, S, D NADT N, S, D
General Information	Flow Rate (pc/h/lin)	Site Inform	mation		
Analyst	SEB			ection of Travel	Southbound	H I-87
Agency or Company	CHA		From/To	otion of Travel	Exit 5 to Ex	
Date Performed	02/14/12		Jurisdiction		NYSDOT	
Analysis Time Period	PM		Analysis Yea	r	2036 Flyove	er
Project Description Exit 4						
✓ Oper.(LOS)			Des.(N)		□ Planni	ng Data
Flow Inputs						
Volume, V	3900	veh/h	Peak-Hour Fa		0.92	
AADT		veh/day	%Trucks and	Buses, P _T	2	
Peak-Hr Prop. of AADT, K			%RVs, P _R		0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terra		Level	
Driver type adjustment	1.00	ven/n	Grade %	Length Up/Down %	mi	
Calculate Flow Adjusti				<u> </u>		
f _p	1.00		E _R		1.2	
E _T	1.5			1) . D /E 1)1	0.990	
	1.5			$\frac{1}{1} - 1 + P_R(E_R - 1)$		
Speed Inputs	10.0		Caic Spee	d Adj and FFS)	
Lane Width	12.0	ft	${\sf f}_{\sf LW}$			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f_LC			mi/h
Interchange Density	0.50	l/mi	f _{ID}			mi/h
Number of Lanes, N	3		f			mi/h
FFS (measured)	56.0	mi/h	'N		50.0	
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N)		
Operational (LOS)			Design (N)			
Operational (LOS)	v f v		Design LOS			
$v_p = (V \text{ or DDHV}) / (PHF \times N)$	1427 1427	pc/h/ln	$v_p = (V \text{ or } DD)$	OHV) / (PHF x N x	f _{HV} x	/I-
f _p)		. /-	f _p)			pc/h
S	56.0	mi/h	Ś			mi/h
$D = v_p / S$	25.5	pc/mi/ln	$D = v_p / S$			pc/mi/ln
LOS	С		F	mber of Lanes, N		1
 Glossary			Factor Loc			
N - Number of lanes	S - Speed		1 40101 201	<u> </u>		
V - Hourly volume	D - Density		E _R - Exhibits:	23-8, 23-10	f_L	_W - Exhibit 23-4
I	•	, sneed	E_T - Exhibits	23-8, 23-10, 23-1	1 f _L	_C - Exhibit 23-5
v _p - Flow rate	FFS - Free-flow		f _p - Page 23-	12	_	- Exhibit 23-6
LOS - Level of service	BFFS - Base fr	ee-flow speed	P	, v _p - Exhibits 23-2		- Exhibit 23-7
DDHV - Directional design ho	our volume			<u>'</u>	"	-
Copyright © 2007 University of Florida,	, All Rights Reserved		HCS_TN	M Version 5.3	Gener	ated: 2/17/2012 1:39 I

HCS+TM Version 5.3

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
Free-Flow Speed FFS = 75 mith 70	B C C	50 (600 1750 E	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AADT FFS, LOS, N	Output LOS, S, D N, S, D V _p , S, D LOS, S, D N, S, D V _p , S, D
General Information	Flow Rate (pc/h/lin)	5 3	Site Inform	mation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	CLD CHA 07/30/13 PM			ection of Travel	Northbound I-8 Exit 5 to Exit 6 NYSDOT 2036 Flyover	7
✓ Oper.(LOS)			Des.(N)		Planning [Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	6200	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra	Buses, P _T	0.86 2 0 Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade %	Length Up/Down %	mi	
Calculate Flow Adjustr					1.0	
f _p	1.00 1.5		E _R	4) . D /E 4)1	1.2 0.990	
E _⊤ Speed Inputs	1.5			_T - 1) + P _R (E _R - 1)] d Adj and FFS		
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 4 56.0	ft ft I/mi mi/h	f _{LW} f _{LC} f _{ID} f _N	a Aaj ana 11 o		mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS	56.0	mi/h	FFS		56.0	mi/h
LOS and Performance	Measures	1111/11	Design (N)	1		
Operational (LOS) $V_p = (V \text{ or DDHV}) / (PHF \times N)$ f_p S		pc/h/ln mi/h	<u>Design (N)</u> Design LOS)HV) / (PHF x N x t	f _{HV} x	pc/h
D = v _p / S LOS	32.5 D	pc/mi/ln	S D = v _p / S Required Nu	mber of Lanes, N		mi/h pc/mi/ln
Glossary			Factor Loc	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base freedour volume	-	f _p - Page 23-	23-8, 23-10, 23-1	1 f _{LC} - I f _N - E	Exhibit 23-4 Exhibit 23-5 xhibit 23-6 Exhibit 23-7
Copyright © 2007 University of Florida,	All Rights Reserved		UCS.TM	Version 5.3	Generated:	7/30/2013 8:26 AM

HCS+TM Version 5.3

Generated: 7/30/2013 8:26 AM

	BASIC F	REEWAY SI	EGMENTS V	VORKSHEET		
So	By C.	150 (600 1750 0		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AADT FFS, LOS, N	Output LOS, S, D N, S, D v _p , S, D LOS, S, D N, S, D v _p , S, D
0 400 800) 1200 Flow Rate (pc/h/lin	1600 200)	0 2400			
General Information			Site Infor	mation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	CLD CHA 07/30/13 PM		Highway/Dir From/To Jurisdiction Analysis Yea	ection of Travel	Southbound I-8 Exit 6 to Exit 5 NYSDOT 2036 Flyover	37
✓ Oper.(LOS)			Des.(N)		☐ Planning	Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K	3800	veh/h veh/day	Peak-Hour F %Trucks and %RVs, P _R	d Buses, P _T	0.92 2 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustr	1.00 ments	veh/h	General Ter Grade %		Level mi	
f _p	1.00		E _R		1.2	
E _T	1.5			E _T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs				ed Adj and FFS		
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N FFS (measured)	12.0 6.0 0.50 4 56.0	ft ft I/mi mi/h	f _{LW} f _{LC} f _{ID} f _N FFS		56.0	mi/h mi/h mi/h mi/h mi/h
Base free-flow Speed, BFFS		mi/h			30.0	1111/11
LOS and Performance Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times N)$ f_p) S $D = v_p / S$	x f _{HV} x 1043 56.0 18.6	pc/h/ln mi/h pc/mi/ln	Design (N) Design LOS $v_p = (V \text{ or DI} f_p)$ S $D = v_p / S$	-	f _{HV} x	pc/h mi/h pc/mi/ln
LOS	С			umber of Lanes, N		
Glossary N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho			E _T - Exhibits f _p - Page 23 LOS, S, FFS	s23-8, 23-10 s 23-8, 23-10, 23-11 -12 S, v _p - Exhibits 23-2	1 f _{LC} - f _N - E 2, 23-3 f _{ID} - I	Exhibit 23-4 Exhibit 23-5 Exhibit 23-6 Exhibit 23-7
Copyright © 2007 University of Florida,	All Rights Reserved		HC6 ^r 1	TM Version 5.3	Generated	: 8/12/2013 3:32

HCS+TM Version 5.3

		MPS AND	RAMP JUNG			EET					
General Info	rmation			Site Infor	mation						
Analyst Agency or Company Date Performed Analysis Time Perio	02/14		Jui Jui	eeway/Dir of Tr nction risdiction alysis Year				р			
Project Description							<i>y</i>				
nputs											
Jpstream Adj Ramp)	Terrain: Level							Downstrea Ramp	am Adj	
Yes O									☐ Yes	□ On	
□ No □ O	ff								™ No	Off	
- _{up} = 1100	ft								L _{down} =	ft	
/ _u = 880 v	/eh/h	S	_{FF} = 56.0 mph Sketch (s	show lanes, L _A ,	$S_{FR} = 4$ $L_{D'}V_{R'}V_{f}$	0.0 mpl	h		V _D =	veh/h	
Conversion	to pc/h Und	der Base C	Conditions								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f	HV	f_p	v = V/PHF	x f _{HV} x f _p	
Freeway	4750	0.86	Level	2	0	0.9	90	1.00	5	578	
Ramp	880	0.92	Level	2	0	0.9	90	1.00		966	
UpStream	880	0.92	Level	2	0	0.9	90	1.00	,	966	
DownStream	<u> </u>	Merge Areas						Diverse Areas			
Estimation o			Estimati	ion o		Diverge Areas	•				
		(D)									
	$V_{12} = V_F$		25.0 05.0)				V ₁₂ =	$V_R + (V_F - V_F)$	′ _R)P _{FD}		
EQ =		(Equation 2			L _{EQ} =			(Equation 2	5-8 or 25-9)	
) FM =			on (Exhibit 25-5)		P _{FD} =			using Equat	ion (Exhibit	25-12)	
1 ₁₂ =	3224		05.4.05		V ₁₂ =			pc/h			
₃ or V _{av34}	2354 5)	oc/n (Equatio	n 25-4 or 25-		V ₃ or V _{av34} pc/h (Equation 25-15 or 25-16)						
s V ₃ or V _{av34} > 2,7	,	s 🗹 No			Is V ₃ or V _{av3}	₃₄ > 2,70	00 pc/h?	☐ Yes ☐ N	0		
Is V ₃ or V _{av34} > 1.5					Is V ₃ or V _{av3}	₃₄ > 1.5	* V ₁₂ /2	☐ Yes ☐ N	0		
Yes,V _{12a} =	· -	(Equation 25	-8)		If Yes,V _{12a} =	:		pc/h (Equati	on 25-18)		
Capacity Ch		<u> </u>	,		Capacit	v Che	ecks				
o para say	Actual	Ca	pacity	LOS F?	10		Actual	С	apacity	LOS F	
					V _F			Exhibit 25			
V_{FO}	6544	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _D		Exhibit 25	-14		
FO					V _R			Exhibit 25	_	+	
Flow Enterin	na Merae In	fluence A	ro2	<u> </u>	•	torin	a Dive	erge Influe		<u></u>	
TOW LINEITH	Actual		Desirable	Violation?	i iow En		ctual	Max Des		Violation	
V _{R12}	4190	Exhibit 25-7	4600:All	No	V ₁₂	1 		Exhibit 25-14			
Level of Serv	ı∟ ≀ice Detern		f not F)			Serv	rice D	eterminati	on (if no	<i>t F</i>)	
	+ 0.00734 v _R + 0							0.0086 V ₁₂ -	<u> </u>	,	
10	c/mi/ln)	12	А			c/mi/lr		12	ט		
	ibit 25-4)					xhibit	,				
Speed Deter					Speed D			on			
					 	xhibit 2					
,	(ibit 25-19)						ibit 25-19)			
	(Exhibit 25-19)						ibit 25-19				
S ₀ = 49.1 mph	(Exhibit 25-19)				l °			•			
	(Exhibit 25-14)				IS = mi	nh /Evb	ibit 25-15	1			

	· · ·	IXAIIII	S AND RAM							
General In				Site Infor						
Analyst Agency or Comp Date Performed Analysis Timo P	02/	A 14/12	J	reeway/Dir of Tr unction urisdiction		Exit 4 NYSD		SR		
Analysis Time Po Project Descripti			A	nalysis Year		2036 F	lyover			
Inputs	UII EXIL4									
•		Terrain: Leve	<u> </u>						Daywastras	na A ali
Upstream Adj Ra	imp On	10.114 2010	•						Downstrea Ramp	-
									✓ Yes	☐ On
™ No □	Off								□ No	✓ Off
L _{up} = ft									L _{down} =	2600 ft
•	eh/h	S	$_{FF}$ = 56.0 mph Sketch (show lanes, L _A ,	$S_{FR} = 4$ $L_{D_f} V_{R_f} V_f$	10.0 mj	ph		V _D =	120 veh/
Conversio	n to pc/h Ur	der Base (
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	5650	0.86	Level	2	0	0	.990	1.00	663	35
Ramp	1260	0.86	Level	2	0	0	.990	1.00	148	30
UpStream				1		+-				
DownStream	120	0.86 Merge Areas	Level	1	0	0	.995	1.00	14	0
Estimation		Estimati	ion (Diverge Areas					
Louination					LStillati	1011				
		_F (P _{FM})						= V _R + (V _F - V		
L _{EQ} =		uation 25-2 or			L _{EQ} =			58.21 (Equation		
P _{FM} =	usin	g Equation (E	Exhibit 25-5)		P _{FD} =		0	.526 using Ed	quation (Exhi	bit 25-12)
V ₁₂ =	pc/h				V ₁₂ =			192 pc/h		
V_{3} or V_{av34}		(Equation 25	-4 or 25-5)		V_3 or V_{av34}			443 pc/h (Equ	ation 25-15	or 25-16
	2,700 pc/h?							☐ Yes 🗹 No		
	1.5 * V ₁₂ /2							☐ Yes ☑ No		
If Yes,V _{12a} =	pc/h	(Equation 25	5-8)		If Yes,V _{12a} =	:	ı	oc/h (Equation	25-18)	
Capacity C	Checks				Capacity	y Ch	ecks			
	Actual	C	apacity	LOS F?			Actual	Ca	pacity	LOS F
					V _F		6635	Exhibit 25-1	4 6780	No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V_R	5155	Exhibit 25-1	4 6780	No
					V _R		1480	Exhibit 25-3	3 2100	No
Flow Enter	ring Merge I	nfluence A	rea		Flow En	terii	na Dive	rge Influen	ce Area	
	Actual		Desirable	Violation?			Actual	Max Desiral		Violation
V _{R12}		Exhibit 25-7			V ₁₂		4192	Exhibit 25-14	4400:All	No
	ervice Deter	mination (i	if not F)		Level of	Ser	vice De	eterminatio	n (if not l	-)
D _R = 5.475	+ 0.00734 v _R +	- 0.0078 V ₁₂ -	0.00627 L _A			D _R = -	4.252 + 0	0.0086 V ₁₂ - 0.	.009 L _D	
D _R = (pc	/mi/ln)				D _R = 34	1.0 (pc	c/mi/ln)		_	
LOS = (Ex	hibit 25-4)				LOS = D	(Exhi	bit 25-4)			
Speed Det	ermination				Speed D	•	•	on		
	it 25-19)						xhibit 25			
	Exhibit 25-19)						h (Exhibit	,		
	Exhibit 25-19)				1 ''	-	h (Exhibit			
1	Exhibit 25-19)				1.	-	h (Exhibit			
,~ iiipii (1 31	mp		_U IU)		

		RAMPS	S AND RAM	IP JUNCTI	ONS WOR	RKSI	HEET			
General Infori	nation			Site Infor						
Analyst	SEB		F	reeway/Dir of Tr		Vorthho	ound I-87			
Agency or Company	CHA			unction			B Off to W	/olf		
Date Performed	02/14	1/12		urisdiction		NYSDO				
Analysis Time Period	PM		А	nalysis Year	2	2036 FI	yover			
Project Description	Exit 4									
Inputs		l								
Upstream Adj Ramp		Terrain: Level							Downstrea Ramp	ım Adj
Yes On									☐ Yes	☐ On
□ No □ Off									✓ No	☐ Off
L _{up} = 2600 f	t								L _{down} =	ft
V _u = 1260 v	ah/h	S	_{FF} = 56.0 mph		$S_{FR} = 40$	0.0 mpl	h		V _D =	veh/h
		day Daga (show lanes, L _A	L_{D}, V_{R}, V_{f}				<u> </u>	
Conversion to) pc/n Und ∀	Т		Т	1	1		. 1		
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv	1	f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	4400	0.86	Level	2	0	0.9	990	1.00	51	67
Ramp	120	0.86	Level	2	0	0.9	990	1.00		41
UpStream	1260	0.86	Level	1	0	0.9	995	1.00	14	72
DownStream		Merge Areas			-			Diverge Areas		
Estimation of		iviei ye Ai eas			Estimation	on o		Diverge Areas		
		(D)						\/ . (\/ \/	\D	
	$V_{12} = V_F$		05.0)		<u> </u>			= V _R + (V _F - V _F		
L _{EQ} =		ation 25-2 or			L _{EQ} =			Equation 25-8		
P _{FM} =	=	Equation (E	xhibit 25-5)		P _{FD} =			.624 using Eq	uation (Exh	nibit 25-12)
V ₁₂ =	pc/h				V ₁₂ =			279 pc/h		
V ₃ or V _{av34}		(Equation 25	-4 or 25-5)		V_3 or V_{av34}			888 pc/h (Equ	ation 25-1	5 or 25-16)
Is V_3 or $V_{av34} > 2,700$						•		Yes 🗹 No		
Is V_3 or $V_{av34} > 1.5$ *					Is V ₃ or V _{av3}	₄ > 1.5	* V ₁₂ /2	Yes 🗹 No		
If Yes,V _{12a} =	pc/h	(Equation 25	-8)		If Yes,V _{12a} =		p	c/h (Equation	25-18)	
Capacity Che	cks				Capacity	/ Che	ecks			
	Actual	Ca	pacity	LOS F?			Actual	Ca	oacity	LOS F?
					V_{F}		5167	Exhibit 25-14	6780	No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	5026	Exhibit 25-14	6780	No
					V _R		141	Exhibit 25-3	2100	No
Flow Entering	Merge In	fluence A	rea			terin	g Dive	rge Influen	ce Area	
	Actual	ľ	Desirable	Violation?		1	Actual	Max Desirab		Violation?
V _{R12}		Exhibit 25-7			V ₁₂	3	279	Exhibit 25-14	4400:All	No
Level of Servi	ce Detern	nination (i	f not F)		Level of	Serv	vice De	terminatio	n (if not	F)
$D_R = 5.475 + 0.0$	00734 v _R + 0	0.0078 V ₁₂ -	0.00627 L _A) _R = 4	.252 + 0	.0086 V ₁₂ - 0.	009 L _D	
D _R = (pc/mi/l	n)				D _R = 29.	.3 (pc /	mi/ln)	_		
LOS = (Exhibit	25-4)					(Exhib	oit 25-4)			
Speed Determ	•				Speed D			on		
$M_S = $ (Exibit 25							xhibit 25			
S _R = mph (Exhi						•	(Exhibit	,		
	bit 25-19)					-	(Exhibit			
	υπ ∠ υ-19)				1 U	o mpii	יבאייוטונ	_5 .5)		
$S_0^{=}$ mph (Exhi S = mph (Exhi					S = 53.	2 mnh	(Exhibit	25-15)		

		RAMP	S AND RAM			KNS	пссі			
General Info	rmation			Site Infor	mation					
Analyst Agency or Compan <u>y</u> Date Performed Analysis Time Perio	02/14		J	reeway/Dir of Tr unction urisdiction .nalysis Year]]	Southb Exit 2V NYSD(2036 F	V Off DT			
Project Description	Exit 4									
Inputs									i	
Upstream Adj Ramp		Terrain: Leve							Downstrea Ramp	m Adj
☐ Yes ☐ O									✓ Yes	☑ On
✓ No ☐ O	ff								□ No	☐ Off
L _{up} = ft		<u> </u>	_{FF} = 56.0 mph		S _{FR} = 4	0 0 mr	h		L _{down} =	1300 ft
V _u = veh/			Sketch (show lanes, L _A		0.0 mp	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		V _D =	880 veh/h
Conversion	to pc/h Und	der Base (Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	4150	0.92	Level	2	0	0.	990	1.00	455	
Ramp	480	0.92	Level	2	0	0.	990	1.00	52	7
UpStream DownStream	000	0.00	Lough		0	+	000	1.00	0/	/
Downstieam	880	0.92 Merge Areas	Level	2	0	0.	990	1.00 Diverge Areas	96	0
Estimation o		Estimati	on c		biverge rireds					
		(D)			1			= V _R + (V _F - V _I	\D	
ı	$V_{12} = V_F$	• • • • • • • • • • • • • • • • • • • •	OF 0\							
L _{EQ} =		ation 25-2 or Equation (E			L _{EQ} =			Equation 25-8		:L::: OF 10\
P _{FM} =	_	Equation (E	XIIIDIL 20-0)		P _{FD} =			.622 using Ed	quation (Exil	IDIL 25-12)
V ₁₂ = V ₃ or V _{av34}	pc/h	/Equation 25	4 or 25 5)		V ₁₂ =			032 pc/h	otion OF 15	- OF 40
$V_3 \text{ or } V_{av34}$ Is $V_3 \text{ or } V_{av34} > 2.7$		(Equation 25	-4 01 25-5)		V ₃ or V _{av34}	· 27		524 pc/h (Equ ☐ Yes 🗹 No	iation 25-15	01 25-16
Is V_3 or $V_{av34} > 2.7$ Is V_3 or $V_{av34} > 1.5$								Yes No		
If Yes,V _{12a} =	· -	s III No (Equation 25	0)		If Yes, $V_{12a} =$			oc/h (Equation	25 10)	
Capacity Ch		(Equation 23	-0)		Capacity			ochi (Equation	123-10)	
Capacity Cit	Actual	I C	apacity	LOS F?	Capacity	<i>y Cii</i>	Actual	l Ca	pacity	LOS F
	Actual	i i	ариону	1001.	V _F		4556	Exhibit 25-1	1	No
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- \/	4029	Exhibit 25-1	_	No
*FO		LATIIDIT 23-7			V _R	*R				_
[£1		1		4!	527	Exhibit 25-3		No
Flow Enterin	<i>g ivierge in</i> Actual	1	rea Desirable	Violation?	riow En	_	<i>ig Dive</i> Actual	rge Influen Max Desiral		Violation
V _{R12}	Actual	Exhibit 25-7	D C SII U D I C	v ioiation:	V ₁₂	_	3032	Exhibit 25-14	4400:All	No
Level of Serv	ice Deterr		f not F)	1	·-			eterminatio	<u> </u>	
$D_{R} = 5.475 + 0$.0086 V ₁₂ - 0.	_	/
$D_R = 0.475 \cdot C$		12					/mi/ln)	13000 112 0.	- D	
**	oit 25-4)						bit 25-4)			
Speed Deter					Speed D	•		on		
•							xhibit 25			
M _S = (Exibit 2					. 1	•	i (Exhibit	,		
	nibit 25-19)					-	ı (Exhibit ı (Exhibit			
$S_0 = mph (Ex)$	nibit 25-19)				□ 0- 59	ıqııı + .	ו (באווטונ	20-18)		
· ·	nibit 25-14)				S = 53	0	(Exhibit	OF 15\		

			RAMP	S AND RAM	P JUNCTI	ONS WO	RKS	HEET			
General	Inform	nation		<u> </u>	Site Infor						
Analyst Agency or C Date Perforr Analysis Tin	company med ne Period	SEB CHA 02/14 PM	/12	Ju Ju	reeway/Dir of Tr unction urisdiction nalysis Year	avel	Exit 4 NYSD	oound I-87 SB Off OT Flyover			
Project Desc	cription I	EXIT 4									
Inputs	d! Da		Terrain: Leve	j						Downstrea	m Adi
Upstream A										Ramp	
✓ No										✓ Yes	☑ On
IM INO	☐ Off									□ No	☐ Off
L _{up} =	ft					-	0.0	- L		L _{down} =	1585 ft
V _u =	veh/h		3	$_{\text{FF}}$ = 56.0 mph Sketch (show lanes, L _A	$S_{FR} = 4$ $L_{D'}V_{R'}V_{f}$	iu.u m	pn		V _D =	1030 veh/l
Conver	sion to	pc/h Und	ler Base	Conditions							
(pc/l	٦)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		${\sf f}_{\sf HV}$	f _p	v = V/PHF	$x f_{HV} x f_{p}$
Freeway		3900	0.92	Level	2	0	0	.990	1.00	42	82
Ramp		830	0.92	Level	2	0	0	.990	1.00	9.	11
UpStream DownStream	m	1030	0.93	Level	4	0	+	.980	1.00	11	30
Downstream			Merge Areas	Level	1 4				Diverge Areas	11	30
Estimation of v ₁₂						Estimat	ion (
		V ₁₂ = V _F	(P _{EM})			1		V ₁₂ =	= V _R + (V _F - V _I	P _{ED}	
L _{EQ} =		12 1	ation 25-2 o	r 25-3)		L _{FO} =			Equation 25-8	` ''	
P _{FM} =			Equation (I			P _{FD} =			.611 using Eq		nibit 25-12)
V ₁₂ =		pc/h				V ₁₂ =		2	971 pc/h		
V ₃ or V _{av34}		pc/h (Equation 25	5-4 or 25-5)		V ₃ or V _{av34}		1:	311 pc/h (Equ	ation 25-1	5 or 25-16)
Is V ₃ or V _{av}	₃₄ > 2,700	pc/h? ☐ Yes	s 🗆 No			Is V ₃ or V _{av3}	34 > 2,	700 pc/h?	☐ Yes ☑ No		
		$V_{12}/2 \square \text{ Yes}$	s 🗆 No			Is V ₃ or V _{av3}	₃₄ > 1.!		Yes Vo		
If Yes,V _{12a} =			Equation 25	5-8)		If Yes,V _{12a} =		· · · · · ·	c/h (Equation	25-18)	
Capacit	y Chec	ks				Capacit	y Ch	1			
		Actual	C	apacity	LOS F?	 ,,		Actual		pacity	LOS F?
ν,						V _F	.,	4282	Exhibit 25-1	_	No
V _F			Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	3371	Exhibit 25-1	_	No
						V _R		911	Exhibit 25-3		No
Flow En	tering	Merge In	Y		Violation?	Flow En	terii		rge Influen		Violation?
V _{R1}		Actual	Exhibit 25-7	Desirable	Violation?	V ₁₂	+	Actual 2971	Max Desirat Exhibit 25-14	4400:All	No No
		ce Detern		if not F)	<u> </u>	7			eterminatio		<u> </u>
				· 0.00627 L _A					.0086 V ₁₂ - 0.	•	- /
	(pc/mi/lr	••	12	А				c/mi/ln)	12	D	
11	(Exhibit	•						ibit 25-4)			
Speed L	•					Speed D			on		
	Exibit 25							xhibit 25			
_		oit 25-19)				-	•	h (Exhibit	•		
		oit 25-19)				$S_0 = 60$).2 mpl	h (Exhibit	25-19)		
-		oit 25-14)				S = 52	2.6 mpl	h (Exhibit	25-15)		
Copyright © 2	007 Univer	sity of Florida, A	All Rights Reser	ved		HCS+ [™]	Versio	on 5.3	Ge	nerated: 2/17	/2012 1:40 F

		MPS AND	RAMP JUN			<u> </u>					
General Infor	mation			Site Infor	mation						
Analyst Agency or Company Date Performed	02/1		Jı Jı	reeway/Dir of Tr unction urisdiction		Southbound I-8 Exit 4 SB On-R NYSDOT					
analysis Time Period			A	nalysis Year		2036 Flyover					
Project Description	EXII 4										
nputs		Terrain: Level						D	A -I:		
Jpstream Adj Ramp ☑ Yes ☐ Or	1	Tendin. Level						Downstre Ramp	·		
No ✓ Of								☐ Yes ☑ No	☐ On ☐ Off		
								I .			
_{-up} = 1585	ft		F/ O		0	10 0 b		L _{down} =	ft		
$v_{u} = 830 \text{ ve}$	eh/h	5	$_{\text{FF}} = 56.0 \text{ mph}$ Sketch (show lanes, L _A ,	$S_{FR} = 4$ $L_{D'}V_{R'}V_{f}$	10.0 mpn		V _D =	veh/h		
Conversion t	o pc/h Un	der Base C	onditions								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p		
reeway	3050	0.92	Level	2	0	0.990	1.00		3348		
Ramp	1030	0.93	Level	4	0	0.980	1.00		1130		
JpStream	830	0.92	Level	2	0	0.990	1.00		911		
DownStream		Merge Areas					Diverge Are	28			
Estimation of		ivici ge Ai cas			Estimation of v ₁₂						
		(D)									
	$V_{12} = V_F$	• • • • • • • • • • • • • • • • • • • •)			V ₁₂	$= V_R + (V_F -$	$\cdot V_R)P_{FD}$			
EQ =		(Equation 2			L _{EQ} =			25-8 or 25-			
FM =			on (Exhibit 25-5))	P _{FD} = using Equation (Exhibit 25-12)						
12 =	2057	pc/n pc/h (Equatio	n 25 4 or 25		V ₁₂ = pc/h						
or V _{av34}	5)	pc/ii (Equalio	11 23-4 01 23-		V ₃ or V _{av34} pc/h (Equation 25-15 or 25-16)						
s V_3 or $V_{av34} > 2,70$	0 pc/h? 🗀 Ye	s 🗹 No				$_{34} > 2,700 \text{ pc/h}^2$					
s V_3 or $V_{av34} > 1.5$	V ₁₂ /2	s 🗹 No				$_{34} > 1.5 * V_{12}/2$					
Yes,V _{12a} =	pc/h	(Equation 25-	8)		If Yes,V _{12a} =	:	pc/h (Equ	ation 25-18))		
Capacity Che	cks				Capacit	y Checks					
	Actual	Ca	pacity	LOS F?		Actu	al	Capacity	LOS F		
					V _F		Exhibit	25-14			
V_{FO}	4478	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhibit	25-14			
					V _R		Exhibit	25-3			
low Entering	a Merae In	fluence A	rea			tering Div	erae Influ	ience Are	<u></u> ea		
	Actual		esirable	Violation?		Actual		esirable	Violation?		
V _{R12}	3187	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-1	1			
evel of Serv	ice Deterr	nination (ii	not F)			Service L	Determina	tion (if n	ot F)		
		0.0078 V ₁₂ - 0.00			1	D _R = 4.252 +					
) _R = 21.6 (pc			••			c/mi/ln)	12	5			
OS = C (Exhil	oit 25-4)					Exhibit 25-4)					
Speed Deterr					<u> </u>	Determina	tion				
M _S = 0.310 (Exi						xhibit 25-19)					
-	(Exhibit 25-19)					ph (Exhibit 25-1	9)				
	(Exhibit 25-19)				1	ph (Exhibit 25-1					
	(Exhibit 25-14)				ľ	ph (Exhibit 25 1 ph (Exhibit 25-1	•				
5 = 52.1 mph											

		RAN	MPS AND	RAMP JUNC	CTIONS W	<u>ORKSHE</u>	ET				
General In	formati	on			Site Infor	mation					
Analyst Agency or Comp Date Performed Analysis Time P	eriod	SEB CHA 02/14 PM	/12	Jur Jur	eway/Dir of Tr nction isdiction alysis Year		Southboun Exit 5 SB C NYSDOT 2036 Flyov	n-Ram	0		
Project Descript	ion Exit 4										
Inputs											
Jpstream Adj R	-		Terrain: Level							Downstre Ramp	am Adj
	On									✓ Yes	☐ On
☑ No ☐	Off									□ No	✓ Off
- _{up} = f	t		S	_{-F} = 56.0 mph		S _{FR} = 4	0.0 mph			L _{down} =	4700 ft
/ _u = ve	eh/h			•	how lanes, L _A ,		'			V _D =	830 veh/h
Conversio	n to pc	h Und	ler Base C	Conditions		_					
(pc/h)	(Ve	V eh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}		f_p	v = V/PH	$F \times f_{HV} \times f_{p}$
Freeway	32	250	0.92	Level	2	0	0.990		1.00		3568
Ramp	6	70	0.87	Level	1	0	0.995		1.00		774
UpStream DownStream	0	30	0.92	Level	2	0	0.990	\dashv	1.00		911
Downsteam	0		Verge Areas	Levei	Z	0	0.990	D	iverge Areas		911
Estimation of v ₁₂						Estimati	ion of v		ivorgo / irous		
		/ ₁₂ = V _F ((P _{EM})				\	/\	/ + (\/ - \/	\D	
- _{EQ} =			• • • • • • • • • • • • • • • • • • • •	25-2 or 25-3)		_	,		′ _R + (V _F - V Equation 25		٥)
P _{FM} =				on (Exhibit 25-5)		L _{EQ} =			-		
/ ₁₂ =		2190 p		511 (EXIIIDII 20 0)		P _{FD} =			sing Equati	on (Exhibit	(25-12)
				n 25-4 or 25-		V ₁₂ =			c/h	05.45	- 47)
V_3 or V_{av34}		5)				V_3 or V_{av34} pc/h (Equation 25-15 or 25-16) Is V_3 or $V_{av34} > 2,700$ pc/h? Yes No					
Is V_3 or $V_{av34} >$											
Is V_3 or $V_{av34} >$	1.5 * V ₁₂ /2	☐ Yes	s 🗹 No						Yes No		
f Yes,V _{12a} =		pc/h (Equation 25	-8)		If Yes,V _{12a} =		p	c/h (Equati	on 25-18)	
Capacity (Checks					Capacity	y Chec	ks			,
	A	ctual	Ca	pacity	LOS F?		1	Actual		apacity	LOS F
						V _F			Exhibit 25-	14	
V_{FO}	4	342	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		Exhibit 25-	14	
						V _R			Exhibit 25	-3	
Flow Ente			fluence A			Flow En			ge Influe		
.,		ctual)esirable	Violation?	ļ	Actua		Max Des	irable	Violation?
V _{R12}		964	Exhibit 25-7	4600:All	No	V ₁₂			exhibit 25-14		1.5
Level of S						1 			terminatio		ot F)
		34 V _R + 0	0.0078 V ₁₂ - 0.00	J62/ L _A				2 + 0.	0086 V ₁₂ - 0	0.009 L _D	
IX	1 (pc/mi/ln)	١				. "	c/mi/ln)	4)			
	Exhibit 25-4						xhibit 25		n		
Speed Det						Speed D D _s = (E	xhibit 25-19		11		
3	(Exibit 25-1						xnibil 25-19 oh (Exhibit	-			
	mph (Exhibit					I .,					
F20.	mph (Exhibit	25-19)				$S_0 = m_1$	oh (Exhibit	∠ɔ-19)			
U	mph (Exhibit					1	oh (Exhibit	OF 45\			

			FREEWA	Y WEAV	ING WOF	KSHEE	T				
Genera	l Informat	ion			Site Info	rmation					
Analyst Agency/Co Date Perfor Analysis Tir	med	SEB CHA 02/14/ PM	12		Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	Location	Exit 2 NYSD	orthbound E on to 2W of OOT Flyover	f		
Inputs											
Weaving nu	ee-flow speed, and spe	11	56 4 815 Leve		Weaving type Volume ratio Weaving ratio	, VR		A 0.2 0.3			
Conver	sions to p	c/h Unde	r Base C	ondition	1						
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f _{HV}	fp	V		
V_{o1}	4260	0.86	2	0	1.5	1.2	0.990	1.00	5003		
V_{02}	0	0.92	2	0	1.5	1.2	0.990	1.00	0		
V _{w1}	880	0.92	2	0	1.5	1.2	0.990	1.00	966		
V_{w2}	490	0.92	2	0	1.5	1.2	0.990	1.00	537		
$V_{\rm w}$		•		1503	V_{nw}		•	•	5003		
V	7				1	ı			6506		
Weavin	g and No	n-Weavin	g Speeds	5							
			Unconstr	4				trained			
o (Eyhibit 2	1 ()	Weaving 0.15			ving (i = nw)	Weavir	ng (i = w)	Non-Wea	ving (= nw)		
a (Exhibit 2 b (Exhibit 2		2.20		-	035 00						
c (Exhibit 2		0.97			30			 			
d (Exhibit 2	,	0.80		<u> </u>	75						
Weaving intens Weaving and n		1.45			79						
speeds, Si (mi/	h)	33.7			.73						
Maximum r	lanes required number of lanes If Nw < Nw	s, Nw (max) (max) unconst	rained operati	ion			v (max) constr	rained operati	on		
	g Segmer				Service,	and Cap	acity				
	egment speed,			38.89							
	egment density	, D (pc/mi/ln)		41.83							
Level of ser) o (no/h)		E							
	base condition		/b)	6571							
	a 15-minute fl			6506							
	a full-hour vol	ume, c _h (ven/m)	5690							
Notes											

a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

	BASIC F	REEWAY SE	EGMENTS V	VORKSHEET		
Second S	Br C.	150 (600) 1750 0		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AADT FFS, LOS, N	Output LOS, S, D N, S, D v _p , S, D LOS, S, D N, S, D v _p , S, D
o 400 800) 1200 Flow Rate (pc/h/lr	1600 2000 ()	2400			
General Information	1 major 1 de agos (10 major 1 de 20 major 1	- 747	Site Infor	mation		
Analyst Agency or Company Date Performed Analysis Time Period	SEB CHA 02/14/12 AM		Highway/Dir From/To Jurisdiction Analysis Yea	ection of Travel ar	Southbound I-8 Exit 5 to Exit 4 NYSDOT 2046 Flyover	7
Project Description Exit 4 Oper.(LOS)			Des.(N)		☐ Planning D)ata
Flow Inputs			DC3.(14)		L i lailing L	, ata
Volume, V AADT Peak-Hr Prop. of AADT, K	5850	veh/h veh/day	Peak-Hour F %Trucks and %RVs, P _R	d Buses, P _T	0.92 2 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Ter Grade %		Level mi	
Calculate Flow Adjustr	1.00				1.2	
f _p E _⊤	1.00 1.5		E _R	E _T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs	1.5			ed Adj and FFS		
Lane Width	12.0	ft		za Auj ana 11 c	,	:/le
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3		f_ID			mi/h
FFS (measured)	56.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N	1)		
Operational (LOS) $V_p = (V \text{ or DDHV}) / (PHF x N f_p)$		pc/h/ln	Design (N) Design LOS		f _{HV} x	pc/h
S D = v _p / S	53.0 40.4	mi/h pc/mi/ln	f_p) S D = v_p / S			mi/h pc/mi/ln
LOS	E			umber of Lanes, N		
Glossary			Factor Lo	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fr		E _T - Exhibits f _p - Page 23	s23-8, 23-10 s 23-8, 23-10, 23-1 -12 S, v _p - Exhibits 23-2	1 f _{LC} - E f _N - E	Exhibit 23-4 Exhibit 23-5 xhibit 23-6 Exhibit 23-7
Copyright © 2007 University of Florida,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	rM Version 5.3	Generated	9/18/2013 8:58 A
Jopyngin & 2001 Offiversity of Florida,	, rrigino mosciveu		L(')+,	VEISION 5.3	Jeneraleu.	0,10,2010 0.00

HCS+TM Version 5.3

			FREEWA	Y WEAV	ING WOR	KSHEE	Т		
Genera	Informat	ion			Site Info	rmation			
Analyst Agency/Cor Date Perfor Analysis Tir	med	SEB CHA 02/14/ PM	12		Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	Location	Exit 2 NYSI	Southbound W on to 2E of OOT Flyover	ff
Inputs									
Weaving nu Weaving se Terrain	e-flow speed, mber of lanes, g length, L (ft)	, N	56 4 810 Lev	el	Weaving type Volume ratio, Weaving ratio	, VR		A 0.2 0.2	
Conver	sions to p	oc/h Unde	er Base C	ondition	_				
(pc/h)	V	PHF	Truck %	RV %	E _T	E _R	f_{HV}	fp	V
V_{o1}	3500	0.92	2	0	1.5	1.2	0.990	1.00	3842
V_{o2}	0	0.92	2	0	1.5	1.2	0.990	1.00	0
V _{w1}	880	0.92	2	0	1.5	1.2	0.990	1.00	966
V_{w2}	150	0.92	2	0	1.5	1.2	0.990	1.00	164
V _w	1		•	1130	V_{nw}			· ·	3842
V						l			4972
Weavin	g and No	n-Weavin	g Speeds	3					
			Unconstr					trained	
o /Fubibit 0	4.7	Weaving		7	ving (i = nw)	Weavii	ng (i = w)	Non-Wea	ving (= nw)
a (Exhibit 2) b (Exhibit 2)		0.15		}	.00				
c (Exhibit 2		0.97		}	.30				
d (Exhibit 2	1-6)	0.80)	0.	.75			ì	
Weaving intens		1.11		0.	.55				
Weaving and no speeds, Si (mi/l		36.7	7	44	.66				
Number of I Maximum n	anes required umber of lanes	s, Nw (max)	·		1.26 1.40			-	
	If Nw < Nw	, ,					w (max) const	rained operati	on
Weavin	g Segmei	nt Speed,	Density,		f Service,	and Cap	pacity		
	gment speed,			42.58					
	gment density	, D (pc/mi/ln)		29.19					
Level of ser				D					
	base condition		n \	6584					
<u> </u>	a 15-minute fl			6519 5997					
	1 1 1								
Notes									

a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp

Copyright © 2007 University of Florida, All Rights Reserved

HCS+TM Version 5.3

2/17/2012

b. Capacity constrained by basic freeway capacity.

c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in

e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases.

f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C).

g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such

h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such

i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such

HCS+TM Version 5.3

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
80 Froe-Flow Speed FFS = 75 mith 70 mith 70 mith 90 mi	B C C	450 6600 1750 0 1600 200	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, N, FFS, LO	S, v _p N, S, D S, N v _p , S, D AADT LOS, S, D S, AADT N, S, D
General Information	Flow Rate (pc/h/lin	I.	Site Inform	nation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Exit 4	SEB CHA 02/14/12 PM			ction of Travel	Northbou Exit 4 off NYSDOT 2046 Flye	to Exit 4 off
Oper.(LOS)		Г	Des.(N)		☐ Plar	nning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	4250	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra	Buses, P _T	0.86 2 0 Level	
DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustr	1.00	veh/h	Grade %	Length Up/Down %	mi	
fp	1.00		E _R		1.2	
E _T	1.5			T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs				d Adj and FFS		
Lane Width	12.0	ft		<u> </u>		:/l-
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3		f_{ID}			mi/h
FFS (measured)	56.0	mi/h	f_N			mi/h
Base free-flow Speed, BFFS	00.0	mi/h	FFS		56.0	mi/h
LOS and Performance	Measures		Design (N)	<u> </u>		
Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times N)$ $f_p)$ S $D = v_p / S$ LOS		pc/h/ln mi/h pc/mi/ln	$\frac{\text{Design (N)}}{\text{Design LOS}}$ $v_p = (V \text{ or DD})$ $f_p)$ S $D = v_p / S$	HV) / (PHF x N x	f _{HV} x	pc/h mi/h pc/mi/ln
Glossary			Factor Loc	mber of Lanes, N		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base free		E _R - Exhibits2 E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho				Version 5.3		nerated: 2/17/2012 1:53

HCS+TM Version 5.3

	DASIC FI	REEWAY SE	GMENTS W	ORKSHEET		
State Stat	B C C	150 1600 1750		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, V _p FFS, LOS, V _p FFS, LOS, N FFS, N, AADT FFS, LOS, AADT FFS, LOS, N	Output LOS, S, D N, S, D v _p , S, D LOS, S, D N, S, D v _p , S, D
0 400 800	1200 Flow Rate (pc/h/lin)	1600 2000	2400			
General Information			Site Inform	nation		
Analyst Agency or Company Date Performed Analysis Time Period	SEB CHA 02/14/12 PM		Highway/Dire From/To Jurisdiction Analysis Yea	ection of Travel	Southbound I-87 Exit 5 to Exit 4 NYSDOT 2046 Flyover	•
Project Description Exit 4 Oper.(LOS)			Des.(N)		☐ Planning D	ata
Flow Inputs			Des.(N)		- Flaming D	ala
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	3900	veh/h veh/day	Peak-Hour F %Trucks and %RVs, P _R General Terr	l Buses, P _T	0.92 2 0 Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade %	Length Up/Down %	mi	
Calculate Flow Adjustr						
f _p	1.00		E _R		1.2	
E _T	1.5			E _T - 1) + P _R (E _R - 1)]	0.990	
Speed Inputs	10.0		Calc Spee	d Adj and FFS	5	
Lane Width	12.0	ft	f_{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft L/:	f_{LC}			mi/h
Interchange Density	0.50	I/mi	f_{ID}			mi/h
Number of Lanes, N	3	• 4	f _N			mi/h
FFS (measured)	56.0	mi/h	FFS		56.0	mi/h
Base free-flow Speed, BFFS	N4	mi/h				,
Operational (LOS) v _p = (V or DDHV) / (PHF x N :		pc/h/ln	Design (N) Design LOS V _D = (V or DE) DHV) / (PHF x N x	f _{HV} x	
f _p)			f _p)			pc/h
S $D = v_p / S$	56.0 25.5	mi/h pc/mi/ln	S $D = v_p / S$			mi/h pc/mi/In
LOS	С		· · ·	mber of Lanes, N		-
Glossary			Factor Lo	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base free		f _p - Page 23-	23-8, 23-10, 23-1	1 f _{LC} - E f _N - Ex	exhibit 23-4 xhibit 23-5 thibit 23-6 xhibit 23-7
DDHV - Directional design ho	All Rights Reserved		LIGO TM	Version 5.3	Company of	/18/2013 10:31 <i>A</i>

HCS+TM Version 5.3

Generated: 9/18/2013 10:31 AM

HCS+TM Version 5.3

ATTACHMENT F
ACCIDENT ANALYSIS

MEMORANDUM DEPARTMENT OF TRANSPORTATION

TO: A. Trichilo, R-1 Design, 3rd floor

FROM: M. Kennedy, R-1 Traffic Engineer, 4th floor

SUBJECT: Updated Accident History for PIN 1721.51

187 Exits 3/4/5

Town of Colonie, Albany County

DATE: March 3, 2011

Attached please find updated accident data for the subject project, as you requested on 3/23/10. The accident data covers the 3.25 year study period from 1/1/07 to 3/31/10. The current High Accident Location (HAL) period is 11/1/07 to 10/31/09. There were no HALs on the section of I87 from RM 2016 to 2042 studied. NY 910B, Wolf Road, was a Priority Investigation Location from RM 1010 to 1015 and from RM 1016 to 1019. NY 155, Watervliet-Shaker Road, was a Safety Deficient Location from RM 3058 to 3060.

I87, the Northway, is a six lane divided Urban Principal Arterial Interstate highway with full control of access. There were 303 accidents on the section of I87 evaluated during the study period. The accident rate of 0.87 ACC/MVM is less than the expected accident rate of 1.10 ACC/MVM for similar highways statewide. The predominant accident type is rear end accidents. There were 52 accidents during the morning peak from 6 am to 9 am and 105 accidents occurred during the peak evening commute from 3 pm to 6 pm. There was one fatality and no accidents involving pedestrians or bicyclists. Accident summaries and a collision diagram of the southbound Exit5/Exit 4 merge/diverge area service road are provided.

There were 52 accidents in the first section of NY 910B studied and the accident rate is 2.41 ACC/MVM. This rate is less than the expected rate of 3.59 ACC/MVM for four lane divided Urban Principal Arterial highways with free access statewide. The majority of the accidents consisted of rear end and turning accidents due to traffic congestion. There was one accident involving a pedestrian and no accidents involving bicyclists. Of the 53 accidents on this section of highway with pavement condition reported, 14 (26%) occurred on wet pavement and none occurred on snow/ice/slush pavements. There were 7 accidents during the morning peak evening commute hours from 6 am to 9 am and 16 accidents occurred during the peak evening commute hours from 3 pm to 6 pm. A copy of Highway Safety Investigation report 1-1-0409 is attached.

A. Trichilo, R-1 Design PIN 1721.5, p. 2 of 3 March 3, 2011

There were 132 accidents in the second section of NY 910B studied and the accident rate is 9.46 ACC/MVM. This rate is greater than the expected accident rate of 3.59 ACC/MVM for four lane divided Urban Principal Arterial highways with free access statewide. The majority of the accidents consisted of rear end and turning accidents due to traffic congestion, particularly at the signalized intersection with Albany County Route 151, Albany-Shaker Road, at the RM 1019. There were no accidents involving pedestrians or bicyclists. Of the 127 accidents on this section of highway with pavement condition reported, 25 (20%) occurred on wet pavement and 5 (4%) occurred on snow/ice/slush pavements. There were 11 accidents during the morning peak commute hours from 6 am to 9 am and 34 accidents occurred during the peak evening commute hours from 3 pm to 6 pm. A signal study, completed 12/28/08, at the intersection with Ulenski Drive at RM 1017 resulted in no safety recommendation. A copy of Highway Safety Investigation report 1-1-0477, which includes the signal study, is attached.

NY 155, Watervliet-Shaker Road, is a four lane undivided Urban Minor Arterial highway with free access. There were 46 accidents on the SDL section of NY 155, from RM 3058 to 3061, evaluated during the period 1/1/07 to 9/30/10. The accident rate of 8.79 ACC/MVM is greater than the expected accident rate of 4.27 ACC/MVM for similar highways statewide. The predominant accident type is rear end accidents. Of the 46 accidents on this section of highway with pavement condition reported, 2 (4%) occurred on wet pavement and 3 (6%) occurred on snow/ice/slush pavements. There were 7 accidents during the morning peak from 6 am to 9 am and 12 accidents occurred during the peak evening commute from 3 pm to 6 pm. There were no accidents involving pedestrians or bicyclists.

Albany County Route 151, Albany-Shaker Road, carries NY Touring Route 155. There were 55 accidents on the section of CR 151 studied, from D'Alessandro Boulevard to Wolf Road. The predominant accident type is rear end accidents. Of the 52 accidents on this section of highway with pavement condition reported, 12 (23%) occurred on wet pavement and 2 (4%) occurred on snow/ice/slush pavements. There were 8 accidents during the morning peak from 6 am to 9 am and 18 accidents occurred during the peak evening commute from 3 pm to 6 pm. There were no accidents involving pedestrians or bicyclists. A signal study, completed 12/22/10, at the signalized intersection with Old Wolf Road and the I87 SB on ramp, resulted in a safety recommendation to refresh the pavement markings. A copy of Highway Safety Investigation report 1-1-0495, which documents the signal study, is attached.

Albany County Route 153, Old Wolf Road, carries NY Touring Route 155. There were 55 accidents on the section of CR 153 studied, from the intersection with AC Rout 151 to Northway Lane, which includes the signalized intersection with the ramp

A. Trichilo, R-1 Design PIN 1721.5, p. 3 of 3 March 3, 2011

from I87 SB. The predominant accident type is rear end accidents. Of the 28 accidents on this section of highway with pavement condition reported, 7 (25%) occurred on wet pavement and 1 (4%) occurred on snow/ice/slush pavements. There were 6 accidents during the morning peak from 6 am to 9 am and 13 accidents occurred during the peak evening commute from 3 pm to 6 pm. There were no accidents involving pedestrians and one involving a bicyclist. The accidents at the SB ramp junction ate plotted on the collision diagram with the ramp accidents.

The majority of the accidents on all the sections of highway reviewed in this study occurred during peak hours and are congestion related. Any project alternative that includes congestion mitigation measures will enhance the overall safety performance, in particular at the signalized junctions with the Exit 4 ramps and Wolf Road. We have no additional safety recommendations to make for the project as a result of our review of this accident history.

If you have any questions concerning this study, please contact Mike Doody of this office at 388-0372.

MJK:MED Attachments

cc: J. Rutnik, R-1 Traffic, 4th floor

ACCIDENT SUMMARY SHEET

MUNICIPALITY Town of Colonie COUNTY Albany

LOCATION 187' RM 875-1108-2016 TO 2042 PIN HST # 1721.51

TIME PERIOD 1/1/07 TO 3/31/10 NO.OF MONTHS 39

Accident Type No.	of Accidents	Pavement	No. of Accidents
Right Angle Rear End Overtaking Left Turn Debvis Sideswipe/Head-on Right Turn Fampment	149 57 9 1 5 3	Dry Wet Snow/Ice Unknown	223 43 35 2 303
Parked Vehicle Pedestrian Bicycle Animal Deer/Twkey Fixed Object w/Utility Poles w/Guide Rail w/Sign Posts w/Trees w/Ditch-Embank. w/ fevice	12	Weather Clear Cloudy Rain Snow Sleet Fog Unknown	No. of Accidents 147 94 22 31 5 2 2 303
TOTAL	303		

Light Cond	<u>itions</u> <u>N</u>	No. of Accidents	Accident	Severity	No. of Accidents
Day Night Unknown		221	Fatal Injury Property	Damage	1 66 236
	TOTAL	303		TOTAL	303

Program id: sass1601

NYSDOT Safety Information Management System Expected Accident Rates State Highways - 2009

Page 1

Date 02/16/11 12:38:21

Includes Period from 01-NOV-2007 to 31-OCT-2009

Highway/Intersection

Classification Code: 18 FULL ACCESS, URBAN, DIVIDED, 6 LANE

Classification Type: A = ALL ACCIDENTS

	Accident Category	Mean Rate (acc/mvm)	95th Percentile Rate (acc/mvm)
01	OVERALL RATE	1.10	3.29
02	FATAL	.0	.02
03	INJURY	.40	1.26
04	PROPERTY DAMAGE ONLY	.69	2.25
05	NON-REPORTABLE	.01	.04
11	DRY ROAD	.74	2.18
12	WET ROAD	.21	.78
13	SNOW/ICE/SLUSH ROAD	.09	.60
14	ALL OTHER - ROAD SURFACE	.05	.26
21	LEFT-TURN	.01	.05
22	REAR-END	.40	1.29
23	OVERTAKING	.15	.56
24	RIGHT-ANGLE	.02	.09
25	RIGHT-TURN	.0	.02
26	HEAD-ON	.0	.02
27	SIDESWIPE	.0	.03
28	OTHER - MULTI. VEHICLE	.15	.51
41	COLL W/PEDESTRIAN	.01	.03
42	COLL W/BICYCLE	.0	.0
43	COLL W/ANIMAL/TRAIN/OTHER	.05	.28
44	FO:UTILITY/LIGHT POLES	.01	.06
45	FO:GRAIL/MBARRIER/CUSHION	.15	.73
46	FO:SIGN/CURB/FENCING	.02	.14
47	FO:DITCH/BRIDGE/CULVERT	.02	.14
48	FO:TREE/HYDRANT/OTHER	.02	.14
49	RUN-OFF-ROAD/OVERTURN	.01	.08
50	NON COLLISION	.02	.12

NYSDOT Safety Information Management System Accident Severity Summary

Intersection & Non-Intersection Accidents

Date: 02/16/11 12:35

Complete-Accident Data From NYSDMV Is Only Available thru 30-SEP-2010

Route: 871 Highway Location Ref Mrkr Range: 87111082016 - 87111082042

Dates: 01-JAN-2007 thru 31-MAR-2010 Traffic Volume: 108,250

Total of Fatal Accd	Total of Injury Accd	Total of PDO Accd	Total of Non-Reportable	Total Number of Accidents	Accident Rate
1	70	158	73	302	.87

Accident rate for linear section is accidents per million vehicle miles.

NYSDOT Safety Information Management System Summary Report By Segment And/Or Intersection

Date: 02/16/11 12:35

Intersection & Non-Intersection Accidents

Complete Accident Data From NYSDMV is Only Available thru 30-SEP-2010

	I E		m	♥	~	2	-	2	0		æ	2	S	2	-	4	0	r=v4	m	pared.	0	2	m	p	0	N	5	4	← 1
		*																											
	CONDITTON DAY NIGH	*	m	m	9	m	7	œ	9	9	00	12	12	2	υ)	10	m	4	4	0.7	₩.	σ	2	4,		4	17	in.	m
	T.TGHT	*	-4	0	, ~√	0	0	0	0	m	r	m	0	0	0	7		0	0	0	~	;q	0	0	0	0	0	0	0
	TRUCK I.		0	Ħ	0	r	0		0	0	p-uf	7	2	0	-	0	0	mł	0	0	H	2	0	2	0	2	0	m	0
Σ	ED&	D * + 大克 引 *	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ි I	ACCIDENTS FIXED P	790 * *	2	-	0	0		3	0	3	4	9	5	2		2	0	3	7	2	, - 1	0	0	2	2	2	2	2	
-2007	OF ACC	XOAU * *	←4	2	Н	-		М	H	0	2	4	m	Н	2	7	0	0	0	4	0	2	1	0		-	4.	1	0
	NUMBER N/R	Y.	7	3	4	2	т	2	5	m	4	2	т	2	Н	n	m	0	Н	т	2	m	0	0	т	2	4	4	0
ES:	PDO N		2	3	4	2	4	4	0	9	7	10	6	-	7	æ	m	т	2	т	H	2	4	4	7	m	12	4	т
	LNI		Н	Н	0	H	П	4	Н		 1	2	2	2	т	Ŋ	0	2	4	2	2	4	Н	ᠬ	Н	H	9	2	7
32042	FTL		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
87I	TOTAL F		7	7	80	2	∞	10	9	10	12	17	17	2	9	16	4	5	7	11	5	12	5C	5	11	9	22	10	Ŋ
LOCATION: 87111082016 -	DESCRIPTION		COLONIE VILLAGE/COLONIE TOWN LI											RAMP TO WOLF RD	RAMP FROM ALBANY SHAKER RD					4P FROM NY 155			4P FROM WOLF RD				RAMP TO WOLF RD		
HIGHWAY I			COLONIE V											NB OFF	SB ON					SB ON RAMP			NB ON RAMP				SB OFF		
	INI.		10		~~	*	0	_ 1	~1	~		10	9	60 9	6 10	1	æ	Æ	-) 12		~ 1	0 01	(m)		2	5 13	9	1
ROUTE: 871	REFERENCE		871 1108 2016	871 1108 2017	87I 1108 2018	87I 1108 2019	87I 1108 2020	87I 1108 2021	87I 1108 2022	87I 1108 2023	87I 1108 2024	87I 1108 2025	87I 1108 2026	87I 1108 2026	87I 1108 2026	87I 1108 2027	871 1108 2028	87I 1108 2029	871 1108 2030	87I 1108 2030	871 1108 2031	87I 1108 2032	871 1108 2032	871 1108 2033	87I 1108 2034	871 1108 2035	87I 1108 2035	87I 1108 2036	87I 1108 2037

*** EXCLUDES PICKUPS & VANS

** EXCLUDES PARTIALLY CODED NON-REPORTABLES

NYSDOT Safety Information Management System Summary Report By Segment And/Or Intersection Intersection & Non-Intersection Accidents

Page: 2

Date: 02/16/11 12:35

Complete Accident Data From NYSDMV Is Only Available thru 30-SEP-2010

01-JAN-2007 - 31-MAR-2010	NUMBER OF ACCIDENTS	R WET FIXED PED& TRUCK LIGHT CONDITION ROAD OBJ BIKE *** DWN/DSK DAY NIGHT ** ** ** **	* *	3 1 4 0 3 0 13 2	0 0 5 0 0 0 3 2	3 3 1 0 0 0 10 1	0 0 3 0 0 0 0 3	1 1 2 0 1 0 6 4	0 0 0 0 0 0 2 0	2 1 0 0 2 0 8 1	3 1 0 0 1 0 3 2	73 43 67 0 27 14 216 69
DATES: 0	DN	PDO N/R		10	4	7	æ	80	2	4	Н	158
Ω	ı	INJ		2	٦	Н	0	Н	0	2	7	70
87111082042	s ì	FTL		0	0	0	0	0	0	П	0	H
871110	ı	TOTAL		15	5	11	e	10	2	6	5	302
HIGHWAY LOCATION: 87111082016 -		INT. DESCRIPTION			15 NB OFF RAMP TO NY 155		14 SB OFF RAMP TO NY 155		16 NB ON RAMP FROM NY 155			ROUTE TOTAL EXCLUDES 999 RMS
ROUTE: 87I		REFERENCE IN		87I 1108 2038	87I 1108 2038 1	87I 1108 2039	87I 1108 2039 1	871 1108 2040	87I 1108 2040 1	87I 1108 2041	87I 1108 2042	

*** ENCLUDES PICKUPS & VANS

NYSDOT Safety Information Management System Summary Papart By Assidant Catagory

Summary Report By Accident Category

Page: 1

Date: 02/16/11 12:36

Intersection & Non-Intersection Accidents

Complete Accident Data From NYSDMV Is Only Available thru 30-SEP-2010

ROUTE: 871 HIGHWAY LOCATION 871 1108 2016 - 871 1108 2042 DATES: JAN-01-2007 - MAR-31-2010

REPORTABLE ACCIDENTS BY YEAR AND SEVERITY

TIME PERIOD	FATAL	INJURY	P-D-O	NON-REPORTABLE	TOTALS
JAN-01-2007 - DEC-31-2007 JAN-01-2008 - DEC-31-2008 JAN-01-2009 - DEC-31-2009 JAN-01-2010 - MAR-31-2010	0 1 0 0	25 20 20 5	56 45 44 13	30 15 24 4	111 81 88 22
TOTALS	1	70	158	73	302

TE 1	156a (3/76)		Page 1 of
1.	IDENT. NO.: [STATE OF NEW YORK DEPARTMENT OF TRANSPORTATION	MAIN OFFICE USE:
		TRAFFIC AND SAFETY DIVISION	DIVISION FILE
	a city of Colonie	HIGHWAY SAFETY INVESTIGATION REPORT	REVIEWED BY
OCATION	☐ VILLAGE \	(SEE INSTRUCTIONS ON REVERSE)	SCHEDULED FOR B&A
OCA	ROUTE NO. OR STREET NAME		ROM OR AT REFERENCE MARKE
7	NY 155 / Water vliet	Shaka Rd 879 1	5'5' 1'1'0'1 3'0'5
	At Intersection With ROUTE NO. OR STREET N (If Applicable)		TO REFERENCE MARKER
	(If Applicable) I 87 Ex	17 5 11'	S'S' 11'0'1 3'0'
2.	REASON FOR INVESTIGATION (a) IDENTIFIED BY ACCIDENT SURVEILLANCE (b) POLICE HAZARD REPORT (c) RESPONSE TO COMPLAINT OR INQUIRY (d) REGIONALLY INITIATED PIN 1721.5 (e) OTHER (Explain)	(b) TRAFFIC CONTE	
4.	DISCUSSION (Use reverse if additional space is required (a) PROBLEMS IDENTIFIED	- check box if reverse is used)	
	Su attack		
	* Management Commission of the		
	(b) PROPOSED SOLUTION	Reduction I	(
7	* Management Commission of the	Reduction I	index Severity Ra- 2.42
7	(b) PROPOSED SOLUTION	Reduction I	(
2	(b) PROPOSED SOLUTION' 2009 SDL RM 3058 TD	Reduction I	- (
5.	(b) PROPOSED SOLUTION' 2009 SDL RM 3058 TD	Reduction I	2.42
5.	(c) ACTION TAKEN ACCIDENT EXPERIENCE PERIOD PERIOD NUMBER OF ACCIDENTS Of BEGINNING Fatal Injury Property	Reduction I 3060 7.37 6. BENEFIT/COST ANALYSIS (see Check box if Benefit/Cost Calculary)	2.42
5.	(c) ACTION TAKEN ACCIDENT EXPERIENCE The PERIOD BEGINNING Fatal Accidents MONTH YEAR MONTH YEAR Accidents Accidents Accidents Accidents Accidents	Reduction I 3060 7.37 6. BENEFIT/COST ANALYSIS (see Check box if Benefit/Cost Calculated)	2.42
5.	(c) ACTION TAKEN ACCIDENT EXPERIENCE PERIOD BEGINNING Fatal Injury Property Damage Accidents Accidents Accidents	Reduction I 3060 7.37 6. BENEFIT/COST ANALYSIS (see Check box if Benefit/Cost Calculate PRINCIPAL INVESTIBATOR May Company The Company of the Cost Control of the Cost Cost Control of the Cost Cost Cost	2.42 e instructions) eations are attached
5.	(c) ACTION TAKEN ACCIDENT EXPERIENCE The PERIOD BEGINNING Fatal Accidents	Reduction I 3060 7.37 6. BENEFIT/COST ANALYSIS (see Check box if Benefit/Cost Calculary	2.42 e instructions) ations are attached

HSI # 1-1-0100 NY 155, RM 155-1101-3058 to 3061 Town of Colonie, Albany County

Problems Identified

NY Route 155 was identified as a Safety Deficient Location (SDL) from RM 3058 to 3060 based on reportable accidents during the period 11/1/07 to 10/31/09. We evaluated the 0.4 mile section from RM 3058 to 3061 to include all the ramps to and from the Northway Exit 5. This section of NY 155 is a four lane undivided Urban Minor Arterial highway with free access traveling east-west. The highway travel lanes are 12 feet wide and there are 4 foot shoulders. The posted speed limit is 40 MPH. Pavement, pavement markings and signing are satisfactory.

Eastbound NY 155, Watervliet Shaker Road, is intersected from the north by Sherwood Drive in a stop controlled T-intersection at RM 3058. At RM 3059 are the Exit 5 SB on and off ramps. The intersection is controlled with a three color traffic signal. At RM 3060 Old Niskayuna Road, Albany County Route 152, intersects NY 155 from the south in a stop controlled T-intersection. Also at RM 3060 just east of Old Niskayuna Road, is an intersection with Swayzee Drive to the south, Swayzee Drive is one-way SB. At RM 3061 are the I87 Northway Exit 5 NB on and off ramps to the north opposite Holly Lane to the south. The intersection is controlled with a three color traffic signal. Also at RM 3061 just east of the signalized intersection, Feiden Lane intersects NY 155 from the south in a stop controlled T-intersection.

During the 45 month accident study period from 1/1/07 to 9/30/10 there were 46 total accidents. The accident rate was 8.79 ACC/MVM, which is greater than the expected accident rate of 4.27 ACC/MVM for similar highways statewide. Of the 46 accidents with pavement condition reported, there were 2 (4%) wet pavement accidents and 3 (6%) snow/ice pavement accidents. Overall, 23 of the 46 accidents occurred at the two signalized intersections, including 8 rear end accidents, 8 left turn accidents, and 3 right angle accidents. There were 7 accidents during the morning peak from 6 am to 9 am and 12 accidents during the evening peak from 3 pm to 6 pm. There is no apparent treatable pattern of accidents.

Proposed Solution

The scope of PIN 1721.51, I87/NY910B interchange (Exit 4) reconstruction, has been expanded to possibly include work at Exit 5. We have no safety improvements to offer for the project at this time as a result of this review of the accident history.

Actions Taken

Memo to R-1 Design, dated 2/24/11.

NYSDOT Safety Information Management System Accident Severity Summary

Intersection & Non-Intersection Accidents

Date: 01/31/11 14:27

Complete Accident Data From NYSDMV Is Only Available thru 30-SEP-2010

Route: 155 Highway Location Ref Mrkr Range: 155 11013058 - 155 11013061

Dates: 01-JAN-2007 thru 30-SEP-2010 Traffic Volume: 9,560

Total of Fatal Accd	Total of Injury Accd	Total of PDO Accd	Total of Non-Reportable	Total Number of Accidents	Accident Rate
0	17	26	3	46	8.79

Accident rate for linear section is accidents per million vehicle miles.

NYSDOT Safety Information Management System Summary Report By Segment And/Or Intersection Intersection & Non-Intersection Accidents

Page: 1

Date: 01/31/11 14:27

Complete Accident Data From NYSDMY Is Only Available thru 30-SEP-2010

	TTON NIGHT	0	0	0	4	гH	2	0	0	2	σ
	}	S	, -	e	H	0	12	2		4	34
	LIGHT COND DWN/DSK DAX	0	0	0	0	0	0	0	0	et	-1
2010	RUCK 1	0	0	0	2	0	rd	0	0	0	т
30-SEP-2010	ED& IKE **	0	0	0	7	0	0	0	0	0	← t
n	CIDENT FIXED OBJ	0	0	0	0	Н	0	0	0	1	2
01-JAN-2007	NUMBĒR OF ACCIDENTS N/R WET FIXED P ROAD OBJ B	0	0	П	٦	0	П	Н	0	0	₫,
01-JA	NUMBĒI N/R	Н	0	0	r-1	0	0	0	0		m
DATES:	PDO	0	0	0	7	1	12		, - 1	4	26
	LNI	, c4	-	Н	7	0	ю	1	0	n	17
01306	I EI EI EI EI EI EI EI EI EI EI EI EI EI	0	0	0	0	0	0	0	0	0	0
155 1101306	TOTAL	2	Н		15	₽	15	2	Н	∞	46
HIGHWAY LOCATION: 155 11013058 -	. DESCRIPTION		SHERWOOD DR		187 SB ON & OFF RAMPS - EXIT 5		CR 152 OLD NISKAYUNA RD	SWAYZEE DR		187 NB ON & OFF RAMPS & HOLLY LANE	ROUTE TOTAL EXCLUDES 999 RMS
	INT.		95		93		86	95		96	
ROUTE: 155	REFERENCE	155 1101 3058	155 1101 3058	155 1101 3059	155 1101 3059	155 1101 3060	155 1101 3060	155 1101 3060	155 1101 3061	155 1101 3061	

*** EXCLUDES PICKUPS & VANS

ACCIDENT SUMMARY SHEET

Municipality Town of Colonie	County ALBANY
Location Ny Route 155. Ren 155-1101-3058 10	306/ HSI# 1-1-0100
Time Period ////07 - ///30//0	No. of Months 47
Accident Type No. of Accidents	Pavement Condition No. of Accidents
Rear End	Dry Wet 2 Snow / Ice / Slush Unknown 2
Right Turn Parked Vehicle Debris Pedestrian Bicycle Animal	TOTAL 48 Weather No. of Accidents
Backing Fixed Object W/ Utility Poles W/ Guide Rail / Barrier W/ Sign Post W/ Trees W/ Ditch / Embankment W/	Clear 29 Cloudy 74 Rain 2 Snow 2 Sleet Fog Unknown 2
TOTAL 48	TOTAL <u>48</u>
Light Conditions No. of Accidents	Accident Severity No. of Accidents
Day 37 Night /0 Unknown _/	Property Damage Injury Fatal 30 /8
TOTAL 48	TOTAL 48

NYS DEPARTMENT OF TRANSPORTATION OFFICE OF TRAFFIC SAFETY & MOBILITY / OFFICE OF MODAL SAFETY & SECURITY COLLISION DIAGRAM # 3

Sheet 10

Municipality TOWN OF COLONIE County ALB	'ANY	HSI # 1-1-0(00 Case #	
Intersection NY RUTE 155 RM 155-1101-3058 - RM	3061	File DMV/5/ms/	ALIS
Period 4 Years 0 Months From 1/1/07	To 12/31/10	By	<u>/ </u>
SHERWOOD DRIVE STORMAN SHERWOOD DRIVE STORMAN	THE CONTRACTOR OF THE CONTRACT	B AND ON P RAMP ONCH TO SEE SEE SEE SEE SEE SEE SEE SEE	ONLY ONLY
ON TAMP	OLD JUNE DR JISKAJUNE DR JISKAJUNE DR JISKAJUNE DR	<i></i>	
	CR 17"		
CVMDOLC	RAANI	NER OF COLLISION	
SYMBOLS ←—— Moving Vehicle ←—— Pedestrain	Rear-er		ad-on
← M - Motorcycle ← B - Bicycle	Overtaki	ng	
←→→→ Backing Vehicle ☐ Fixed Object	Out of co	7111O1 	-turn
Stopped Vehicle O Personal Injury Parked Vehicle Fatal Injury	Skidding Overturn	ì	it-angle

DETAILS OF ACCIDENT HISTORY FOR LOCATION (AS SHOWN ON COLLISION DIAGRAMY)

TE 213 (9/79)

10 01 10 01 10 01 10 01 10 01 01 01 01 0	14/08 16 12/08 19.
GE OF - GE OF - FROM / / / / / / / / / / / / / / / / / / /	3/4/08

DETAILS OF ACCIDENT HISTORY FOR LOSATION (AS SHOWN ON COLLISION DIAGRAMY)

(20)

TE 213 (9/79)

T SHEET

t

OF

Sieet/Hail/Freezing Rain Fog/Smog/Smoke Other < 21.5 1100 11/82/1 WEATHER 7 ~ Cloudy P Clear Rain Snow 200 on BYEBUEH 3 `` \overline{z} CASE NO. V 0 3 10 DATE N OF. - 76 6 4 G 6 G 高かか FILE 200 _ ВҰ FRONT TKONT DESCRIPTION 1 Snow/Ice Slush Other M Ś (V) ş ROADWAY SURFACE CONDITION 1. Dry 4. Snow/Ic 2. Wet 5. Slush 3. Muddy 10. Other WENTOFF U -Bump, Ŷ 0 3 \mathcal{L} 55 W U, MAKNE LEFT, WAVE 3 WB J. MAKING LEFT, WAVED J. STRUCK RI FR J. ? 103 Palled INFRINT. OF 7. 1270 3 JANES とのア 7 ノルシン B. U. TURNS LEFT > 3000 47 ST.CA. X 33 AS CREP, S S 5 $(\underline{\mathcal{M}})$ Use Codes from MV 104 Police Report see back of this form for codes 77 WISUL 893 3 3 TURNED LUKNES CHANGED \sim 14.11 180 SB ROADWAY CHARACTER
1. Straight and Level
2. Straight and Grade
3. Straight at Hillcrest
4. Curve and Level
5. Curve and Grade
6. Curve and Hillcrest 74 12 U K AT INTERSECTION WITH/OR BETWEEN 1 STRUCK FEL W AF K RE W (<u>\rac{1}{2}</u> Š ر ح ~ <u>`</u> Š ب د S う 'n > 3 Š $|\rho|$ ($|\rho|_{\mathcal{O}}$ | ROUTE NO. OR STREET NAME 2 3 10 W 33 53 K E B $\mathbb{N}_{\mathbb{R}}$ ∞ \mathcal{K} 3 \mathbb{M} 3 . 3 ე გ Ø 3 マ Ų 3 3 305 3059 3060 3060 2060 3060 530% 3058 3060 13061 3059 20 3060 306/ RM 2061 Daylight Dawn Dusk Dark Road Lighted Dark Road Unlighted 155-1106 LIGHT CONDITIONS
1. Daylight
2. Dawn
3. Dusk
4. Dark Road Lighted
5. Dark Road Unlighted APPARENT CONTRIBUTING X **FACTORS** 2 C 1 5 1 20 6 1 0 1 8 T ì Do 5 6 1 1 7 N ENVIRONMENTAL Use codes from MV 104 (shown at right) for these categories 6 N ٠. **МЕАТНЕЯ** 2 M M N ROADWAY SURFACE CONDITION N (e) CHARACTER YAWGAOR OR IDENT. W Ţ 7 6 CONDITIONS 7 THOIL 00 000 500 3 Ö 000 0 Sol 0 4 F 9 H (3) H 5 0 Ę 过 Crare. SEVERITY N N 2 N 3 N N N (4)2 3 1 NO, OF VEH. 26,00116" 56,31 Jest/ 0750 2007 2/20 47 8/21 TIME D. 6510 アング 1 125 1 1213 24 10% 3 (m) Ó 17. 20 4LBAN. 50 8 60 ☑ TOWN □ CITY □ VILLAGE OF _ FROM 113/10 501 60/ 0 01/22 112/10 3/4/10 9 11710 122/10 11/24/10 0 TIME PERIOD DATE 18/ () 10/12 DIAGRAM NO. 9 ~ C COUNTY NUMBER MONTHS 42 Pro 30 9 7 7 2 5 3 7 9 3 20 7 \bigcirc 3 W 5 9 × ×

STATE OF NEW YORK DEPARTMENT OF TRANSPORTATION - REGION ONE 328 STATE STREET SCHENECTADY, NEW YORK 12305 www.nysdot.gov

MARY E. IVEY REGIONAL DIRECTOR STANLEY GEE ACTING COMMISSIONER

CASE# 1090278

December 22, 2010

Mr. Mike Greenberg 11 Bittersweet Lane Slingerlands, New York 12159

Re:

Traffic Signal Operational Review

Albany Shaker Road @ Old Wolf Road, Signal #104

Town of Colonie, Albany County

Dear Mr. Greenberg:

This letter is in response to your December 7, 2009 message to NYSDOT.gov in which you express concern for the operation of the traffic signal at the intersection of Route 155 (Old Wolf Road) and Albany-Shaker Road in the Town of Colonie. Your message stated that the stop bar for westbound vehicles on Albany-Shaker Road is pushed into the intersection, which makes it difficult for southbound left turning vehicles on Old Wolf Road to perform their turning maneuver. You suggested the stop bar on Albany-Shaker Road be moved back.

We have completed our study of the intersection. Our investigation included observing the flow of traffic through the area during peak traffic periods, and reviewing the accident records for the intersection. The accident study did not identify a pattern of accidents related to the position of the stop bar, and our observations did not identify any operational issues. Our observations and the data collected during this study do not justify any changes to the stop bar at this time. The dotted 'skip marks' that separate the two southbound left turn lanes were observed to be faded during our field work. These dotted lines delineate the turn lanes and identify the desired turning path for left turning vehicles. A work order was issued in September to re-apply these markings. The work was completed in October.

If you have any questions, please contact Rob Fitch of this office at 388-0380.

Sincerely,

Mark Kennedy

Regional Traffic Engineer

(12/8/2909) Mark Pyskadlo - Re: NYSDOT COMMENT, Albany Shaker Road @ Old Wolf & I-87 Exit 4 SB on ramp, Signal Palgot, 1/ CASE # 1090278

RESPONSE DUE By 3/8/10 ROB

From:

Mark Pyskadlo

To: Date: mikeyg512@gmail.com 12/8/2009 2:27 PM

Subject:

Re: NYSDOT COMMENT, Albany Shaker Road @ Old Wolf & I-87 Exit 4 SB on ramp,

Signal #104, Albany County

Dear Mr. Greenberg:

We will initiate a study of the intersection in response to your concern and respond back to you with the results. It will take approximately 90 days to complete the study.

Sincerely,

Mark A. Pyskadlo, P.E.
Traffic Engineering & Safety
NYSDOT - Region One
328 State Street - 4th Floor
Schenectady, NY 12305
(518) 388-0380, Fax: (518) 388-0379
MPYSKADLO@DOT.STATE.NY.US

>>> no-reply@dot.state.ny.us 12/7/2009 11:21 AM >>> The following data was entered at NYSDOT.gov

Name - Mike Greenberg Address - 11 Bittersweet Lane Slingerlands, NY Email Address - <u>mikeyq512@qmail.com</u> Comment Topic - NYSDOT COMMENT - Highways/Roads Question or Comment -

I was turning onto Albany-Shaker Road from Wolf road in order to access the I-87 Southbound ramp. While waiting at the traffic light at Albany-Shaker road and 155 in the left turning lane that would lead me onto the ramp, I notice that the turning lane is pretty far up such that cars turning left from 155 onto Albany-Shaker Road towards wolf road have to use high caution when making that turn so they don't dip the lead car waiting to turn onto I 87. I am wondering if someone could take a look at this and perhaps back up that stop line so that it gives the people turning from 155 onto Albany-Shaker Road more room to turn. Thank you for your time! Page Accessed From:

ACCIDENT DIAGRAM
& OBSERVE

& OBSERVE

- HDM Chapter 5

- throat width 8-9 m

- turning radii

ASR OLD WOLF RD

ACCIDENT SUMMARY SHEET

MUNICIPALITY Town of Colonie	COUNTY Albany
LOCATION ACRONTEISI @ ACRONTE 153	(THRM 3047) HSI # 1-1-0495
TIME PERIOD 1/1/07 + 12/31/09	NO.OF MONTHS 36
Accident Type No. of Accidents	Pavement No. of Accidents
Right Angle $\frac{3}{11}$	Dry Wet
Rear End Overtaking	Wet
Overtaking 1 5 Sideswipe/Head-on	2.1
Right Turn Parked Vehicle	TOTAL <u>L</u>
Pedestrian	Weather No. of Accidents
Bicycle Animal	Clear
Fixed Object	Cloudy S 2
w/Guide Rail	Snow Sleet
w/Sign Posts w/Trees	Fog
w/Ditch-Embank.	-
	TOTAL 21
TOTAL 21	, , , , , , , , , , , , , , , , , , ,
Light Conditions No. of Accidents	Accident Severity No. of Accidents
	Estal
Day Night Unknown	Injury 3
	Injury Property Damage TOTAL 21
TOTAL 21	TOTAL

DEPARTMENT OF TRANSPORTATION TRAFFIC ENGINEERING AND SAFETY DIVISION

Sheet 1 of 3.

COLLISION DIAGRAM 3 Municipality TOWN OF COUNTY ALBANY
Intersection ALBANY SHAKER RE(N.4.155) DOD DOF FD [I-37 FAZ
Period Years Months From 1/107 12/34/09 File D.M.U. By D.7.W. Date 1/13/10 ONY land in a Sideswipe due to an icy skil a accident report. OF SYMBOLS →<... Rear-end — Head-on ← - Pedestrain ← Moving Vehicle Side-swipe ← B -Bicycle ← M-Motorcycle Left-turn Out of control □ Fixed Object ←→→> Backing Vehicle Skidding O Personal Injury ← Stopped Vehicle Right-angle Overturned Parked Vehicle Fatal Injury

S (€ 04

DETAILS OF ACCIDENT HISTORY FOR LOCATION (AS SHOWN ON COLLISION DIAGRAM)

SHEET ___OF __

THE CHESS, U.Z. STANKET, THEN STOPPED WIS UP STANKE BOTH UPH 8. F. ON OLD WELFRD. VI START FOR SKANKED AS. R. BOSIGNAL VI DID DOT. VI STRUCT VATPUSHED VAIND VS. (RE. BOTH VEH. S.D. OD OD GOOF RD. WELTIL, VI IN CONTER ITAL BOTH UEH. E.F. O. A. S.R. I'M KIT, BOTH TURNING ONTO I BIT KINE STOWEDS SLEWEL, WITCH USK יט ניס STATE OF THE STATE 7 BAH VICH. S. B. O.D OLD WOLFRD, VISBILARES FIN VIEBODASK. NZWB. VQ TURNED IT. 150 VITO IT-8 BOTH LEH EIR. D. A.S.K. VI STOPPED TOO PONT , VADIO DE 11 TOLINGO LT. 110 1/2/02-1811 イギ 1/18,6,6) OLD WOLF PP. 1/65 5 W.B. OJ 4.5.R. IN LIFE. BOHIND UPINEWED "O SIGNAL. 1/1 THIND LT. + FISH MILED INTO VIANZ : 00 11 2.15. 95 OLD WOLF. 10. , UB. W. F. Q. A. J. R. , VI KAD SINJA, 12 con to war two to M. BOTH VEH. S. B. OLD OLD WOLF PO. VASIONIED, VI DID NOT THE 3 VEH. 3. B. ON OLD WELFIED, IN RT.L. VRYS BOT VI SID INDVZ POSHING VRINDUS. BOTH UELL SE OF OLD WALFIED. VELOTORIED IN TRAFFIED. BULDED "BY SWING DION'T KNEW VE SENIOW. Steet/Hail/Freezing Rain Fog/Smog/Smoke Other VID. B. O. A.SK., VR EIB. VI TURES IT IFO VQ ID ALL 3 1641. 9, 8. 00 OLD LOUF RD. VR+SSIOTHED FOR 20601 J 780 WEATHER Cloudy Snow CASE NO. DATE - 444466 FILE DESCRIPTION Snow/Ice Slush Other AT INTERSECTION WITH/OR BETWEEN

OLD WOLF (D. (M.Y. 155) \$ I 875.B. BY RIMP. CONDITION 11 STOPPED WOO WARNING, IN TUKEN, 30T UCH. S.13. ON OCO WOLF 10-1. Dry 4. 2. Wet 5. 3. Muddy 10. MARGA ASK, VAEB. Use Codes from MV 104 Police Report see back of this form for codes A STANT STAKER RD (N.Y. 155 ROADWAY CHARACTER
1. Straight and Level
2. Straight and Grade Straight at Hillcrest
Curve and Level
Curve and Grade
Curve at Hillcrest VADIDASI 1 1 1 1 1 1 1 1 S ROUTE NO. OR STREET NAME St. RAWP. KANP. Dark Road Lighted . Dark Road Unlighted LIGHT CONDITIONS
1. Daylight
2. Dawn CONTRIBUTING 91%/ APPARENT 1 **FACTORS** 60 18/18 1 ١ 25,71 3,62/) Col 7 1 ec **M** B 8 **(1)** ENVIRONMENTAL
Use codes from MV 104
(shown at right) for
these categories B 7 (G) SURFACE CONDITION X J B R YAWGAOR OR IDENT. 7 THOIT 7840 28.T. 2 Fro. 2 180, 12/PED. 600 PEO 2 PT 80 F 512 (e) COLONIE 3 (4)OŁ ON 1.168/401 Σ, Σ 12.50 18.50 7 9:30 2,2 DIL 7.7 4/11/08/0/17 TIME 411. 5136 ひられて 4:30 3:6 8.16 0):2 3 PM. 00 x 6 00 E アインション 131109 (c) 101 415417 1/4/10/1 FROM 10/20/07 124/00 10/11/01 120/02 ☐ VILLAGE OF 15/07 (A) (A) 0(४४)०१ 19/61 121/02 8/18/01 10/01 TIME PERIOD DATE 0 DIAGRAM NO. **区**fown COUNTY CITY NUMBER MONTHS 3 Z T M) J 2 60 9 5 Θ 7 0

TE 213 (9/79)

DETAILS OF ACCIDENT HISTORY FOR LOCATION (AS SHOWN ON COLLISION DIAGRAM)

Q.

. 7355FA NO. 1/88. a) OLD WOLF PD., PLEPAKING TO TO AND RECORD AND. BOOM WEAK. MAKING AS. POLIN FLOM ASK. E.B. GNOD I-81 S.I. KAMP. VI STOPPED WHAT OP & CHECKING AMORKHING PLAFFE MWB.O. L.S.R., VZ.E.B. VITURED CT. TO I-BT KAMP MEDIO CIB K-87 1090278 Siest/Hail/Freezing Rain Fog/Smog/Smoke Other 11 TOKNED 100 8000 + STRUCK CURTY AT SIGN ON BOTH UEH, E.B. ON 4.5.K. IN KTIL FOR PRANI SHEET ンズス えんべ 1 3/10 WEATHER Cloudy Cloudy Rain Snow CASE NO. DLD CLB CH KAKO (N.Y. 155) & I BY & I BY BY -44.44.60 FILE HOADWAY SURFACE
CONDITION
1. Dry
4. Snow/ice
2. Wet
3. Muddy 10. Other DESCRIPTION 14.5K, 12 EIB. ALEANY SHAKER ROND. (N.Y. 155 TOPI OKTITUDENS Use Codes from MV 104 Police Report see back of this form for codes ROADWAY CHARACTER
1. Straight and Level
2. Straight and Grade
3. Straight at Hillcrest
4. Curve and Level
5. Curve and Horset
6. Curve at Hillcrest 11 10 14 19 15 ROUTE NO. OR STREET NAME 1/w.B.a dret. Dusk Dark Road Lighted Dark Road Unlightud LIGHT CONDITIONS:
1. Daylight
3. Dawn
3. Dusk
4. Dark Road Lighted
6. Dark Road Unlighted APPARENT CONTRIBUTING **FACTORS**) 1 マ〜 7 7 ENVIRONMENTAL
Use codes from MV 104
(shown at right) for
these categories Q <u>_</u> **MEATHER** ROADWAY SURFACE CONDITION J (e) サ 6 7 OR IDENT CONDITIONS THDI_ 1 600. ZP.I S Foo 8,000 2 E (P) **SEVERITY** DLONIUS (4)NO' OF VEH. 145 5 % 2, % 6130 Paid Pm. 10:2 TIME 60 R. M. 40042 (_C) 0// 12/ 60/2/ 12/1/20 CITY VILLAGE OF. FROM 1/2/09 60/11/6 4/1909 TIME PERIOD 2 DATE 0 DIAGRAM NO ID-YOWN COUNTY NUMBER MONTHS 977 8 **a** 9 \odot

ACCIDENT SUMMARY SHEET

MUNICIPALITY Town of Colonie	COUNTY_	Albany
LOCATION NY 910B; RM 910B-1101-1016 TO 1019	PIN	1721.51
TIME PERIOD 1/1/07 to 3/31/10	NO.OF MOI	NTHS 39
TIME PERIOD 1115		

Accident Type	No.	of Acc	idents		Pavement		No.	of Ac	<u>cidents</u>
Right Angle Rear End Overtaking Left Turn	·	17 - 6 - 14 - 34			Dry Wet Snow/Ice Unknown			97 25 5 5	(20% of known
Sideswipe/Head-on Right Turn Parked Vehicle						TOTAL		132	
Pedestrian Bicycle	Pa	· · · · · · · · · · · · · · · · · · ·	a delete que	· · · · · · · · · · · · · · · · · · ·	Weather Clear	~	No.	of Ac	cidents
Animal Fixed Object w/Utility Pole w/Guide Rail w/Sign Posts w/Trees w/Ditch-Embank w/					Cloudy Rain Snow Sleet Fog Unknown			46 9 3 	
·		170				TOTAL		170	
TOTAL		156							

Light Conditions	No. of Accidents	Accident Severity	No. of Accidents
Day Night Unknown	85 46 1	Fatal Injury Property Damage	<u>52</u> 80
TOTA	132	TOTAL	132

NYSDOT Safety Information Management System Accident Severity Summary

Intersection & Non-Intersection Accidents

Complete Accident Data From NYSDMV Is Only Available thru 30-SEP-2010

Route: 910B

Highway Location Ref Mrkr Range: 910B11011016 - 910B11011019

Dates: 01-JAN-2007

thru 31-MAR-2010

Traffic Volume: 29,180

Date: 02/14/11 14:32

Total of Fatal Accd	Total of Injury Accd	Total of PDO Accd	Total of Non-Reportable	Total Number of Accidents	Accident Rate
0	59	61	11	131	9.46

Accident rate for linear section is accidents per million vehicle miles.

NYSDOT Safety Information Management System Summary Report By Segment And/Or Intersection Intersection & Non-Intersection Accidents

Page: 1

Date: 02/14/11 14:33

Complete Accident Data From NYSDMV/Is Only Available thru 30-SEP-2010

	Z H	0		Ŋ	2	S	2	0	23	38
	TRUCK LIGHT CONDITION *** DWN/DSK DAY NIGHT ** ** ** **	m	_	r)		10	Ŋ		55	81
	TGHT CO	, - -1	-4	0	p	0	7	0	2	~
10	RUCK LIGHT COND *** DWN/DSK DAY *** ** **	0	0	0	0	0	-	0	7	ю
31-MAR-2010	S PED& TRUBIKE **	0	0	0	0	0	0	0	0	0
- 31-	CIDENTS FIXED PHOBJ B1	0	0	0	r-4	0	0	0	0	н
2007	OF ACCI WET FI ROAD O	7	0	1	7	m	7	0	15	25
01-JAN-2007	NUMBER OF ACCIDENTS N/R WET FIXED P ROAD OBJ B ** **	0	0	m	0	m	κ	0	4	
	1	H		5	m	7	2	Н	41	61
DATES:	PDO									
No. 1 4 70	DNI	m	2	4	H	9	4	0	39	5.9
11019	FTL	0	0	0	0	0	0	0	0	0
910B11011019	TOTAL	4	т	10	4	16	9	r →	84	131
ı									щ	
910B11011016							EXIT 4		RAMP TO I87 NB	ES 999 RMS
HIGHWAY LOCATION:	DESCRIPTION		MARCUS BLVD		ULENSKIE DR		RAMP FROM 187 NB -		ALBANY SHAKER RD & RAMP	ROUTE TOTAL EXCLUDES 999
	N H H		45		40		41		42	
ROUTE: 910B	REFERENCE	910B 1101 1016	910B 1101 1016	910B 1101 1017	910B 1101 1017	910B 110I 1018	910B 1101 1018	910B 1101 1019	910B 1101 1019	

TE 56 (4/69) ·

DEPARTMENT OF TRANSPORTATION TRAFFIC ENGINEERING AND SAFETY DIVISION

COLLISION DIAGRAM

1080 248

Municipality Zo	and Colonie	CountyAlsa	File	
Intersection	10/4/62 E 0/e	00 1/1/05 To 9/28/0	1-1017	m Date 10/2/
		Pock wall	Vlanski D	
	1			

SYMB	OLS	MANNER C	OF COLLISION
← Moving Vehicle	← — Pedestrain	Rear-end	─────────────────────────────────────
← M — Motorcycle ←→>>> Backing Vehicle	← B —Bicycle □ Fixed Object	Side-swipe Out of control	Left-turn
Stopped Vehicle Parked Vehicle	O Personal Injury Fatal Injury	Skidding Overturned	Right-angle

TE 213 (9/79)

DIAGRAM NO.

DETAILS OF ACCIDENT HISTORY FOR LOCATION (AS SHOWN ON COLLISION DIAGRAM)

OF

SHEET

3 1.0 to 13/ driving, 0470801 Commen Snow Steat/Hail/Freezing Rain Fog/Smog/Smoke Other ソサン SALARONIA WEATHER Operator waved out by uninvolved motorist 1, Clear Z CASE NO. N DATE - 26.470.00 FILE ВХ 1057 Crossed Roadwas (11) DESCRIPTION Snow/Ice Slush Other ROADWAY SURFACE
CONDITION
1. Dry 4. Snow/lc.
2. Wet 5. Slush
3. Muddy 10. Other oporator was wared across 71013-1101-1017 Traffic Use Codes from MV 104 Police Report see back of this form for codes pared ROADWAY CHARACTER AT INTERSECTION WITH/OR BETWEEN Straight and Level Straight and Grade Straight at Hillcrest Curve and Level Curve and Grade In attention Curve at Hillcrest ろをなる ROUTE NO. OR STREET NAME Pedestino 11,5101 アンロンア Daylight
Dawn
Dusk
Dark Road Lighted
Dark Road Unlighted LIGHT CONDITIONS
1. Daylight
2. Dawn (10) Use APPARENT CONTRIBUTING lensk, **FACTORS** 0 J 0 Ĩ J I N N ENVIRONMENTAL Use codes from MV 104 (shown at right) for these categories N M (G) **МЕ**РТНЕВ M N ٨ CONDITION N N SURFACE \otimes N N N CHARACTER OR IDENT. t I CONDITIONS I 20012 LIGHT 00 7 4 47 2 ROS 11Bo 18/07 8 Pm 2 PEO Ê 7 3/29/06 1 PM 2 PDG 4 gm 3 800 4 SEVERITY Co loniè Ŋ N 36 Z 19 mg p (4)NO. OF VEH. 500 30 % Am r de 10 m 200 3/20/66 16 pm TIME (36) 89 (m) 12/23/05/12 Ž 11/26/07 40 4/17/07 7/1/66 9/23/07 11/27/07 FROM 30/6/8 UVILLAGE OF 4 TIME PERIOD 70/4/6 DATE 12/21 Š FTOWN CITY COUNTY NUMBER MONTHS 0 1 ω 9 3 T \subseteq S

ACCIDENT SUMMARY SHEET

MUNICIPALITY Town of Colonie		COUNTY Albany
LOCATION AC Route 153/01	d Wolf Rd	PIN 1721.51
TIME PERIOD 1/1/07 TO 3/31	110	NO.OF MONTHS 39

Accident Type No. of Accidents	Pavement	No. of Accidents
Right Angle Rear End Overtaking Left Turn Right Angle 72 8	Dry Wet Snow/Ice Unknown	7 1 2
Sideswipe/Head-onRight Turn	TOTAL	30
Parked Vehicle Backing 1		
Pedestrian		_
Bicycle 1	Weather	No. of Accidents
Animal	Clear	- Ly many and
Fixed Object	Cloudy	
w/Utility Poles-Wars	Rain	2
w/Guide Rail	Snow	APRIL 100-100-100-100-100-100-100-100-100-100
w/Sign Posts	Sleet	
w/Trees	Fog	
w/Ditch-Embank.	Unknown	2_
w/		7 0
- ·	TOTAL	30
TOTAL 30		

Light Conditions	No. of Accidents	Accident Severity	No. of Accidents
Day Night Unknown	22 7 1	Fatal Injury Property Damage	0 13
TOTAI	30	TOTAL	30

NONE TE 213 (9/79)

DETAILS OF ACCIDENT HISTORY FOR LOCATION (AS SHOWN ON COLLISION DIAGRAM)

N OF SHEET

26 V2 THE ST SLOWING STANAL SLOWING SIGNED へて ゆく ころ シンライン TOF IN TRAFFIC AT SIGNAL 7 SIZNET 7.7 38 孟 4 TENTER! Rain Snow Sleat/Hail/Freezing Rain Fog/Smog/Smoke Other 28 S 70 MCK クグア STUCKED NO STEURK F $\sqrt{}$ 3 加 90 TRAFFIL GND-WB, HEAVY TRAFFIC ON RAMP TRAFFIC STRUCK HEMY TRAFFIC ON RAMP WEATHER STRUCK STEURCK EB MILITA 9 Clear Bull MILLER, ILIT II I CHITCHON TONECIS OR 00 V-1 CHANGED LANES CASE NO. STUPPED FOR TRAFFIC TRAFFIC DATE FILE TRAFFIC -. 44469 ATTEMÍTICO LICTA TOARN STOPPED IN TWAN STURRED STRUCK Snow/Ice Slush Other NB V-1 ATTEMPTED LEFT TWEN DESCRIPTION STUPPED SURFACE ENTERED STURCE V-1 ENTERED S. V-1 ENTERED 出出 4. % 0. JIM) N ROADWAY SI 305 1-1 Dry Wet Muddy 5 Dump WP 7-7 <u>-</u> NB V-1 ATTREMPTED Use Codes from MV 104 Police Report see back of this form for codes 0 > GND-WB NB V-1 BACKED. WB JUMPRTAKE-SB 38 HOADWAY CHARACTER

1. Straight and Level

2. Straight and Grade

3. Straight at Hillcrest ANGLE 8h08 Bany County Route 153 AT INTERSECTION WITH/OR BETWEEN ANCIE GND-CNE D N D GND-) 3. Straight at Hillcres
4. Curve and Level
5. Curve and Grade
6. Curve at Hillcrest \geq <u>S</u> 1 2 2 2 ROUTE NO. OR STREET NAME RCAR RIGHT REAR REPR REAR REPR REM THRM 159-1101 3,018 2000 ΣZ 3,025 Dusk Dark Road Lighted Dark Road Unlight್ಯದ LIGHT CONDITIONS
I. Daylight
Dawn APPARENT CONTRIBUTING **FACTORS** 22 H 217 __ 7 <u>U</u> 2 4 Q 7 Q Q 1 ____ 4. 10. 5112111 N N ENVIRONMENTAL Use codes from MV 104 (shown at right) for these categories 0 S <u></u> **MEATHER** CONDITION 7 1 <u>⊚</u> SURFACE فس 4 コニンタフタンコーのちょう 部中語 (<u>o</u>) CONDITIONS PILI PDO P-7 900 1800 00/ 000 21800 7 (c) **SEVERITY** 6 Sait 2 (-) ((4)NO' OF VEH. ~ Jossih I 10 MSA RIOZA 5326 9139 h 1450 4:17 L V 19118# 5131F JOI! h 9 TIME 2118 10/ 2 7:II (c) Bany 6 FROM (A) 5 P 50 19 0 5 5 10 5 13 6 TIME PERIOD CITY
VILLAGE O DATE 20 vi 2 I (0) 36 V 3 三 0 Ū DIAGRAM NO. ω ☐ TOWN 0 0 0 0 COUNTY NUMBER MONTHS OF 3 9 J (U)9 ∞ $(\!-\!)$ 0

TE 213 (9/79)
DIAGRAM NO. NONE

DETAILS OF ACCIDENT HISTORY FOR LOCATION (AS SHOWN ON COLLISION DIAGRAM)

SHEET 2 OF 2

ROUTE NO. OR TREET NAME		1155-1101-3048 TO 3052 DATE	S ROADWAY CHARACTER ROADWAY SURFACE WEATHER 1. Straight and Level CONDITION 1. Clear 2. Straight and Level 1. Dry 4. Snow/ice 2. Cloudy 3. Straight at Hillcrest 2. Wat 5. Slush 3. Rain 4. Curve and Level 3. Muddy 10. Other 4. Snow	6. Curve at Hillcrest John MV 104 Police Report	sae back of this form for codes TH	SONS RIGHT ANGLE, V-1 ENTERED TRAFFIC EB, STRUCK BY SB V-2	Soys NB V-1 ATTEMPTED LEPT TURN, STRUCK BY SB V-Z	GOYA REAR END-SB, V-2 STOPPED IN TRAFFIC	9050 REAR END-WE, V-2 SCOWING IN TRAFFIC AT SIGNAL	BOSO REPAR END- WB, V-1 STARTING IN TRAFFIC AT SIGNAR	JUNG NO V2 ATTEMPTED LEFT THAN, STRUM BY SB V-1	SMS NO V-1 HTTEMPTED LEFT THEN, STRUCK BY SG V2	SHIR NO VI ATTEMPTED LEFT THIRM, STTRUCK BY SB V-2	BORNO VY ATTEMPRED LEFT THEN STRUCK SBV2	GOSO KERR END-SB, V-2 STORED AT RED TRAFFIC SILVAL	350 REAR END-WB, V-2 SCOWING IN TRAPPIC AT STAIRL	3050 PEAR END-36, BOTH VEHS PULLING TO SHULLDER EMEGA.	301 RIGHT ANGLE, VI ENTERED TRAFFIC EB, STRUCK BYSBYB	3048 V.1 STUPPED IN TRAFFIC SB, SB BICYCLIST HAD SIEZURE		- deadle
-		A IN ERSECT	LIGHT CONDITIONS 1. Daylight 2. Dawn 3. Dusk 4. Dark Road Lighted	Dark Hoad Un	APPARENT CONTRIBUTING FACTORS	50		b'h	9,4) <u>/</u>)	13,17				Same of the same o	1	F92		10		
151	> . -			_	ЭНТАЭМ		Seguero (Marie) (Marie)	7		3		· ·	and the same			7			3		
177777	_		ENVIRONMENTAL Use codes from MV 104 (shown at right) for these categories	ω) =	AOADWA SURFACE ITIGNOD					7		and the second				7			7		
_			Codes from at right	Уяэт	СНАВАС. ОВВ	, marine						And the second second	and the state of								
P.I.N	DENT		EN. (shoo	<u></u> емс	LIGHT			3					*******	7		23		·			<u></u>
	# 8	$\tilde{\sigma}$	(<u>،</u> و	тіяауаѕ	S	1000	900	008	600	E	8	1 P D0	PDO	600	P.I	1 100	ppo	100		
		Imre		і 4. (4	NO. OF V		7 2	7 9	7 1			(C)	7 3	7	P 2	P 2	A 12	2 8	9(
11600	Aug	3	107	01/	O TIME	A 1039	112:31	SILL	8:06A	d hach	5:29P	S.23.f	121569	5:30 P	4:50P	JSZ:9	A25:01	61371	212 or	*	
		CITY VILLAGE OF	R FROM	5/3	© DATE	89 82 15	80,011	80 LI	80/08/14	80 11 8	1 24 NS	6/25/09	60/2/6	60 91 21	5/31/09	8 29 09	60 h/b	50 0 1 17	01/22/8		
	COUNTY STOWN	O CITY	TIME NUMBER OF	2 0	© 2		ندين ا	5 <u>T</u>		end.	6	8		\(\sigma\)	<u> </u>	77	87	57	30		
، L			1 -	<u> </u>		1	L	L	L	L		<u>L.</u>	<u></u>	<u></u>	I	L	<u> </u>	L		<u></u>	

ACCIDENT SUMMARY SHEET

MUNICIPALITY Town of Colmie	COUNTY Albany
	PIN 1721. SI
TIME PERIOD 1/1/07 to 3/31/10	NO.OF MONTHS 39

Accident Type No.	of Accidents	Pavement	No. of Accidents
Right Angle Rear End Overtaking Left Turn	8 23 10 11	Dry Wet Snow/Ice Unknown	38 12 (23% of kn.) 2 (4% of kn.)
Sideswipe/Head-on Right Turn		TOTAL	<u>55</u>
Parked Vehicle Pedestrian Bicycle Animal Fixed Object w/Utility Poles w/Guide Rail w/Sign Posts w/Trees w/Ditch-Embank. w/	2	Weather Cloudy Rain Snow Sleet Fog Unknown	No. of Accidents 30 12 7 3 3 3 L 55
TOTAL	<u>55</u>		

Light Conditio	ns N	o. of Accidents	Accident	Severity	No. of Accidents
Day Night Unknown		42 12 1	Fatal Injury Property	Damage	21 34
TO	OTAL	<u>55</u>		TOTAL	<u>55</u>

DETAILS OF ACCIDENT HISTORY FOR LOCATION (AS SHOWN ON COLLISION DIAGRAM) NONE

TE 213 (9/79)

7 PF SHEET

STRUCK WB VG SISE STORY V. できる SIZER A STANT NAND STRUCK SI Snow Sleat/Hail/Freezing Rain Fog/Smog/Smoke Other いなどろう SIGNE The 4 SED SED グルルでは # 777 ピガイギット アグス に出土 4115 1 99 TRAFFIC PICHT. V-1 PASSED RED SIGNAL. -WEATHER STOUCK 99 W SLOWING -N - ANES TEAFFIC AT STRUCK Clear Cloudy Rain WE VI AT TE MOTED LEFT AGAINST STANK BUTH VEHICLES WAKING TREPET. CASE NO. M TRAFIL 3 CALLABILIC LEX MAKE DATE FILE -44466 STANGE CHANGED 7 MIMOTS 14 ATTEMPTED 18FOT TURN DESCRIPTION - NARN 四子 Snow/Ice Slush Other STERES とでする 2 M COSSILS SURFACE STUPPED コトのの MAKING SCOWING MONTHREAD-FB N-1 SLOWING STARPED ROADWAY SUR CONDITION 1. Dry 4. S 2. Wet 5. S 3. Muddy 10. (岛 一万万一 1-/ Care > HI TEMPLED > Use Codes from MV 104 Police Report ATTR MPTED 1-> SB 9 - NB 28 ROADWAY CHARACTER
1. Straight and Level
2. Straight and Grade
3. Straight at Hillcrest
4. Curve and Level
5. Curve and Grade
6. Curve at Hillcrest 3038 58 95 EB 12 AT INTERSECTION WITH/OR BETWEEN REPREDIO SB, RIGHT ANGLE 8 CHO CND. ANGUE END. MERCHAKE MER TAKE RESERVENTO. REAL GNO-County Kout RM 155-1101-5 SHO. I) ROUTE NO. OR STREET NAME NEAR PERR PLOFF PLOFF WR <u>≥</u> APPARENT CONTRIBUTING THE Sent L 13/11/1 3646 202 Daylight
Dawn
Dawn
Dusk
Bosk
Dark Road Lighted
Dark Road Unlighted LIGHT CONDITIONS Albany 1 <u>___</u> 2 20 3 コ 00 5 5 2 0 4, rč 1712115 4 ENVIRONMENTAL Use codes from MV 104 (shown at right) for these categories N (4) C1 7 (G) 4 **ЯЗНТАЗW** SURFACE **⊚** CHARACTER YAWGAOR OR-LDENT. CONDITIONS LIGHT _____ (4) P.I.Z <u></u> 800 000 7 000 100-000 W 100 P0 0 (D) **SEVERITY** 077 170 Ū 3 ζ-(4)C ~5 OE ~ 'ON Proid 9:12 2:37P 9021h S:36P 12:40 4000 SINP J.Y. IA 7000 ----9:30A 3.168 18 TIME 2 イママス T 34 2 (c) 2 CITY FROM 120 07 0 107 50 5 1000 C 0 5 1707 TIME PERIOD 07 DATE (P) 92 5 اندم 0 0 = DIAGRAM NO. 0 0 0 V IN TOWN 3 COUNTY NUMBER MONTHS J N Θ 9 90 5

NONE TE 213 (9/79)

DIAGRAM NO.

DETAILS OF ACCIDENT HISTORY FOR LOCATION (AS SHOWN ON COLLISION DIAGRAM)

1

b

OF

SHEET

FRUM VIENING LOT 150 WBV.2 TRAFFIC EB 1-2 5 -WB. V-1 CHANGED LANES TO AVOID UNHIVOLVED VEH 70 5 トスをたり 0 7-7 HEAD Snow Sleet/Hail/Freezing Rain Fog/Smog/Smoke Other HE PAIN 6 STORK STRUCK 2/22/ イルン Du Z <u></u> CK 93 93 - Second NAKE TRAFFIC WEATHER 当りもよう STREED S BUTH VEHICLES SLOWING Clear Cloudy Rain LAND ENTERED TERFELL 116 CASE NO. ができ V-1 ENTERED TRAFFIC NO V-1 CHANGED LANES V-1 CHANGED LANES STENCK STENCK WB V-1 ATTEMPTED LEFT THRN, STRUCK DATE FILE -. 44.4.6.6.0 STUPPED IN STOPPED TMAN (1) DESCRIPTION Snow/Ice Slush Other V-1 CHANGED AND V-3 CHANGED ROADWAY SURFACE CONDITION SB 3071+ SELECTIVE. Albany-Shalen Rd 1. Dry 4. 2. Wet 5. 3. Muddy 10. F. Called 一個一個 THEN 155- 1101-3038 TO Use Codes from MV 104 Police Report sue back of this form for codes > - X B AVERTAKE - W'B $\leq \frac{1}{2}$ ROADWAY CHARACTER

1. Straight and Level
2. Straight at Hillcrest
3. Straight at Hillcrest
4. Curve and Level
5. Curve and Hillcrest
6. Curve at Hillcrest (RUSSED 9 EB. CND × 80 OVERTIME - MB 0 AT INTERSECTION WITH/OR BETWEEN BIDING THEID ANCHE J -OND GND-CND NUCLTHE-MERTINE MINON I.IN NEZETAKE ROUTE NO. OR TREET NAME REAL DEPAR KERK REPR RIGHT _ い 9 3,0,40 280 20K 3016 3 3 29MP 30% ξ LIGHT CONDITIONS

1. Daylight

3. Dawn

3. Dusk

4. Dark Road Lighted

5. Dark Road Unlighted AC Rost APPARENT CONTRIBUTING 69.11 **FACTORS** 97 S ذــ 2 7.5 7 . 5 N 11211211 ENVIRONMENTAL Use codes from MV 104 (shown at right) for these categories 3 6 3 سید غمد -**MEATHER** D 7 7 <u>@</u> SURFACE RHARACTER _ YAWQAOR OB LDENT ســ لــــ CONDITIONS (G) TH91-Tida 00 d , |----PDO 600 90 Ulilling orcum 2 Ban 100 100 (D) المسا **SEVERITY** SIE 7 1 N S NO' OF VEH, Car <--; 12:21 9:19 14:VTP Sie 9:17A 5367 0 1 1 1 1 145 A 4:26 0412 4:190 2.08P I TIME 10, S 0//2 7.451 <u>ල</u> (Dany Ď TOWN □ CITY □ VILLAGE OF _ FROM 89 22 <u>د</u> = 200 600 600 760 760 8. 200 00 90 00 02 80/61/21 89 TIME PERIOD --St \sim 0 DATE (P) 2 1 8 9 __ 52 \subseteq ~ 7 2 V 5.... COUNTY J N NUMBER MONTHS P نسم 63 50 S Θ $C\Phi$ 2 3 5

TE 213 (9/79)

DIAGRAM NO.

NONE

DETAILS OF ACCIDENT HISTORY FOR LOCATION (AS SHOWN ON COLLISION DIAGRAM)

ナ

SIGNED な子をでい 5 3 SIANKY OF PARIN CANONINA OWN Snow Sleet/Hail/Freezing Rain Fog/Smog/Smoke Other 7-7 どもは \$ B <--5 2 T 5 4115 MED F TRAFFIC SHEET GLE STIRED 1000 3 して発圧でし 1 30 WEATHER しまなして MENNING CMB/ZEMD STOPPED IN TRAFFIC 到 Clear Cloudy Rain STRUCK SIGNIAL **NAND** できば STRUCK Š. DATE _ CASE FILE - 76 m 4 m m 0 0 Z -FRIE COMMOD 2 7 (1) DESCRIPTION SLOWING Snow/Ice Slush Other Y-1 MAKING LEFF, STAPPED TURN FF CHANGED AND END 220 ROADWAY SURFACE CONDITION 1. Dry 4. Snow/lo 2. Wet 5. Slush 3. Muddy 10. Other WIR YI ATTERNITED LETT THRM VI STOPPED FOR SCOWING 3047+ V-I CMERNED 3 V-1 STARCTED NINILL VALLED) V-1 ATTEMPTED LEFT 17 Albany - Shaker P 2 -7.7 1 61 ANT 10 C Use Godes from MV 104 Police Report 155-1101-3038 see back of this form for codes (L.6 ENO- WB. - 18 B 2 ا الذي 0 ROADWAY CHARACTER G G 6ND-5B REPAR END-CB 6110-68 AT INTERSECTION WITH/OR BETWEEN لنا Straight and Level
Straight and Grade
Straight at Hillcrest
Curve and Level
Curve and Grade END EB MERCHICE RIGHT ANGLE ONT END-MINICA VICENTA RIGHT ANGLE REAR GIVE MERCTALE SVECTALE. 1721 SI ROUTE NO. OR STREET NAME CER KERK Z PCK PCK KER JOSE REPORT MP 5 3,046 2027 F 50 30.6 Sout 2017 三 左盖 Daylight Dawn Dusk Dusk Road Lighted Dark Road Unlighted KONT LIGHT CONDITIONS APPARENT CONTRIBUTING REV **FACTORS** 5 100 **S** \Diamond 工 ک بىد بىد 2 5 ____ بسب 0 0 ENVIRONMENTAL Use codes from MV 104 (shown at right) for these categories 3 (1) (G) S **МЕАТНЕЯ** 1-7 3 2 4 6-7 **©** SURFACE **ВЕТОАЯАНО** لس YAWGAOR OB LDENT. SNOILIGNOS (<u>o</u> 67 -5 LIGHT 6-1 7 00% 7 000 poo NO 1/1 1 / 1/1/1/1 900 007 P 0 0 17 000 (P) **SEVERITY** Mile *(*-1 (4)7 NO' OE NEH' 5 C-- \subset 5 C--17.33 Jahn S 11:78 A dsiih 4:01 1.40P H 1 h: 9 0 18421 5 10.10 A ear of a TIME 10, 50 Thil Ŕ 0 7 (c) Dan 3 TOWN CITY VILLAGE OF FROM 120 05 10108 500 0 0 00 00 5 80 09 صن 09 00 69 TIME PERIOD 0 _ \bigcirc 0 DATE 2 29 (P) <u>U</u> 7 5 9 00 S G 00 2 سدر قيد T COUNTY NUMBER MONTHS Q 9 0 2 28 2 \hookrightarrow 5 2 Θ C_{ℓ} 3 3 نــ

TE 213 (9/79)

DETAILS OF ACCIDENT HISTORY FOR LOCATION (AS SHOWN ON COLLISION DIAGRAM)

SHEET 4 OF 4 DIAGRAM NO. NONE

COUNTY	A	(Bany		P.I.N. OR-IDENT.	P.I.N. FDENT.				ROUTE NO. OR TREET NAME	ET.	Albany - Shaley RA		CASE NO.	
	S IOWN	S mic	<u>v</u>						AT INTERSECT	Ne Y	1 +	S. K.		
TIME NUMBER OF MONTHS	PERIOT FR(1 7	9	9	ENV Use c (show these	IRONM codes fr wn at rig	ENVIRONMENTAL Use codes from MV 104 (shown at right) for these categories (6) (7) (8) (9)		LIGHT CONDITIONS 1. Daylight 2. Dawn 3. Dusk 4. Dark Road Lighted 5. Dark Road Unlighted	7 - 2 C 4 C C	ROADWAY CHARACTER ROADW 1. Straight and Level CONDIT 2. Straight at Hillcrest 2. Wet 4. Curve and Level 3. Mudd 5. Curve and Grade 6. Curve at Hillcrest	ACE ow/Ice ish	WEATHER 1. Closer 2. Cloudy 3. Rain 4. Snow 5. Sleet/Hail/Freezing Rain	lain
5	2/3 (2) DATE	1/10 (3) TIME	ио: ое лен:	SEVERITY	CONDITIONS	YAWAA CHARACTER	YAWDAOR SURFACE CONDITION	язнтазм	O Use APPARENT CONTRIBUTING FACTORS	See ba	odo	(1) DESCRIPTION		
		Hisap	2	600		جددوست _ا				, Fg.	REAR GNO-EB, V-2 STOPPED IN TRAFFIC AT SIGNAL	STO PRED IN	ファルル	35
	6 29 09	5150P	Comp	000				7	5	3,047	REAR GNO-EB, 4-2 STARTED THRN STAPPED AT SKAM	THRETED THREY	THEN STAPPED	AT SKNNL
	0.9	8:071	<i>~</i>	000	eriginis. Espe		C	2		LEG.	MY WE Y-I ATTEMPTED LEPT THRAN AT SIGNAL, STRUCE BY GB YZ	FF TMRN P	T'S KANAL, STRUC	C 64 68 V-2
	0/871	9:01A		93			5	7	66.	20.YE	EB V-1 SLID ON 1CY PAVEMENT, STRUCK GR	PAVEMENT	STRUCK GR	,
	2/2/16	6.578	7	p 00	7	_	7	4		3046	SOUR RIGHT ANGLE, V-1 ENTERED TEAFFIC NB, STRUCK BY	ERED TRAFF	IC NB, STRUCK	BN EB 11-2
	2 177 10	91116	7	000	5					3046	3046 MB V-1 ATTEMPTED LEFT THRN, STEUCK BY WB V-2	UEFT FURN	STEUCK BY V	JB V2
	01/22/10	8:53P	04	900	哥			_			WB VI ATTEMPTED LEFT AT SIGNAL, STRACK BY EB 1-2	EFT AT SIGN	UAL, STRINCK P	Y EB Y-2
													,	
										an way so			The state of the s	
										. /				
										4-1-1-1				
										4. Bancos			A CONTRACTOR OF THE PROPERTY O	
										. **				

NYSDOT Safety Information Management System Accident Severity Summary

Intersection & Non-Intersection Accidents

Date: 02/14/11 14:32

Complete Accident Data From NYSDMV Is Only Available thru 30-SEP-2010

Route: 910B Highway Location Ref Mrkr Range: 910B11011010 - 910B11011015

Dates: 01-JAN-2007 thru 31-MAR-2010 Traffic Volume: 30,260

Total of Fatal Accd	Total of Injury Accd	Total of PDO Accd	Total of Non-Reportable	Total Number of Accidents	Accident Rate
0	21	26	5	52	2.41

Accident rate for linear section is accidents per million vehicle miles.

NYSDOT Safety Information Management System Summary Report By Segment And/Or Intersection

Date: 02/14/11 14:32

Intersection & Non-Intersection Accidents

Complete Accident Data From NYSDMV/Is Only Available thru 30-SEP-2010

*** DWN/DSK DAY NIGHT FIXED PED& TRUCK LIGHT CONDITION 43 S 0 0 0 0 0 0 0 0 0 0 - 31-MAR-2010 BIKE 0 0 0 NUMBER OF ACCIDENTS -OBJ 0 0 0 0 0 0 0 01-JAN-2007 WET ROAD 14 S 0 0 0 4 N/R DATES: 26 PDO 0 21 INC 910B11011015 0 0 0 0 0 0 FTL TOTAL 51 ı 910B11011010 ROUTE TOTAL EXCLUDES 999 RMS WOLF ROAD SHOPPERS PARK HIGHWAY LOCATION: DESCRIPTION METRO PARK RD COMPUTER DR BELTRONE DR INT. 36 37 900 44 910B 1101 1010 1011 1013 910B 1101 1013 910B 1101 1014 1011 1012 910B 1101 1014 910B 1101 1015 910B 1101 1010 910B REFERENCE 1101 910B 1101 910B 1101 910B 1101 ROUTE: 910B

*** EXCLUDES PICKUPS & VANS

ACCIDENT SUMMARY SHEET

MUNICIPALITY Town of Colonie		COUNTY	Alba	7
LOCATION NY 9/0 B; RM 9/08 - 1/01 - 1010	to 1015	P:11	1721.	51
TIME PERIOD //1/07 to 3/31/10		NO.OF	MONTHS	39
Accident Type No. of Accidents	Pavement	1	No. of Ac	cidents
Right Angle Rear End Overtaking Left Turn Sideswipe/Head-on Right Turn Parked Vehicle	Dry Wet Snow/Ice Unknown	TOTAL	39 14 1 54	
Pedestrian Bicycle Animal Fixed Object w/Utility Poles w/Guide Rail w/Sign Posts w/Trees w/Ditch-Embank.	Weather Clear Cloudy Rain Snow Sleet Fog Unknown	· <u>ì</u>	No. of Ac 23 20 9 1	cidents
w/ TOTAL 54		TOTAL		
				č
Light Conditions No. of Accidents	Accident	Severit	<u>у</u> <u>No. о</u>	Accidents
Day Night Unknown	Fatal Injury Property	Damage		<u>0</u> <u>4</u>
TOTAL 54		TOTAL	5	<u>4</u>

HSI # 1-1-0477 , NY 910B, RM 910B-1101-1016 to 1019 Town of Colonie, Albany County

Problems Identified

NY Route 910B, Wolf Road, was identified as a Priority Investigation Location (PIL) from RM 1016 to 1019 and a Priority Investigation Intersection (PII) at RM 1019 based on reportable accidents during the period 11/1/07 to 10/31/09. NY 910B, which travels north-south, is a four lane divided Urban Principal Arterial highway with free access. The travel way is 54 feet wide, which accommodates four lanes and a paved flush median that provides refuge for turning vehicles. This area is commercially developed with various businesses and driveways on both sides of the roadway. Pavement markings and signing are satisfactory. The posted speed limit is 40 MPH.

Northbound, NY 910B is intersected by Marcus Boulevard from the east at RM 1016 in a T-intersection controlled by a three color traffic signal. NY 910B is intersected by Ulenskie Drive from the east at RM 1017 in a stop controlled T-intersection. NY 910B is intersected at RM 1018 by the I87 NB Exit 4 off ramp from the west in a T-intersection controlled by a 3 color traffic signal. NY 910B is intersected by Albany Shaker Road at RM 1019 in an intersection controlled with a fully detected three color traffic signal. NY 910B ends at the intersection and the I87 Exit 4 NB on ramp continues north.

The accident study period was 39 months, 1/1/07 to 3/31/10. Based on the 132 accidents that occurred during the study period the accident rate is 9.46 ACC/MVM. This rate is greater than the expected accident rate of 3.59 ACC/MVM for similar highways statewide. There were 90 accidents during the 2 year HAL period. The majority of the accidents consisted of rear end, overtaking, and turning accidents due to traffic congestion, generally grouped around the intersections. There were no accidents involving pedestrians or bicyclists. Of the 127 accidents on this section of highway with pavement condition reported, 25 (20%) occurred on wet pavement and 5 (4%) on snow/ice/slush pavements. There were 11 accidents during the morning peak from 6 am to 9 am and 34 accidents during the evening peak from 3 pm to 6 pm.

A signal study was recently performed at the intersection with Ulenskie Drive at RM 1017. Case #1080248, completed 12/28/08, resulted in no safety recommendation.

Proposed Solution

There is a project, PIN 1721.51 currently scheduled for letting 11/15/12, to address improvements on the Northway at Exit 4. We have no safety recommendations to offer for the project at this time on this section of highway.

Action Taken

Memo to R-1 Design dated 2/20/11.

Parked Vehicle

Fatal Injury

DEPARTMENT OF TRANSPORTATION

Sheet 1 of 10

Right-angle

TRAFFIC ENGINEERING AND SAFETY DIVISION COLLISION DIAGRAM Albany Town of Colonie County Municipality NY 910B : RM 910B-Intersection MED From 1/1/07 To . IBT ExitY AC 151/Albany Shaker Rd NBonramp (80(11)(12)(13)(13)(13)(13)(13)(14)(15)(14)(15)(14)(28)(25)(23)(22) > 100 8 (B) (B) (B) (B) (B) (B) (B) 136654111198 THE BEE N Ulenski K (13P Marcus Bli N-1910B/WalfRd MANNER OF COLLISION -Rear-end Head-on ← Moving Vehicle ← - Pedestrain Side-swipe ← B -Bicycle ← M - Motorcycle Out of control ☐ Fixed Object ← → → → Backing Vehicle Skidding O Personal Injury ← Stopped Vehicle

Q_ Overturned

DETAILS OF ACCIDENT HISTORY FOR LOCATION (AS SHOWN ON COLLISION DIAGRAM)

7

TE 213 (9/79)

SHEET 2 OF 10

TO 1986	ROUTE NO. OR STREET NAME NY 910 B / WOLF Rd	N: N: 010		IDITIONS ROADWAY CHARACTER HUDWAY SURFACE 1. Straight and Level CONDITION 2. Straight and Grade 1. Dry 4. Snow/Ice 2. 3. Straight at Hillcrest 2. Wet 5. Slush 3. Straight at Hillcrest 3. Muddy 10. Other 4. Curve and Crade 3. Muddy 10. Other 5. Sush 3. Audighted 5. Curve and Grade 6. Curve at Hillcrest 6.	Use Codes from MV 104 Police Report	386	IND OVERTHEE-SB V1 CHANGED LANES	DID REAR END-NB, V-2 STOPPED IN TRAFFIC	6 1016 PEAREND- NB, V-1 SLOWED TO MAKE RIGHT TURN	INTOVORTABLE- N'B, V-1 CHANGED LANES	POIT RIGHT ANGLE V-1 ENTERED TEMPFIC WE, STRUCC BY NBV.	INTIRICIAT ANGLE, V-1 ENTERED TRAFFIC WB, STRUCK BY NB VA	INTIREAR END-NB, V-2 STURPED IN TRAFFIC	1017 RIGHT ANGLE, V-1 WAVED INTO TRAFFIC WB, STEWER BY NB V.		8 INB OVERTAKE-NB 11-1 CHANGED LANES	5 POR RETAR END-NB, V-2 STORED IN TRAFFIC AT SKNAM	6 MB REAR GNO-GB, V-2 STAPPED IN TEAFFIC AT SIGNAR	ING NB V-1 ATTEMPTED LEFT THEN STRUCK BY SB V-2.	1018 REAR END-CB, VI STOPPED IN TRAFFIC AT SIGNAL	TOP REPOR FIND-NB, MOTH VEHICLES STAPLED 1-1 JAMPED ON GREEN	THE MILES OF STATE OF STATE STATES AND STATES HATTER
	ROUTE	TNI TA			(2)	APPARENT CONTRIBUTIN	2	=	91.76	3	_	1	7	1	2,19	13,18	99 h	33-		6	コ	
	1417		1		H3	МЕАТН	7	N		2	3		3	2	2		2	=	7		7	=
	0			ENVIRONMENTAL Use codes from MV 104 (shown at right) for these categories (6 7 8 9	30	MOADA SARRUS FIGNOS	7	7			7		7	2	_		2	ナ				=
	\exists			codes from at right of the catego	УА ЯЗТО	MQAOR CHARA				_		_		_				2		N		<u>ا</u> ا
	ENT			S S S S S S S S S S S S S S S S S S S	SNOI	LIGHT CONDIT	7				3	60	ho		1		1			5		F
	OR IDENT.			(9)	\ \T	зелеві	PI-1	PT.		2 400	600	100	600	100	600	17	1	8	4	00.0	0027	
		mile		4	∧ ЕН'	NO. OF	2		2 2	2	P 2	67	6 9	9	1=	2	P 2	1 C	9	P 2		_
ì	h h	-5		101	10	@ ¥	9865	5:01.P	3:00 P	d'th'h	8:04P	6398	181 m	grosp	3:01A	9152P	7:06	11:384	5137	43156		1
_	Hbany	n C	<u> </u>	IOD FROM ////	131		10	5	10	150	10.7	10	167	10	5	150	2	150	To	1000	10	-
.O.	H	u		PERIOD FRC L/ TO	m	© DATE	126		15	三	8	2	12,0	12	7 7	8	122	200	2	2/12	5	
DIAGRAM NO	COUNTY	Ø TOWN □ CITY	V1 L L /	ME ER HS	6		12	2	1	3	10	0			-	. 0	8	12/2	1 CM		5	
OIAG	8]	NUMB OF MONT	W	© <u>9</u>			5	丁	(V)		1						-	1=		1

DETAILS OF ACCIDENT HISTORY FOR LOCATION (AS SHOWN ON COLLISION DIAGRAM) TE 213 (9/79)

SHEET 3 OF 10

----STONE 1/2 SIID ONLICE 句多式 SIGNA **ルラ/**へ THE PER (-) A Snow Sleat/Hail/Freezing Rain Fog/Smog/Smoke Other P. 00 4.2 STANK Omy (AL15 3 と言う 99 8 IN TOAFFE SIGNE 8B B 9 ST RECEDEN 9 ME 7 SER SIGNAL 4 SIGNAL 5 上 WEATHER 5 4 3 25 五 Clear Cloudy Rain 区 STRUCK STARCTED さると PAFFILL CASE NO. 方所を元 STRUCK TRAFFIC STONG さられるよう -CANED IAND STAPPED IN TRAFFIC Z 区 DATE BRAKED ABOUTEN FILE £46.600 B STORED SLOWING B Snow/Ice Slush Other DESCRIPTION TUREN ROADWAY SURFACE STUPPE 7 1-1 PHANGED TARI TURN _ TURN THE S STUPPED STIPPED STAPED L L 413 C Dry Wet Muddy 100 de BOTH VEHS 四四四 VI WITTERMETED LET _ **(E)** るの AFTEMPTED LEFT Use Codes from MV 104 Police Report LITTE MITTER _ 7:7 7-7 (-) (-) WINED MANEE ~ رب اب see back of this form for codes 7 HOADWAY CHARACTER
1. Straight and Level
2. Straight and Grade
3. Straight at Hillcrest
4. Curve and Level
5. Curve and Grade
6. Curve at Hillcrest 1/1 ATTEMPTED 7 AT INTERSECTION WITH/OR BETWEEN MERCHAKE - CO NB. 9 3 NBS END-NB. 9101-1011-3016 **B** GND-NB. 9 END-NB ATTE END-END END-FIRE CND-ROUTE NO. OR STREET NAME FB 17 REAR RER MYTH RCK RCK REPAR REAR REPR REAR REPR NE G MM3 NY 9108 Dark Road Lighted Dark Road Unlighted 1019 5 LIGHT CONDITIONS
1. Daylight 60 9 0 019 5 5 1) 50 9 5 010 019 CONTRIBUTING **FACTORS** RM APPARENT @ 2 7 7 Q 1 تر 二 سپوست آسست 17/7 4. r. 4 7 \sim N N ھ ENVIRONMENTAL Use codes from MV 104 (shown at right) for these categories N (G) **MEATHER** CONDITION 07 ROADWAY SURFACE ____ (@) RHARACTER 6 YAWGAOA تــ <u>__</u> OR IDENT (<u>o</u>) CONDITIONS 7 P.H.N. LIGHT BE 000 800 P00 000 900 001 P DO 1 100 600 É ம SEVERITY SIF S 7 7 \sim (7) ((4)ио: оь лен: 7 7.308 1001 11:28 8 7:24AI カユラ Quin Z 12:27 7:059 ging Jh 2:2 11:18 A H00:3 Sim 4 9:18.7 TIME 7:151 9.08 (m) \Diamond _ . フィア 5 5 80 5 FROM 5 S 10 5 5 6 9 5 TIME PERIOD 2 2 DATE 5 30 <u>~</u> 2 2 3 2 5/ 5 (\sim) 00 VILLAGE σ - C_{-j} DIAGRAM NO. _ 2 3 TOWN CITY 8 \mathcal{D}^{\sim} COUNTY NUMBER MONTHS S 5 P 51 C £7 0 \Diamond 0-9 Θ <u>___</u> C-3 \mathcal{C} 3 5 Ę., C-4

•	-
(6//6)	
E 213	
F	

DETAILS OF ACCIDENT HISTORY FOR LOCATION (AS SHOWN ON COLLISION DIAGRAM)

2

OF

SHEET

/EE/ R GRIN 15 MIS 四 476 AT STANNA Thim PED ON SIGNE Cloudy Rain Snow Sleet/Hail/Freezing Rain Fog/Smog/Smoke かなが MARDE 7-7 STORED EB 9 3 Si 721 14/2 BU 「CRAPACIO <u>~</u> 118117 WEATHER STRUCK 1-1 SLOWING IN TRAPPIC 3 EXITING 四 Q08 STOLCE STRUCK 93 BOTH VEHICLES STARTING STRUCK CASE NO. STRUCK NOTERSECTION STARTED CED DATE FILE - 464600 CHANGED LANGE MAKING В TUREN Snow/Ice Slush Other 1214H DESCRIPTION MOST CONFIGUR STIPPED IN CONDITION JACK L ER V-1 ATTEMPTED LEFT THAN THEN MACK STAPPED WBV-1 MADE STURRED ATTEMPTED LEFT BOTH VERS Dry Wet Muddy MITERIALED LEA WB V-1 ATTEMPTED LEFT I'I KITEMITED LEPT Z 019 Use Codes from MV 104 Police Report 8 ≯ 7 see back of this form for codes REPAREND-NB > ROADWAY CHARACTER 4 AT INTERSECTION WITH/OR BETWEEN 1. Straight and Level
2. Straight and Grade
3. Straight at Hillcrest
4. Curve and Level
5. Curve and Grade
6. Curve at Hillcrest B END-NB GWO-NB 8 ON POSTERIOR - N.C. OUERTHICE-EB RM910B=1101-1016 REPAREND-SA 31214 END-ON BROKE-ROUTE NO. OR STREET NAME MERTANCE SR 1/1 O PR VERW PEAR 910B Dusk Dark Road Lighted Dark Road Unlighted 019 GHT CONDITIONS Daylight 810 1018 018 1019 5 DIG 5 2 APPARENT CONTRIBUTING FACTORS/ M 7 D ゴ 1 J 1 0 7 7 N 3 $\mathcal{C}_{\mathcal{I}}$ T 7 7 (G) **МЕАТНЕЯ** 104 ------ENVIRONMENTAL Use codes from MV 16 (shown at right) for these categories ROADWAY CONDITION 7 ゴ 4 CHARACTER YAWQAOR OR IDENT. 7 t CONDITIONS J (G) THOIT 4-29 000 400 P D 0 -12 000 Qud Ø100 p 00 g 000 (v) **SEVERITY** C (-) ISNIE (4)40 'ON 2:016 19156A Sislep 9:21P 7308 1.30 P 6.63 P \bigcirc 0 19:378 481: 5130P TIME 2:2 3:671 185 0,7 101 9/ (_(D) 9 Dar 2 200 118 99 2 $\frac{2}{2}$ 8 14 08 14 08 FROM 08 000 6113 108 VILLAGE OF 80 28 TIME PERIOD 80 DATE 3 30 2 7 S (P) 5 0 -و_ DIAGRAM NO. ⊠ TOWN D _ COUNTY CITY MONTHS NUMBER 7 0 $\frac{2}{2}$ $\frac{2}{2}$ 5 28 2 716 9 7 3 CO

Jun TE 213 (9/79)

DETAILS OF ACCIDENT HISTORY FOR LOCATION (AS SHOWN ON COLLISION DIAGRAM)

SHEET OF 10	ROUTE NO. OR STREET NAME NY 9/0 B / NOIL RA	NWITH/OR BETWEEN	INS ROADWAY CHARACTER ROADWAY SURFACE WEATHER 1. Straight and Level CONDITION 1. Clear 2. Straight and Grade 1. Dry 4. Snow/Ice 2. Cloudy 3. Straight at Hillcrest 2. Wer 5. Slush 3. Rain 1. Curve and Level 3. Muddy 10. Other 5. Sleat/Hail/Freezing Rain 6. Fog/Smog/Smoke 6. Curve at Hillcrest 1. Other 1. Ot	e Codes from MV 104 Police Report see back of this form for codes (1) DESCRIPTION	DIG KEAR END-NB, BITH VEHICLES STARTING IN TRAFFIC	1019 PERRE END-NB, V-2 STOPPED, STARTED, STUPPED AGAIN	9 WB YI ATTEMPTED LEFT THAN STRUKE BY CO V-Z	019 REAR END. WB, V-2 STORED AT RED TRAFFIC SIGNAL	MY REAR END-NB, V-1 STAPPED IN TRAFFIC AT SIGNAL	019 REGAR GILD: 116, VA STURPED IN TEMPLIC AT SILVINK	OIG REAR ENO CB, BOTH VEHS STUPPED, OP-2 FOOT SLIPPED BORNE	1019 REPIR END-EB, V-Z SLOWING TO TURN	1019 REAR GND-NB, 11-2 STAPPED STARTED STORPED ALAIN	DIG EB 1/2 ATTEMPTED LEFT THEN STEUCE BY WB V-1	1019 REAR END- WB, V-2 STURED IN TRAFFIC AT SIGNAR	1019 RIGHT ANGLE, NB VI STOUCK WE UZ, BOTH CLAIM GREEN	MIGHT REPARENCE NO. V-1 STUPPED BEHIND MUINVALVED VEH	1019 PLGHT ANGIE EB VI PASSED RED SIGNAL STENKE NEVIL	DIA RIGHT ANGLE EB V-1 PASSED RED SIGNAL, STRUCK NB VIZ	The has to have more or one of the second se
	-	AT INTERSE	LIGHT CONDITIONS 1. Daylight 2. Dawn 3. Dusk 4. Dark Road Lighted 5. Dark Road Unlighted	O Use APPARENT CONTRIBUTING FACTOHS	191	7	7	0	10	<u> </u>	0	<u>0</u>	10	0	<u>0</u>	0/	26 10	17,7 116	00,09	<u>-</u>
			4 6	мертнея 						3	_)		2		(
			ENVIRONMENTAL Use codes from MV 11 (shown at right) for these categories (6) (7) (8) (YAWAA SURFACE MOITIGNOD						N								_		C
			RONMI odes fro n at rig categor	ROADWAY CHARACTER	5				_	- Arthurstan						_				
) 	P.H.N.		Use co	LIGHT CONDITIONS	_											3		=		_
	OR IDENT.		(9)	SEVERITY	600	PEI	ppo	1-11	中	PBo	pyo	1-1	Ppo	Pog	ì	600	000	Da d	000	1 - 10
Ì		Z	9	NO. OF VEH.		2	\sim	2	6	2	107	<u>C</u>	2	A 7	2	7	P 2	7 0	7	(
ı	-	. 3	107	(a) (b) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	H.77.H	8,31A	901:0	110:21	5:008	<u>a</u>	12.11.5%	6:29P	3:008	10:23	11279	6:5sp	1:37	3	8152A	1 11 1/ 18
NO.	X	□-TOWN □ CITY □ VILLAGE OF	PERIOD FRC TO	00 DATE	4 25 08	5/1/08	89/8/8	80 119	80 2119	30 141 9	30/1/1	30 15 11/2	7 28 08	20121	29/62/	80/21/8	20 7 6	9 3 08	80000	
DIAGRAM NO	COUNTY	TOWN CITY	TIME NUMBER OF MONTHS	(n) (D) 5	Constitute of the contract of	20	S	25	53	55	SS	S	5	25	57	0	5	3	29	

DETAILS OF ACCIDENT HISTORY FOR LOCATION (AS SHOWN ON COLLISION DIAGRAM) コ

TE 213 (9/79)

SHEET 6 OF 10

TO A C	AT INTERSECTION WITH/OR BETWEEN R.M. 9106-1101-1016 TO 1019 DATE CASE NO. DATE 2/9/4 DATE	GHT CONDITIONS ROADWAY CHARACTER ROADWAY SURFACE WEATHER 1. Straight and Level CONDITION 1. Clear 2. Straight and Grade 1. Dry 4. Snow/lce 2. Cloudy Dusk 3. Straight at Hillcrest 2. Wet 5. Slush 3. Rain Dark Road Lighted 4. Curve and Level 3. Muddy 10. Other 5. Sleet/Hail/Freezing Rain Dark Road Unlighted 5. Curve and Grade 6. Curve at Hillcrest 10. Other 10. Othe	(① Use Codes from MV 104 Police Report ————————————————————————————————————	GO U-1 ATTEMPTED LEFT TWRN, STRUCK BY WG V-2	4 MM REAR END-NB V-2 SLOWING AT SIGNAC, OP-1 LOOKING GREEK	MIG OVERTAKE-NB V-2 ATTEMPTED LEFT FROM RIGHT LANE	7 1019 NO NY ATTEMPTED LEFT THRN, STRUCK BY EB V-7	7 1019 EB V-1 ATTEMPTED LEPT THREN STEWEL BY WB V-Z	17 IDIA RIGHT ANGLE, NO VI PROSED RED SIGNAL, STRUCK WB V.Z.	7 1019 OVERTHEE-SB CB V-2 MADERIGHT THRN WBV-1 MADE LEFT	4 1019 REAR END-WB V-1 STOPPED IN TRAFFIC AT SIGNAL	9.26 1016 REAR END-SB, V-2 BRAKED ABRUPTLY BEHIND INVINVILVED VEH	INT REPRENTENDING, V-2 STOPPED IN TRAFFIC	4 NOT REAR END. NB, V-2 STUPPED IN TEAFFICE	4 INTIREAR END-NB Y-L& V-3 STOPPED IN TRAFFIC	4 1017 REAR END NB 1/2 STOPPED IN TRAFFIC	4 IDIS REAR END-NS Y.L STYPPED IN TRAFFIC AT SIGNAR	9 MIR REPORTED NG V-2 STUPPED IN TRAFFIC
		7-4.6.4.7.	PAMPAY SURFACE CONDITION MAENTER		7)				2	8 2	52				2 1		7 1	
Ē	2.1.6.0.1.1	7-4.6.4.7.	YAWDAONS CHARACTEF CHARACTEF COADWAY CONDITION WEATHER		7 1 1	3			8 2 11 11		5211	and the second s			2 1 1 1 1	1 1 4	7 1 1 1	
Ē	OR IDENT. [110.9.17	ENVIRONMENTAL LIGUSe codes from MV 104 1. (shown at right) for 2. these categories 3. (b) (c) (d) (d) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	SEVERITY LIGHT CONDITIONS ROADWAY SURFACE SURFACE CONDITION CONDITION	1 1 1 000	PT-1	100d	3 PE-1 4 1 1 1	000	E 2 11 11 00d 7	2 111 00d	2 11 000	2 800 11111	2 MZ-1 1 1 1 1 1 1	1 1 1 1 1 2-24 2		2 pro 4 11 1	2 100 1 1 1 2	2/072
E	OR IDENT.	ENVIRONMENTAL LIGUS Codes from MV 104 1. (shown at right) for 2. these categories 3. (b) (c) (d) (d) (d) (d) (d) (e) (d) (e) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	MO, OF VEH. SEVERITY CONDITIONS CHARACTER ROADWAY SURFACE CONDITION CONDITION	7 roo 14 1	2 PT-1 1 1 1	=2	3/11	P 2 P00	2 11 1 000 2	2 11 1 000 2	2 11 000 2	129A 2 PDO 11111	2	2-24 2	1 1 h 2 Id 8	2 000	2800 111 11	7
I I NHOW	OR IDENT. [11 0 4 17	C C C C C C C C C C	MO, OF VEH, SEVERITY CONDITIONS ROADWAY CHARACTER ROADWAY CHARACTER GONDITION	1 h 0012 dars &	PT-1	12 PDO U	H-J	2 600	2	2 111 00d	2 11 000	4/24/09 7:29A 2 PDO 1111			109 Sizep 3 PTZ 4 1 1	oad	77 009 L 6:56A 2 POO 1 1 1 1	

TE 213 (9/79)

3

DETAILS OF ACCIDENT HISTORY FOR LOCATION (AS SHOWN ON COLLISION DIAGRAM)

0 9 P SHEET

3 3 OP-1 WAYING IPS TRAFFIC SB V.1 V.2 STRUKK VA SLIMED PERFE シアン 8 SIGHT いるとか STAPPED Snow Sleat/Hail/Freezing Rain Fog/Smog/Smoke Other 66 725 THE SIGN 7 をごろ) TOR STORICE STRAICK TRAFFIC STRUCK Ţ 00 OP-1 FOOT 0 mV RED TRAFFIC NEATHER 2-1 2 STREE U-1 + V-> STUPPED IN TRAFFIC STURRED Cloudy Rain CASE NO. \bigcirc STRUCK STERPORD IN TRAFFIC TRAFFIC 古を下して MINING MINING U J. C. SICHER (ED) DATE FIE - KK 4 KK 60 € SKANK TREFE В STURRED TRAFFIL Snow/Ice DESCRIPTION 909 FOR STARTED RUR V-1 MAKING RIGHT ROADWAY SURFACE CONDITION Slush Other 上 2 M MMMD1S DED SE SA ULI ATTERMITED LEFT THRI BOTH VEHICLES 1-1 STAPPED 4, 12, 0 STUPPED STARTED STAPPED GNT BRED BOTH JETS ENTERED 0 PASSED 1. Dry 2. Wet 3. Muddy 6101 Use Codes from MV 104 Police Report see back of this form for codes 7 --7-1 7-1 7 ROADWAY CHARACTER

1. Straight and Level > رح الم NB NB AT INTERSECTION WITH/OR BETWEEN Straight and Level
Straight and Grade
Straight at Hillcrest
Curve and Level
Curve and Arade
Curve and Grade GND-NB RM 910B-1101-1016 2 END. NB END-NB GND-NR 93, END- ED GND-NB <u>E</u> END. NB FIND-NB PRIL RICE TURN END-ROUTE NO. OR STREET NAMI OVERTRIKE REME REPART PORTING KENG KENG K ENA 医区 ROK KIKHT RURK DEAR 5 REPR SPR A 96.4.6.6 Dusk Dark Road Lighted Dark Road Unlighted LIGHT CONDITIONS
1. Daylight
2. Dawn
3. Dusk
4. Dark Road Lighted
5. Dark Road Unlighted 2016 K hana 1018 250 NE 018 810 918 019 010 019 APPARENT CONTRIBUTING 810 98 5 100 FACTORSIM 010 @ W ~ 5 1 2 7 Q S 7 7 ___ 777 ENVIRONMENTAL Use codes from MV 104 (shown at right) for these categories (() CONDITION 4 \odot SURFACE YAWGAOR N 4 RATOARAHS 3 P.H.N. OR IDENT (<u>6</u>) SOUDITIONS 7 THOIT LANDIN LAND 000 5 1-70 000 900 000 000 000 P 00 5 (P) **SEVERITY** 0) 5/18/18 (4)4 7 C' CI NO' OF VEH. 9 ω ر__' 21598 and a second 0 0 4:318 HS: 5:05P 2270 00016 15,00P 21.5sp TIME 0 121:61 H.HS I 7:34 07 (c) HIBRIT 120 109 100 FROM 60. 50 0 8 00 CITY
VILLAGE OF a 100 109 Ç 2 24 DG 5 **TIME PERIOD** 9 DATE 2 30 3 H110 $\overline{\lambda}$ (0) 5 6 3 3 10 5 DIAGRAM NO. **™ TOWN** \subset 10 \mathcal{C} (Y COUNTY \in NUMBER MONTHS T 6 <u>ئىن</u> سى Θ 9 3 ... 3 Ġ 60 Œ, 6 Š 60 6

DETAILS OF ACCIDENT HISTORY FOR LOGATION (AS SHOWN ON COLLISION DIAGRAM) ____ TE 213 (9/79)

9

 $\Diamond \Diamond$

9

SHEET

JAMAPED ON GREAT 20-2 LOOKING LEF ADD I MANUAL IFTA 15 Y-2 となれ、 SH15 BY EB 1/2 STARTED ROP, STUPPED PLAIN 2/ 3W MISI NIGNAR Steet/Hail/Freezing Rain Fog/Smog/Smoke Other MADE 7:7 のの 12 12 13 RED / >wa 22 **2**2 Ŕ 5 RIGHT NB V-1 PASSED RED SIGNAL, STRUCK TRAFFIC 8 WEATHER 5 \$ TRAFFIC DT Clear Cloudy Rain 6 SICHAL CIV.III STRUCK Snow STRUCK STRUCK TRAKK VEHICLES STURPED CASE NO. MEDIS 0 DATE STRUCK MPKE N3315 \$ 51H717 M 1-1 LW3 FILE CD В STUPPED AT RED I CTUBOLD AT OLD Snow/Ice Slush Other DESCRIPTION RED SURFACE TURN STUPPED AT STURPED IN CL MIMO IS CARN TAREN WB 1-1 ATTEMPTED LEFT THRI ATTEMPTED LEFT THAN 4.0.0 STOPPED V-1 MARDE PASSED ROADWAY SI CONDITION 1. Dry 2. Wet 5 5 0 ALTEMPTED LEFT ATTEMPTED LEFT 正是 Use Codes from MV 104 Police Report see back of this form for codes _ 1-/ ATTEMPTED N 16 HOADWAY CHARACTER
1. Straight and Level
2. Straight and Grade
3. Straight at Hillcrest
4. Curve and Level
5. Curve and Grade
6. Curve at Hillcrest <u>-</u> ≥ 00 × 9101 AT INTERSECTION WITH/OR BETWEEN GNJ-UND REAR END- NB 88 ENO-NB MERTAKE-SB GNO-NB GNO. NB 610 ANGUE. RILLY ANGIE ENO-ROUTE NO. OR S'REET NAME 120 J.J. 1 1.6 /-PFAR RIGHT I CK PAR KEAR <u>S</u> 9 2 5 5 MY 910 & Dusk Dark Road Lighted Dark Road Unlighted 47 LIGHT CONDITIONS
4 1. Daylight
2. Dawn
3. Dawn 019 019 6.0 <u>ام</u> 0.9 5 5 910 0 010 014 CONTRIBUTING **FACTORS/UM** APPARENT 7 1 ___ 1 L 9 تہ 77 7 ENVIRONMENTAL Use codes from MV 104 (shown at right) for these categories (G) \subset 1 C **MEATHER** h 0 | 1 CONDITION \overline{C} <u>@</u> SURFACE RETOARAND CONDITIONS OR IDENT (e) LIGHT DUG P 00 PDO 5 (B) 112000 ST **SEVERITY** Imit 5 \sim $C\gamma$ 9 \bigcirc HO ON $\overline{}$ ΛEH' 12:57 11:35A 9.084 1:05P 17,44,0 92039 4.557 8:098 9:SIA Q-9339 0 1.SIP dhsig TIME 7:05 3 3:28 32% 2 (c) Albany 101 13 ☑ TOWN □ CITY □ VILLAGE OF . 109 FROM 00 60 50 12 6012 50 120109 50 50 90 0 90 09 00 TIME PERIOD DATE 2 7.7 5 3 () a 9 87 0 5 DIAGRAM NO. 0 9 T Q C V COUNTY NUMBER MONTHS Q 3 2 9 9 90 Θ 92 _ <--

TE 213 (9/79)

DETAILS OF ACCIDENT HISTORY FOR LOCATION (AS SHOWN ON COLLISION DIAGRAM)

0 OF \mathcal{Q} SHEET

CBV-C MALING ALLE OP V-1 LOAKING CEFT SLIPPED GRANT 5 15/105 7.7 STUPPED AGAIN SIGNAT SIANA ≤ 5 Z 25 Rain DMV/ALIS 3 \$ Sleet/Hail/Freezing Fog/Smog/Smoke Other STRUCK 11/01/2 4 OP-3 FOOT 9 (J. 6) 6 99 63 U ال 1 WEATHER 25 3 STRACK ठ STUPPED Clear Cloudy Rain Snow 3 STRUCK TOAFFIC STREAM ROK ġ. SIGNAL グライン ころんかし TRAFFIC STOWCK STRACK STRUCK STRUCK STRUCK CASE DATE WB V-1 MAKING LEFT ÷46460 FILE 2000 EUC V-1 CHANGED LANES ВҮ DESCRIPTION Snow/Ice Slush Other ROADWAY SURFACE
CONDITION
1. Dry 4. Snow/Icc
2. Wet 5. Slush
3. Muddy 10. Other PASSEN RED 2 STARTED RUR TURPEN SB V-1 ATTERNITED LEFT THEN STUPPED IN TARN WB V-1 ATTEMPTED LEFT THAN TURK INB V-1 ATTEMPTED LEFT THEN 記される UDIT TURN STARED VI STAPPED V-1 ATTEMPTED LEFT WB V-1 ATTEMPTED LEFT U-1 ATTRINGTED LEFT 2 Use codes from MV 104 Police Report <u>-</u> 7-7 see back of this form for codes ALL 1.7 (-) ROADWAY CHARACTER
1. Straight and Level
2. Straight and Grade WB 1-1 ATTEMPTED 8 EL AT INTERSECTION WITH/OR BETWEEN -58 Straight at Hillcrest Curve and Level Curve and Grade Curve at Hillcrest CMO-NB لل REAR END-NB, 222 END-NB NERTHE-NE Unit Of the 8 9101-1011 Ž 列門 ROUTE NO. OR STREET NAME MANDERTAKE REPAREND-ON J Nott MINIT EHI REAR INIG SCAN REPORT 3 Daylight Dawn Dusk Dark Road Lighted Dark Road Unlighted 91108 9108 LIGHT CONDITIONS
1. Daylight 019 1010 CONTRIBUTING FACTORS IN 019 019 1019 010 5 1019 018 0 = 26 APPARENT RM 5 <u>ت</u> تح ____ 2 ____ 2 ۲. [_ 7 44110111 7 ENVIRONMENTAL Use codes from MV 104 (shown at right) for these categories $\overline{}$ N 51 6 **МЕАТНЕЯ** $\overline{}$ **©** (SURFACE натранано YAWQAOR OR IDENT. CONDITIONS 5 J 10000 B 6 二 3 _ THOIT Proud 600 800 600 PNO 100 000 ppo J. 00 **⑥** SEVERITY Slanic (4)J ~ 7 0 NO' OF VEH. C-C رم 12:44 9:00 9 1:138 0 7,598 0 3:56P S:44B 3:56P 7.413 # 4:17 4:238 TIME 2:01 10:1 7:01 3:18 01/ (c) bany 7 122/09 FROM ر 0 کا 1009 9 09 9 S 0 7 17 09 09 00 2 9 TIME PERIOD くニしょー 09 0 Ø TOWN □ CITY □ VILLAGE (DATE 11/8/11 5 \odot 19210 1 5 12/31 5 9 2 00 3 DIAGRAM NO. Q -4 0 \bigcirc COUNTY NUMBER MONTHS OF OF 5 2 _ __ 7 N 5 ~ Θ 2 7

TE 213 (9/79)

DIAGRAM NO.

DETAILS OF ACCIDENT HISTORY FOR LOCATION (AS SHOWN ON COLLISION DIAGRAM)

OMY (ALIS) SIMS OF S S S 1. Clear 2. Cloudy 3. Rain 4. Snow 5. Sleat/Hall/Freezing Rain 6. Fog/Smog/Smoke 10. Other V-2 STOPPED IN TRAFFIC HT SIGNAL STRUCK AEAR END-NB V-1 STOPPED IN TRAFFIC AT SIGNAL 11/0/17 SHEET MED EB 1/4 ATTEMPTED LEFT THEN STRUNCE BY WB WEATHER CASE NO. NB Y-1 PASSED RED SILVAL DATE FILE ВХ ROADWAY SURFACE
CONDITION
1. Dry 4. Snow/Ice
2. Wet 5. Slush
3. Muddy 10. Other DESCRIPTION 1019 Use Codes from MV 104 Police Report see back of this form for codes RM 9104-11011-1016 TO HOADWAY CHARACTER
1. Straight and Level
2. Straight and Grade
3. Straight at Hillcrest
4. Curve and Level
5. Curve and Grade
6. Curve at Hillcrest AT INTERSECT ON WITH/OR BETWEEN KEAR ENO-EB KIGHT ANGLE MURP RA 11101417 ROUTE NO. OR STREET NAME LIGHT CONDITIONS
1. Daylight
2. Dawn
3. Dusk
4. Dark Road Lighted
5. Dark Road Unlighted NY 910B 9 500 00 **FACTORS** 4010 77 ___ ENVIRONMENTAL Use codes from MV 104 (shown at right) for these categories 6 язнтазм S (@) ROADWAY SURFACE CHARACTER V YAWQAOR OR IDENT. CONDITIONS نــــ THEIT 0001 1900 1 டு **SEVERITY** Colonic NO' OF VEH. 1155P 11:39A S:06A 0:568 TIME Ibany <u>ල</u> X TOWN □ CITY □ VILLAGE OF _ FROM 0 2 26 110 9 TIME PERIOD DATE 0 7 ~ COUNTY C-1 NUMBER MONTHS <u>0</u> OF 137 2 130 9 Θ 5

ACCIDENT SUMMARY SHEET

Access		* Case #
Municipality Town OF COLONIE Location 87I EX. 4 RONTE 155	County PIN HSI#	1721,51
Time Period ///07 - 2/28/10	No. of Months	38
Accident Type No. of Accidents	Pavement Conditio	n No. of Accidents
Rear End Right Angle Overtaking Left Turn Sideswipe/ Head-on Right Turn Parked Vehicle Debris Debris Parked Vehicle Debris	Dry Wet Snow / Ice / Slush Unknown	33 13 3 1 50
Pedestrian Bicycle Animal Backing Fixed Object W/ Utility Poles W/ Guide Rail / Barrier W/ Sign Post W/ Trees W/ Ditch / Embankment W/	Weather Clear Cloudy Rain Snow Sleet Fog Unknown	No. of Accidents 2 /
* TOTAL _50_	TOTAL	<u>50</u>
Light Conditions No. of Accidents Day Night	Accident Severity Property Damage Injury	No. of Accidents
Night	Fatal TOTAL	50
	****.	

TE 56 (11/07)c

NYS DEPARTMENT OF TRANSPORTATION OFFICE OF TRAFFIC SAFETY & MOBILITY / OFFICE OF MODAL SAFETY & SECURITY COLLISION DIAGRAM # _/_

10FZ

Municipality Town OF Cold	טאיפי	CountyALI	BANY	HSI #	Case #
ntersection; 87I a c	EXIT 4 RAMPS			File	-
erlod <u>3</u> Years _3	Months From	1/1/07	To 2/28/	By JJC	
*					
			/. /	3	
ROUTE 155					
LULIC 13?	3				
*					
		# # #	* /		
,					
				872	
1 7 -					

NYS DEPARTMENT OF TRANSPORTATION OFFICE OF TRAFFIC SAFETY & MOBILITY OFFICE OF MODAL SAFETY & SECURITY COLLISION DIAGRAM # _Z_

	COLONIE	County _	ALRAND		HSI #	Case	#
	e EXIT 4 2 Months	From 1/1/07	To 2/28/10		File		2/22/
CK 153 / SK 153	WIONINS				By JJC	_ Date	Z/23/11 TLS
				Gara			

DETAILS OF ACCIDENT HISTORY FOR LUCATION (AS SHOWIN OIN COLLISION CINCIN

SHEET / OF Z

DIAGRAM NO. 152

TE 213 (9/79)

ROUTE NO. OR STREET NAME	m Ps	SECTION WITH/OR BET	1010 WOLF KD.	ROADWAY CHARACTER ROADWAY SURFACE 1. Straight and Level CONDITION	Grade 1. Ury 4. Snow) re 2. Illicrest 2. Wet 5. Slush 3. Wuddy 10. Other 4. Snow rade 6. Snow ra	odes from MV 104 Police Report	APPARENT see back of this form for codes	CONTRIBUTING DESCRIPTION	9.9 2026 SBU, R/ESBUZ MASBUS	9,9 2026 SBU, R/E SBUZINTO SBUS	9 2026 53 U, R/ESBUZINTO SBUZINTO 14	5 Zos6 58 Uz /NTO 518 U3	19 2030 SBV, Cle SBUZ	, 66 250 OFF RORD STRUCING SIGN TRADE	9 2050 SBU, R/E SBUZ	9 20 58 U. KlE 58 U.	9 7030 SR 11. At 52 V2 1NTO SRU3	9 2330 SBU, NE 5802	9 :38 SBU, R/E SBUZ	9,66 2035 SMIKES LUIDERAIL	9 2035 58 U, R/E SB U2 INTO 513 V3	9 2031 SBU, RIE SBUZ 1200 SBU3 1470 SBUY	9 250 WBV, 7/E WBV2	9 FOTO WBU, RIE NB (2
RO	: T	ΑT	` 	LIGHT 1. Da	4.0.4.0.		~~~	CON		-			0	20,										7
				AL 104	(shown at right) for these categories (6) (7) (8) (9)	,		соир		M	`	-	7	γ,	2	_	`	<u> </u>	7	2	-	`		
				MENT	right) f gorles) ,	AW ACE	GAOR SURF	_	2			~	7	_	`	,	2	2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_	-	7	
-	<u>ل</u> ن			VIRON	own at			AOADA AAHD	-	`	<u> </u>	-	_	7	-		`	`	/ /	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-		7	
2	OR IDENT			E S	£ £ 6	SNC		THĐI			1	-	-	<u> </u>	0	 			9	 				-
	ORI				(r)) ^	TIF	SEVER		1 2		0	1	8		 	Pool	2 12	R	8	Pool	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
			2/6	-	4	НЭ	<u>^</u> =	10.0V	 			<u> </u>		┼	7 2	 	w		1	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	1	 	1.	
-	7	7	070		107	91/	((a)	3696	5281	1320	280	0900	1		281	1700	1740	1.580	8011	083	2773	70	2089
NO.	ry ALBANY	Z >	\Box VILLAGE OF \angle	PER	•	7/28/2		(2)	1, 1	122/02	(////02	7/1/07	127/02	10	17	(10/0)	67	121/07	2/22/67	1/1/07	2/21/07	5/10/07	7	
DIAGRAM NO	COUNTY	NWOT [2]		TIME	NUMBER OF MONTHS	1	7	⊕ <u>Ş</u>	2		1 ~	7	, 4	20	7	D-	0	0/	1.	2/	K) }	1	160

DETAILS OF ACCIDENT HISTORY FOR LOCALION (AS SHOWN ON COLLINION COLLINION)

OF 4

SHEET _ DIAGRAM NO. 122

E NO. OR STREET	BY DATE	<u> </u>		, R/EWB	(i)	to the second second	1 1 S O S 1	9 : 1030 SOU, MOTOLCYCLE PORT STS V2	9,66 1035 SBV, R/ESBV2	9,19 2035 ST3 1, R/E ST3 UZ	2	2,19 2035 MISSES TURN LOGS INTOMEDIAM ONEXTHERMS	9 2035 SBU, R/E SBUz	9 7025 SB U. RIE 58 Uz	ı	2039 58 U. Leses Congret on snow His browth	19,66 2039 SBU, LOSES CONTROL ON SMOUD 19115 CONCOURTED	9,4 3000 SBU, R/E SBUR	66 3050 WB Uz R/E WB B.
		7-56.4.7.	мертнея 🤦	2		-	2		2			7		8	2	7	4		m
		ENVIRONMENTAL Use codes from MV 104 (shown at right) for these categories (6) (7) (8) (9)	YAWAAR SURFACE MOITIGNOO			/			N	_	\	1	,	2		2	/,	-	~
-		GONME des from at right sategorie	ВОВРМВУ СНАВРСТЕР ВОВРМВУ			,			_		 	$\mid \neg \mid$		/	,	_	_	-	_
ż Ż		Shown these cu	BOADWAY CONDITIONS	_		_	8	\		-	1 -	7	\	h	_	7	δ.	-	,
P.I.N. OR IDENT		(9)	SEVERITY	Pool	7	F	20	77	7.50	4	1000	Th	700	000	Pool	200	600	100	8
	12	9	NO' OE NEH'	-	2	17		N	 	~			7	2	2			7	7
	DOLONIE	0	() () TIME	280	6.	8753	0401	0805	6.3h1	p27 0	6755	6236	2760	0061	1350	88/2	0357	0080	hp 91
Y ALBERY	VY LAGE OF	TIME PERIOD ABER FROM OF ATHS TO	1821	10	5/4/07	11/2/07	Thelog	892/8	12/08	70/08	30/08	20	70/01/	9/20/08	80/82/21	2/2/2	12/11/08	4/30/118	20/11/8
COUNTY	D TOWN	TIME NUMBER OF MONTHS	% O %	L C	>-	51	70	21	100				1 -	27	28	29	33	31	32

DETAILS OF ACCIDENT HISTORY FOR LOCALION (AS SHOWIN OIN COLLIGION CITY)

OF 1/2

M

SHEET

DETAILS OF ACCIDENT HISTORY F

20 Sleet/Hail/Freezing Rain Fog/Smog/Smoke Other ODESTARIAL CONTROL U, SWERVES KICHT, INTO 2 3 S755072 CEFT 12217 CHANDE LOSES TONTHOU WEATHER P) 53507 Clear Cloudy Rain Snow RA U, SWELVED Ø V3 78/E 8 SBU, ENTERING 872 LOSES CONTROL, STRIKING GAISERAIL STRIKES GAIDE LANES, QLM1 CASE DATE - 46.46.60 FIE ВҮ M DESCRIPTION Snow/Ice Slush Other \supset 57303 5 Con struction gan ROADWAY SURFACE CONDITION 1. Dry 4. Snow/Ic 2. Wet 5. Slush 3. Muddy 10. Other Š 200 U, KNOKFIRY CHANGES **(**1) 268 (%) 83 141/0 STON, SANG 7/ 5B U, Vz, Uz ENTER MC WHICH TO/E VI Pouce 2 23 MAP 5342 58 Uz **S** B SBUZ AMENDETS Si Use Codes from MV 104 Police Report see back of this form for codes **№** 6000 SEE AROUE SRU, PURSUED BY READING 10 对而 Ac RA ROADWAY CHARACTER
1. Straight and Level
2. Straight and Grade
3. Straight at Hillcrest
4. Curve and Level
5. Curve and Grade
6. Curve at Hillcrest RIE RIE SBU, R/E RIG N AT INTERSECTION WITH/OR BETWEEN N SRUMINGS CTICIES. WOLF 5801 5 Š 5BC, 2 3 \supset ć 533 0, Ø \mathcal{K} 53 15 X ROUTE NO. OR STREET NAME 53 20 V 000 J 20317 2031 203T 2039 5 7035 2000 0 2055 6 EXIT 703 23 2 203 3 E 3 R LIGHT CONDITIONS
1. Daylight
2. Dawn
3. Dusk
4. Dark Road Lighted
5. Derk Road Unlighted B W (1) Use APPARENT CONTRIBUTING **FACTORS** 1 Coute 70 N 8 00 20 <u>س</u>ر 5 20, Ø, 8 Q. 0 5-OV 5 9 Ñ 7 Ν V Ń 2 N N 4 3 N 1 3 \ ENVIRONMENTAL Use codes from MV 104 (shown at right) for ⊚ **МЕАТНЕЯ** N 2 N _ SURFACE N N N • 2 \ 10 CHARACTER N 3 I (e) CONDITIONS OR IDENT THOIT 200 Pool 000 100 0 800 100 300 200 0 000 A E H JJ 4 0 (D) SEVERITY _ 2 N 1 ~ 2 N N 7 W _ ~ N NO. OF VEH. (4) 3 K480 MZZ denie 22%0 2020 1650 8/10 77 6750 9 2721 1710 0分分/ TIME 9/1046 ~ 12 0 080 720 01/221 1/11 (m) 0 0 60/ 601 1,3/09 50/821 60/18/ 60/62/8 50/22, 05 IN TOWN 60/02 60/21/2 50/52/11 FROM 501 00 121/09 0/22, 0 TIME PERIOD DATE 17 2 N () 7/3 ~ 0 COUNTY MONTHS NUMBER 90 74 5 3 7/7 S 5 8 7 P P K $\frac{8}{2}$ I 9 Θ 3 \sim 3

DETAILS OF ACCIDENT HISTORY FOR LOCATION (AS SHUWIN OIN COLLISIUN DIAGNAIN)

N

. V.

TE 213 (9/79)

ION (AS SHOWIN ON COLLISION CITICINE)

OF 1

WEATHER
1. Clear
2. Cloudy
3. Rain
5. Snow
7. Snow Hil/Freezing Rain
7. Fog/Smog/Smoke
1. Other 11/2/2 CASE NO. DATE +44460<u>0</u> FILE ВҮ ROADWAY SURFACE CONDITION 1. Dry 4. Snow/lea 2. Wet 5. Slush 3. Muddy 10. Other (11) DESCRIPTION N SB Uz K Use Codes from MV 104 Police Report W see back of this form for codes U grow more ROADWAY CHARACTER
1. Straight and Level
2. Straight and Grade
3. Straight at Hillcrest
4. Curve and Level
5. Curve and Horest
6. Curve at Hillcrest N ENT 4 RAMPS AT INTERSECTION WITH/OR BETWEEN M <u>_</u> 1085 SIG ROUTE NO. OR STREET NAME 2031 7502 LIGHT CONDITIONS

1. Daylight
2. Dawn
3. Dusk
4. Dark Road Lighted
5. Dark Road Unlighted ... Ose Ose APPARENT CONTRIBUTING **FACTORS** 100.12 5 5 ENVIRONMENTAL Use codes from MV 104 (shown at right) for these categories 6 MEATHER SURFACE CONDITION **®** YAWGAOR **⊘** язтоавано YAWQAOR CONDITIONS OR IDENT P. .. Pool 200 SEVERITY N N $^{(4)}$ NO. OF VEH. Sonsie 0753 1017 TIME 0 02 (c) 1/281 IN TOWN
☐ CITY
☐ VILLAGE OF △ FROM 2/5/10 3/11/10 TIME PERIOD DATE 2 (G) DIAGRAM NO. COUNTY NUMBER MONTHS ∞ Ю 0 9 9 Θ

E 1	156a (3/76)			Page 1 of Z	
1.	IDENT. NO.: [1] 0 40 9	DEPART TRAFF	STATE OF NEW YORK MENT OF TRANSPORTATION IC AND SAFETY DIVISION HIGHWAY SAFETY	MAIN OFFICE USE: DIVISION FILE	
NO.	CITY OF COMIC		ESTIGATION REPORT ISTRUCTIONS ON REVERSE)	SCHEDULED FOR B&A	. 0
LOCATION	ROUTE NO. OR STREET NAME NY 910B (Wolf K	 	STATE HIGHWAY NO. FF	OM OR AT REFERENCE MA	ARKE
	At Intersection With (If Applicable) ROUTE NO. OR STREET	NAME	STATE HIGHWAY NO.	TO REFERENCE MARKI	ER () (
	REASON FOR INVESTIGATION (a) IDENTIFIED BY ACCIDENT SURVEILLAND (b) POLICE HAZARD REPORT (c) RESPONSE TO COMPLAINT OR INQUIRY (d) REGIONALLY INITIATED PIN 1721. (e) OTHER (Explain) 009 PIL Reduction Index= 21.22 'Se	51 venty R	(b) TRAFFIC CONTROLL (c) MAINTENANCE II (d) OTHER (e) NONE	I	olete
4.	DISCUSSION (Use reverse if additional space is require (a) PROBLEMS IDENTIFIED	ed — chéck b	ox if reverse is used 📙)		
	See allaw	hed t	Page 2 of 2		
	(b) PROPOSED SOLUTION				
		٠			
			·		
\vdash	(c) ACTION TAKEN			· · · · · · · · · · · · · · · · · · ·	
5.	. ACCIDENT EXPERIENCE	6.	BENEFIT/COST ANALYSIS (se	e instructions)	
N	NUMBER OF ACCIDENT OF BEGINNING Pro	TS perty	Check box if Benefit/Cost Calcu	ations are attached	
^	Months Month YEAR Fatal Accidents Accidents Accidents	mage idents Pi	RINCIPAL INVESTIGATOR	TITLE F	<u> </u>
	24 11 07 0 10	0 8 A	PPROVEDBY ,	DATE 3-3-	
	0 5 1 1 0 9 0 5	0 1/	In kind		

HSI # 1-1-0409 NY 910B, RM 910B-1101-1010 to 1015 Town of Colonie, Albany County

Problems Identified

NY Route 910B, Wolf Road, was identified as a Priority Investigation Location (PIL) from RM 1010 to 1015 based on reportable accidents during the period 11/1/07 to 10/31/09. NY 910B, which travels north-south, is a four lane divided Urban Principal Arterial highway with free access. The travel way is 54 feet wide, which accommodates four lanes and a paved flush median that provides refuge for turning movements. This area is commercially developed with various businesses and driveways on both sides of the roadway. Pavement markings and signing are satisfactory. The posted speed limit is 40 MPH.

NY 910B is intersected by Computer Drive at RM 1010. The intersection is controlled by a three color traffic signal. NY 910B is intersected by the Wolf Road Shoppers Park drive from the east at RM 1011 in a stop controlled T-intersection. NY 910B is intersected by Cerone Commercial Drive from the west at RM 1012 in a stop controlled T-intersection. NY 910B is intersected by Metro Park Road from the east at RM 1013 in a T-intersection. The intersection is controlled by a three color traffic signal. NY 910B is intersected by Beltrone Drive from the east at RM 1014 in a stop controlled T-intersection.

The accident study period was 39 months, 1/1/07 to 3/31/10. Based on the 54 accidents that occurred during the study period the accident rate is 2.50 ACC/MVM. This rate is less than the expected accident rate of 3.59 ACC/MVM for similar highways statewide. There were 28 accidents during the 2 year HAL period. The majority of the accidents consisted of rear end, overtaking, and turning accidents due to traffic congestion, generally grouped at the driveways and intersections. There was one accident involving a pedestrian and no accidents involving bicyclists. Of the 53 accidents on this section of highway with pavement condition reported, 14 (26%) occurred on wet pavement and no accidents occurred on snow/ice/slush pavements. There were 7 accidents during the morning commute hours from 6 am to 9 am and 16 accidents occurred during the peak evening commute from 3 pm to 6 pm.

Proposed Solution

There is a project, PIN 1721.51 currently scheduled for letting 11/15/12, to address improvements on the Northway at Exit 4. We have no safety recommendations to offer for the project at this time as a result of this review of the accident history.

Action Taken

Memo to R-1 Design dated 2/16/11.

TE '	56a (3/76)	CTATE OF NEW YORK	
1.	IDENT. NO.: 11 0495	STATE OF NEW YORK DEPARTMENT OF TRANSPORTATION	MAIN OFFICE USE:
		TRAFFIC AND SAFETY DIVISION	DIVISION FILE
	D CITY OF Comile	HIGHWAY SAFETY INVESTIGATION REPORT	REVIEWED BY
NO.	☐ VILLAGE	(SEE INSTRUCTIONS ON REVERSE)	SCHEDULED FOR B&A
LOCATION	ROUTE NO. OR STREET NAME	STATE HIGHWAY NO. FRO	OM OR AT REFERENCE MARKET
Ĭ	/	haker Rd 15	5 111011204
	At Intersection With ROUTE NO. OR STREET N		TO REFERENCE MARKER
	(If Applicable) A CR 153 /	Old Wolf Rd	
-			
2.	REASON FOR INVESTIGATION (a) IDENTIFIED BY ACCIDENT SURVEILLANCE	3. RECOMMENDATION E SYSTEM	EMENT (Initiate Proj. Devel. Study)
	T (L) POLICE HAZARD REPORT	THE TRAFFIC CONTRO	
	(c) RESPONSE TO COMPLAINT OR INQUIRYP	M 1721.ST (c) MAINTENANCE IM	
	(d) REGIONALLY INITIATED ARWY (e) OTHER (Explain)	(d) OTHER (esh Striping sections 48
20	108 PIL; Red Index = 18.11; Sev Rank = 15		^{(*})
4.			\
1	(a) PROBLEMS IDENTIFIED		
İ			
1	and the state of the second second second second second second second second second second second second second	and the second of the second o	
	(b) PROPOSED SOLUTION		
	•		
	(c) ACTION TAKEN		
ı			
l			
5.	ACCIDENT EXPERIENCE	6. BENEFIT/COST ANALYSIS (see	instructions)
-			Instructions/
N	umber PERIOD NUMBER OF ACCIDENTS	Check box if Benefit/Cost Calculat	tions are attached
٨	of BEGINNING Fatal Injury Dama		
- "	MONTH YEAR Accidents Accidents Accidents	· 1 · · · · / 1 · · · · · · ·	TITLE
	120107376	/ N/Rwa	
H	12010800	ADDROVEDAY (DATE
	17 0 1 0 9 0 1 3	W DRIVER	3-3-11
L		7 7 7 7 6000 00	

HSI #4-1-0495 NY 155, RM 155-1101-3047 Town of Colonie, Albany County

Problems Identified

NY Route 155 identified as a Priority Investigation at TH RM 3047 based on reportable accidents during the period 1/1/07 to 12/31/08.

This section of NY Touring Route 155 is the intersection of Albany County Route 151, Albany Shaker Road, traveling east-west with Albany County Route 153, Old Wolf Road, carrying Touring Route 155 north from the intersection, and the southbound on ramp to 187, the Northway, south from the intersection. The intersection is controlled with a 3 color traffic signal.

During the 36 month accident study period from 1/1/07 to 12/31/09 there were 21 total accidents. Of the 18 accidents with highway surface condition reported there were 5 (28%) wet pavement accidents and 2 (11%) snow/ice pavement accidents. There were 11 rear end accidents at the signal, including 7 SB. There is no apparent treatable pattern of accidents.

Proposed Solution

The dotted "skip marks' that separate the 2 SB left turn lanes were observed to be faded — during the field review. These pavement markings were refreshed in October 2010.

Actions Taken

Letter to complainant, dated 12/22/10.

DEPARTMENT OF TRANSPORTATION TRAFFIC ENGINEERING AND SAFETY DIVISION COLLISION DIAGRAM #乙

Sheet 1 of

Town of Colonie County Intersection NY910B; RM 910B- 1101-1010 TD From 1/1/47 To 3/31/10 MED Period 3 Years 3 Months Cerone Comm Dire Compation Dr 1 Computer Drive W Not all features shown Not to scale COLLISION —Rear-end - Head-on ← Moving Vehicle ← - Pedestrain _ Side-swipe ← R - Bicycle ← M - Motorcycle Left-turn ☐ Fixed Object Out of control ←→→→ Backing Vehicle O Personal Injury **←** Stopped Vehicle Right-angle Overturned Fatal Injury Parked Vehicle

DETAILS OF ACCIDENT HISTORY FOR LOCATION (AS SHOWN ON COLLISION DIAGRAM)

FE 213 (9/79)

OF

SHEET DIAGRAM NO.

N6 V-2 SIGH SP MANE STRUCK BY NB 1-2 シ Simis BACK IN TO PATH OF VI BEALTS (BENPTY BEAIND MINION/ED VEH RIGHT ANGLE V-1 GNTERED TRAFFIC WB. STEACK NBV2 > F13 Sleet/Hail/Freezing Rain Fog/Smog/Smoke Other Steack 1/2 STACTING TOGO ON GREEN HERE PEO STEPPED DMV <u>ه</u> س Of V-1 FOOT SUIPPED FROM END-NB. V-Z SLOWING IN TRAFFIC REL 1011 WEATHER EB V1 STEMEN BY SB V-2. REAR END-5B, V-2 SLOWING IN CRAPPIO RIGHT ANGLE 1-1 WAVED INTO TRAFFIC WB. Clear Cloudy Rain Snow STRUCK MAKE 1010 KINHT ANGLE EB VI MINDE RIGHT ON RED. Š. KIGHT ANGLE V-I ENTERED TRAFFIC WS. るの DATE CASE FILE V-1 CHANGED LANG REAR GND-NB, V-1 SLOWING TO Snow/Ice Slush Other DESCRIPTION ING VI MAKING LEFT INTO DRIVE SO VI RAN RED, V-1 CHANGED ROADWAY SURFACE CONDITION 4. 3. 10. 10 101 C Dry Wet Muddy Use Codes from MV 104 Police Report 1101-1010 27 see back of this form for codes ROADWAY CHARACTER AT INTERSECTION WITH/OR BETWEEN 2 OVERCENTE-NB, 1010 0VER-TAKE-S.B. Straight and Level Straight and Grade Straight at Hillcrest KEPA END-NB 1010 PEAR GNO-NB GNO-56, KIGHT ANGLE DIDIKUH ANGUE Curve at Hillcrest Curve and Level Curve and Grade ROUTE NO. OR STREET NAMI RM GIOB-公司 105 BFIR ÷ 4.6.4.6.0 NY 910 B Dark Road Lighted Dark Road Unlighted 701 010 GHT CONDITIONS 00 113 APPARENT CONTRIBUTING FACTOR&M Daylight Dawn しら (2) 2,9 \sim Dusk \equiv J 2 3 4 $^{\prime}$ 2 0 -3 5 3 (G) Codes from MV 104 own at right) for CONDITION 0 SURFACE (®) YAWGAOR OR IDENT SNOITIGNO \preceq _ (<u>o</u>) 7 LIGHT 10 010 400 2/1/5 8 4145P17 100 100 900 1 PDD 0016 Pool PTT 8:418/0/000 7 1-31/2 AR:21 (D **VTIRBVBS** 7 _ 7 7 5 (4) \mathcal{L} NO' OF VEH. Siy3 Pl 1:30 P 3:47P 14°40 10711732PI 10:036 1:309 11:26A 2:58P 13:27P 8:02A TIME 101 (- (bany 3 5 10 S 5 5 FROM ☐ VILLAGE OF 5 07 TIME PERIOD 166 121 2 DATE S 25 80 M 5 8 2 2 0 M TOWN COUNTY CITY NUMBER MONTHS σ 4 2 حح 9 S 0 2 \bigcirc 7

DETAILS OF ACCIDENT HISTORY FOR LOCATION (AS SHOWN ON COLLISION DIAGRAM)

TE 213 (9/79)

SHEET $\frac{2}{5}$ OF $\frac{5}{5}$

and ha NB V2 SKI 3 5612 NBVZ SKARK と言い SIZE SIGNAL 2 SPENCE Snow Sleat/Hail/Freezing Rain Fog/Smog/Smoke Other F15 盃 上 25 3 CED TRAFFIC L'EGREPH. STRICT STRICT となかで STRUCK F STRUCK STONCK SB V-2 Dmv / ---SEC ENTERED TRAFFIC WE. QXXX WEATHER T RAFFIO +PAFFIC Clear Cloudy Rain SEB Š. 8 8 CHAMBED LAND ENTERED TRAFFIC EB AT RED 88 V-1 CHANGED LANES 8 DATE CASE - 44466 FILE STRUCK STURRED V-1 CHANGED LANES ANGLE IN ENTERED TRAPFIC ₽¥ ENTERED TEARNO 1- FINERO TRARL STUPPED IN NJ SLOWING IN Snow/Ice DESCRIPTION 92 ROADWAY SURFACE STUPPED STORPED ATTEMPTED LEFT TURN TWEN 4.6.0 1.3 Dry Wet Muddy 010 10 -64-Use Codes from MV 104 Police Report 1-1 7.7 四 _ 1-1 see back of this form for codes ROADWAY CHARACTER
1. Straight and Level
2. Straight and Grade
3. Straight at Hillcrest
4. Curve and Level
5. Curve and Grade
6. Curve at Hillcrest NB AT INTERSECTION WITH/OR BETWEEN RICH MACE, V-1 M PYLING NB. 8 ON FRETHER, ING -28 T ANGLE Krok GNO-CB KERK END-NB. KM 910B-1101-SCHIEN SON CND-CND-ELGHT ANGE) (SJ) RIGHT PHIGHE 9716JUAN ROUTE NO. OR S& REET NAME RIGHT NB 7.1 5817 KEAR 图 RIGHT EM 9103 Dark Road Lighted Dark Road Unlighted LIGHT CONDITIONS
1. Daylight
2. Dawn
3. Dusk No H 0 0 13.7 610 03 013 O Use APPARENT CONTRIBUTING 96 010 0 0 10 FACTORSOM 200 (ナ コ 工 7 T S 4 2 -0 | h | 0 | 1 | 1 7 ENVIRONMENTAL Use codes from MV 104 (shown at right) for these categories \sim 2 3 7 Ç <u>(6)</u> 4 CONDITION N \sim SURFACE \otimes YAWGAOR RATOARAHO 士 SOUDITIONS OR IDENT <u>(</u> \neg THOIL 100 É 2-1 600 000 PDO 000 900 PDO 5 000 4 000 000 800 (D) SEVERITY J 9 I anie (4)4:04P12 (4 رب \sim NO' OF VEH. SIMP 2 (49P 1399 7559A 9 SHIP 12115P RIBBA 9 Ž 0 TIME 10, 8:00 7 7 737 918 三ジ <u>ල</u> かると 3 280 FROM 20 80 80 8 20 8 80 H 20 UVILLAGE OF ×0 80 9 9 22 TIME PERIOD DATE 79 2 30 39 2 0 5 7 5 DIAGRAM NO 7 区 TOWN 5 0 6 5 V Š COUNTY NUMBER MONTHS σ 5 ∞ 9 30 رس دس 9 \bigcirc C-7 (-) \subset

٢	7
(61/6)	
TE 213	

DIAGRAM NO.

DETAILS OF ACCIDENT HISTORY FOR LOCATION (AS SHOWN ON COLLISION DIAGRAM)

OF

SHEET

7

SILVAL NG V.Z 1887 128 3 3 **まらり** NB 172 TABEL TABEL 5/1115 1.3 4722 2 S ER 5-12 NCK SB 1-2 Snow Sleet/Hail/Freezing Rain Fog/Smog/Smoke Other E KIRE 1272 3 STRINCIL TOWER STORICK LOAREIG 2/4/11 SCOWING IN TRAFFIC FOR V-1 VEERED STRUCK STRUCK 2MV > FROM WEATHER Clear Cloudy Rain BOTH VEHICLES STARTING IN 8M SLOWING IN TRAFFIL Š. <u>2</u> 3 TEAPPICAB TURKY DATE CASE - 44460 <u>ه</u> ا FILE TRAFIC TRAFAIC NB NB 14ND STRED SKARK TOAFFIC DESCRIPTION Snow/Ice Slush Other TRAFFIC RIGHT KILLIT ANGLE V-1 ENTERED TRAPPIC 四 α ROADWAY SURFACE S CHANGED CHANGED STAPPED IN SIGNAL 4. % 0. MADE SB V-1 ATTEMPTED SCOWING AT V-1 ENTERED V-C AND V-- FNTERED EWTERGO Dry Wet Muddy 1015 WA GNATERCED FI odes from MV 104 Police Report 7 STIPPED P 5 ee back of this form for codes ROADWAY CHARACTER ₩ B. 1 AT INTERSECTION WITH/OR BETWEEN END-5B 11-2 Straight and Level Straight and Grade Straight at Hillcrest 1101 - 1010OVERTRIE-NA <u>N</u>8 3 Curve at Hillcrest Curve and Level Curve and Grade END-58. GND-SB CEAR END-SB. 1-1 - NO OHAH ANKLE PIGHT YANGU RIGHTAMORE ANGLE PLIGHT THERE FIND-CND-ROUTE NO. OR STREET NAME 913 (VERCIPIKE -Molt RIGHT REAR DER KILT KILT DOK DOK TO BE CHR. RFAR 9.6,4.0,0 KM 910 K-Daylight
Dawn
Dusk
Dark Road Lighted N A LOB LIGHT CONDITIONS
1. Daylight
2. Dawn
3. Dusk Use O Use APPARENT CONTRIBUTING 013 5 00 0 0 8 6)0 FACTORSAM 5 37 18,00 S م Q 7 Q \Box (7-CI \rightarrow 409 کے N ENVIRONMENTAL Use codes from MV 104 (shown at right) for these categories 5 C (G) (**MEATHER** 3 0 SURFACE CONDITION ت \otimes YAWQAOR RHARACTER YAWGAOR OR IDENT. CONDITIONS **⑥** ___ THDI. 000 001 000 000 700 000 1000 B (b) SEVERITY J 2 C. SIL (4)C' 'ON J. ... O 17.14 1:026 12308 7:43A 11:28# 12.52 SIYIA 9:21 A 1:04P 13/15/ 16:20 P 9 N.S 0 TIME 1308 0 (c) クタアン TOWN CITY FROM 0 00 69 9 C 60 0119109 109 1109 09 5 TIME PERIOD \sim \leq DATE 0 (P) 8 0 00 77 7 3 حس 7 2 COUNTY 0 0 NUMBER MONTHS 0 OF 25 0 50 9 Θ 9 3 'n 3 3 >

N TE 213 (9/79)

DETAILS OF ACCIDENT HISTORY FOR LCCATION (AS SHOWN ON COLLISION DIAGRAM)

OF 10 6 SHEET DIAGRAM NO.

COUNTY	DA		- OR	P.L.N.			10	10 6 B	OUTE NC	9.0R	11 10 410 9 ROUTE NO. OR TREET NAME CASE NO. DMY MIS / SIMS
TOWN CITY		0						<u> </u> ∢	T INTER	SECT	N BY WED
									RIM	910	RM 910B - 1101-1010 to 1015 DATE
00 V /07/	1_0/	(1 m = m = 0 10	NVIR se cod hown ese ca	ENVIRONMENTAL Use codes from MV 104 (shown at right) for these categories	NTAL MV 1: for		LIGHT CONDITIONS 1. Daylight 2. Dawn 3. Dusk 4. Dark Road Lighted	IONS ighted	ROADWAY CHARACTER ROADWAY SURFACE 1. Straight and Level CONDITION 2. Straight and Grade 1. Dry 4. Snow/lee 2. 3. Straight att Hillcrest 2. Wet 5. Slush 3. 4. Curve and Level 3. Muddy 10. Other 4.
10 2/3//10 EH. C	. С ЕН: С) ^		SNS (- NC			Use	6. Curve at Hillcrest les from MV 104 Police Renort
DATE TIME OO OF V	ио. оғ v severit соиріты	SEVERIT CONDITION	LIGHT CONDITIO		AWGAOR	ROADWA CHARAC ROADWA SURFACE	СОИВІТІ	WEATHE	APPARENT CONTRIBUTING FACTORS	28	see back of this form for codes (1) DESCRIPTION
2/20/09 4:34P 2 PI-2 1	11334P 2 PE-2	B	¿~5	and the state of t					5	580	1015 RIGHT ANGLE, V-1 ENTERED TRAPFICE OB STOWCK BY SB V2
10/31/09 6:19A 2 Pt-1 4	4	=					7	3 -	7	INS	RIGHT ANGLE V-1 ENTERED TRAFFIC WB, STEWCK BY NB V-2
3/28/10 12:18/2 / 1851	7							7	17,7	010	RIGHT ANGLE, SB V-1 PASSED RED SIGNAL, STRUCK GB V-2
1 1510 6:13P 2 PEZ 4	2 162	PEZ		===				7	- 5	110	REAR GNO-SB, V-1 STUPPED TO MAKE TURN
3/18/10 12:30P 2 PEI 1	S	7 PT-1						7	0	K101	REAR GND-NB, V-2 BRAKED ABRUPTY BELLIND MINNOLUED VEH
3/26/10 5:16P 2 800 11	7	2 600 11 1	- 0	-					9	h Q	PERRENDING UZ SLOWING IN TRAFFIC
						· · · · · · · · · · · · · · · · · · ·		***	-		
					İ	<u> </u>					
					1	<u> </u>					
					ı	<u> </u>					
					1 1						
				-		_	-			T	

MEMORANDUM DEPARTMENT OF TRANSPORTATION

TO: A. Trichilo, R-1 Design, 3rd floor

FROM: M.J. Kennedy, R-1 Traffic Engineer, 4th floor

SUBJECT: PIN 1721.51: I87 Exits 3/4

Updated Accident Data

Town of Colonie, Albany County

DATE: May 11, 2010

Attached please find the updated Verbal Description Reports for the subject project as you requested on 3/23/10. The accident data covers the 3 year period from 1/1/07 to 12/31/09.

The Northway, I87, is a six lane divided Urban Principal Arterial Interstate highway with full control of access. There were no High Accident Locations (HALs) on the section of highway from RM 2018 to 2042 based on accident data between 11/1/07 and 10/31/09. There were 262 total accidents on this segment of I87 during the study period. The accident rate was 0.90 ACC/MVM which is less than the expected accident rate of 1.10 ACC/MVM for similar highways statewide. There were no accidents involving pedestrians or bicyclists.

NY 910B, Wolf Road, is a four lane divided Urban Principal Arterial highway with free access. Wolf Road is a Priority Investigation Location (PIL) from RM 1010 to 1015 and from RM 1016 to 1019 based on accident data between 11/1/07 and 10/31/09. There were 166 total accidents on this segment of Wolf Road during the study period. The accident rate was 4.60 ACC/MVM which is greater than the expected accident rate of 3.59 ACC/MVM for similar highways statewide. There was one accident involving a pedestrian and no accidents involving bicyclists. These locations have been added to the program for Highway Safety Investigations. HSI reports will be forwarded when completed.

NY 155, **Watervliet Shaker Road**, is a two lane divided Urban Minor Arterial highway with free access. Watervliet Shaker Road is a Safety Deficient Location (SDL) from RM 3058 to 3061 based on accident data between 11/1/07 and 10/31/09. There were 35 total accidents on this segment of Watervliet Shaker Road during the study period. The accident rate was 7.99 ACC/MVM which is greater than the expected accident rate of 3.94 ACC/MVM for similar highways statewide. There was one accident involving a pedestrian and no accidents involving bicyclists. This location has been added to the program for a Highway Safety Investigation. A HSI report

A. Trichilo, R-1 Design PIN 1721.51 P. 2 of 2

will be forwarded when completed.

Accident data is attached for Albany County Route 151, Albany Shaker Road, from Wolf Road to Dalessandro Boulevard. There were 118 accidents on this segment of Albany Shaker Road during the study period. A signal study at the intersection of CR 151 with Old Wolf Road (CR 153) and the Exit 4 SB on ramp is underway. A HSI report will be forwarded when completed.

Accident data is attached for Albany County Route 153, Old Wolf Road, from Albany Shaker Road to the Exit 4 SB off ramp. There were 43 accidents on this segment of Old Wolf Road during the study period.

Accident data is attached for the I87 SB Exit 5/Exit 4 Merge Diverge Area service road. There were 19 accidents on the various ramp segments during the study period.

Please be advised that accident data at intersections and ramps will appear on both roadways in the summaries. We have no safety recommendations to make as a result of our initial review of this accident history. If you have any questions concerning the data provided, please contact Mike Doody of this office at 388-0372.

MJK:MED Attachments

cc: J. Rutnik, Traffic 4th floor

ATTACHMENT G PEDESTRIAN GENERATOR CHECKLIST

PIN: 1721.51

DESCRIPTION: Exit 3/4 Access Improvements

MUNICIPALITY/COUNTY: Town of Colonie / Albany County

PEDESTRIAN GENERATOR CHECKLIST

PREPARED BY: LMW REVIEWED BY: Note: The term reperator in this document refers to both pedestrian generators (where pedestrians originate) and destinations (where pedestrians travel to). A check of yes indicates a potential need to accommodate pedestrians and coordination with the Regional Bicycle and Pedestrian Coordinator is necessary during project scoping. Answers to the following questions should be checked with the local municipality to ensure accuracy. Is there an existing or planned sidewalk, trail, or pedestrian crossing facility? YES⊠ NO□ Comments: Wolf Rd is part of CDTC's Proposed Priority Bicycle/Pedestrian Network and improving system connectiving between the existing pedestrian/bicycle facilities on Wolf Rd and those constructed as part of the Albany-Shaker/Watervliet-Shaker Rd project is a secondary objecting of the proposed project. 2. Are there bus stops, transit stations or depots/terminals located in or within 800m of the project area? YES NO Comments: CDTA currently provides service along I-87, Albany-Shaker Rd and Wolf Rd within the project study area. YES⊠ NO□ Is there more than occasional pedestrian activity? Evidence of pedestrian activity may include a worn path. Comments: Moderate to high pedestrian activitiv was observed along the existing sidewalks within the project corridor. In addition, there is evidence of pedestrian activity on Albany-Shaker Rd west of Wolf Rd. Are there existing or approved plans for generators of pedestrian activity in or within 800m of the project that YES NO promote or have the potential to promote pedestrian traffic in the project area, such as schools, parks, playgrounds, places of employment, places of worship, post offices, municipal buildings, restaurants, shopping centers or other commercial areas, or shared-use paths? Comments: There are several generators of pedestrain activity within and around the proposed project area. Retail establishments, hotels, the Albany International Airport, office space, Ann Lee Pond Nature and Historic Preserve and the Crossings at Colonie are all located in or adjacent to the project study area and have potential to promote pedestrian activity. Are there existing or approved plans for seasonal generators of pedestrian activity in or within 800m of the YES□ NO⊠ project that promote or have the potential to promote pedestrian traffic in the project area, such as ski resorts, state parks, camps, amusement parks? Comments: Ann Lee Pond Nature and Historic Preserve, the Crossings at Colonie, and the Shaker Historic site are all located adjacent to the project study are and have potential to promote seasonal pedestrian activity. Is the project located in a residential area within 800m of existing or planned pedestrian generators such as those YES⊠ NO□ listed in #4? Comments: Residential areas are located along Wolf Rd, Sand Creek Rd, Albany-Shaker Rd, and Watervliet-Shaker Rd. Although there are not many residential areas located within the project study area, several are located adjacent to the project study area within 2,500 ft of the pedestrian generators listed above. From record plans, were pedestrian facilities removed during a previous highway reconstruction project? YES \square NO \square Comments: Pedestrian Facilities have not been removed during previous highway reconstruction projects. Did a study of secondary impacts indicate that the project promotes or is likely to promote commercial and/or YES□ NO⊠ residential development within the intended life cycle of the project? Comments: The project is not likely to promote commercial and/or residential development within the intended life cycle of the project. Does the community scomprehensive plan call for development of pedestrian facilities in the area? YES⊠ NO□ Comments: Wolf Road is part of CDTC's Proposed Priority Bicycle / Pedestrian Network and improving system connectivity between the existing pedestrian/bicycle facilities on Wolf Rd and the facilities constructed as part of the Albany-Shaker/Watervliet-Shaker Rd project is a secondary objective of the proposed project. Based on the ability of students to walk and bicycle to school, would the project benefit from engineering YES NO measures under the Safe-Routes-To-School-Program? Eligible infrastructure-related improvements must be within a 3.2km radius of the project. Comments: Several schools within the North and South Colonie Central School Districts are located

ADDITIONAL COMMENTS:

measures under the Safe-Routes-To-School Program.

Include comment on exceptional circumstances from EI 04-011 if pedestrian accommodations are warranted but not provided.

within 2 miles of the project study area, the immediate project area would not benefit from engineering

Note : This checklist should be revisited due to a project delay or if site conditions or local planning changes during the project development process.
истемринет ргоссья.

Γ